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Foreword

It is a great personal pleasure for me to welcome the Second Edition of
Hypersonic and High Temperature Gas Dynamics by John D. Anderson to the
AIAA Education Series. I have known John Anderson for more years than
either he or I are comfortable recalling, and I have always found him to be extre-
mely articulate and insightful. The original edition published by McGraw-Hill in
1989 was a very well received, comprehensive, and in-depth treatment of these
important topics, and it was reprinted by AIAA in 2000. This new edition has
updated the material and expanded the coverage, and we anticipate that it will
be equally well received, especially since hypersonics is now enjoying a resur-
gence of interest. This edition has 18 chapters divided into three main parts
and more than 800 pages.

John Anderson is very well-qualified to write this book, first because of his
broad and deep expertise in the area. Second, his command of the material is
excellent, and he is able to organize and present it in a very clear manner. In
addition, John writes in a very readable style, which has made all of his books
popular with both students and working professionals. Finally, John Anderson
has long played a key role in AIAA publications activities, including books
and journal papers, as well as leadership roles, and that makes us particularly
pleased to have this book under the AIAA masthead.

The AIAA Education Series aims to cover a very broad range of topics in the
general aerospace field, including basic theory, applications and design. A com-
plete list of titles can be found at http://www.aiaa.org. The philosophy of the
series is to develop textbooks that can be used in a university setting, instructional
materials for continuing education and professional development courses, and
also books that can serve as the basis for independent study. Suggestions for
new topics or authors are always welcome.

Joseph A. Schetz
Editor-in-Chief
AIAA Education Series



This page intentionally left blank



Table of Contents

Preface to the Second Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Preface to the First Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1. Some Preliminary Thoughts . . . . . . . . . . . . . . . . . . . . 1

1.1 Hypersonic Flight—Some Historical Firsts . . . . . . . . . . . . . . . 2

1.2 Hypersonic Flow—Why Is It Important?. . . . . . . . . . . . . . . . . 5

1.3 Hypersonic Flow—What Is It? . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Fundamental Sources of Aerodynamic Force and

Aerodynamic Heating . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Hypersonic Flight Paths: Velocity-Altitude Map . . . . . . . . . . . 27

1.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Part 1. Inviscid Hypersonic Flow

Chapter 2. Hypersonic Shock and Expansion-Wave Relations . . . . 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Basic Hypersonic Shock Relations . . . . . . . . . . . . . . . . . . . 36

2.3 Hypersonic Shock Relations in Terms of the Hypersonic

Similarity Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Hypersonic Expansion-Wave Relations . . . . . . . . . . . . . . . . . 44

2.5 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . . 47

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 3. Local Surface Inclination Methods . . . . . . . . . . . . . . 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Newtonian Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Modified Newtonian Law . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Centrifugal Force Corrections to Newtonian Theory . . . . . . . . 63

3.5 Newtonian Theory—What It Really Means . . . . . . . . . . . . . . 70

3.6 Tangent-Wedge Tangent-Cone Methods . . . . . . . . . . . . . . . . 79

3.7 Shock-Expansion Method . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



Design Example 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 4. Hypersonic Inviscid Flowfields: Approximate Methods . 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Mach-Number Independence . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Hypersonic Small-Disturbance Equations . . . . . . . . . . . . . . 111

4.5 Hypersonic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Hypersonic Small-Disturbance Theory: Some Results . . . . . . 129

4.7 Comment on Hypersonic Small-Disturbance Theory . . . . . . . 145

4.8 Hypersonic Equivalence Principle and

Blast-Wave Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.9 Thin Shock-Layer Theory . . . . . . . . . . . . . . . . . . . . . . . . 167

4.10 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 173

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 5. Hypersonic Inviscid Flowfields: Exact Methods . . . . . . 179

5.1 General Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.2 Method of Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 184

5.3 Time-Marching Finite Difference Method: Application

to the Hypersonic Blunt-Body Problem . . . . . . . . . . . . . . 199

5.4 Correlations for Hypersonic Shock-Wave Shapes . . . . . . . . . 222

5.5 Shock–Shock Interactions . . . . . . . . . . . . . . . . . . . . . . . . 225

5.6 Space-Marching Finite Difference Method:

Additional Solutions of the Euler Equations . . . . . . . . . . . 231

5.7 Comments on the State of the Art . . . . . . . . . . . . . . . . . . . 246

5.8 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 247

Design Example 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Design Example 5.2: Hypersonic Waveriders—Part 1 . . . . . . 250

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Part 2. Viscous Hypersonic Flow

Chapter 6. Viscous Flow: Basic Aspects, Boundary Layer

Results, and Aerodynamic Heating . . . . . . . . . . . . . . 261

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6.2 Governing Equations for Viscous Flow:

Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . 266

6.3 Similarity Parameters and Boundary Conditions . . . . . . . . . . 268

6.4 Boundary-Layer Equations for Hypersonic Flow . . . . . . . . . . 272

6.5 Hypersonic Boundary-Layer Theory: Self-Similar

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

6.6 Nonsimilar Hypersonic Boundary Layers . . . . . . . . . . . . . . 315

6.7 Hypersonic Transition . . . . . . . . . . . . . . . . . . . . . . . . . . 327

xii



6.8 Hypersonic Turbulent Boundary Layer . . . . . . . . . . . . . . . . 335

6.9 Reference Temperature Method . . . . . . . . . . . . . . . . . . . . 341

6.10 Hypersonic Aerodynamic Heating: Some Comments

and Approximate Results Applied to

Hypersonic Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 346

6.11 Entropy-Layer Effects on Aerodynamic Heating . . . . . . . . . . 353

6.12 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 355

Design Example 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Design Example 6.2: Hypersonic Waveriders—Part 2 . . . . . . 361

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Chapter 7. Hypersonic Viscous Interactions . . . . . . . . . . . . . . . . 375

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

7.2 Strong and Weak Viscous Interactions: Definition and

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

7.3 Role of x in Hypersonic Viscous Interaction . . . . . . . . . . . . 382

7.4 Other Viscous Interaction Results . . . . . . . . . . . . . . . . . . . 389

7.5 Hypersonic Shock-Wave/Boundary-Layer Interactions . . . . . . 395

7.6 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 407

Design Example 7.1: Hypersonic Waveriders—Part 3 . . . . . . 409

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Chapter 8. Computational-Fluid-Dynamic Solutions of

Hypersonic Viscous Flows . . . . . . . . . . . . . . . . . . . . 415

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

8.2 Viscous Shock-Layer Technique . . . . . . . . . . . . . . . . . . . . 418

8.3 Parabolized Navier–Stokes Solutions . . . . . . . . . . . . . . . . . 424

8.4 Full Navier–Stokes Solutions. . . . . . . . . . . . . . . . . . . . . . 434

8.5 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 444

Part 3. High-Temperature Gas Dynamics

Chapter 9. High-Temperature Gas Dynamics:

Some Introductory Considerations . . . . . . . . . . . . . . 449

9.1 Importance of High-Temperature Flows . . . . . . . . . . . . . . . 450

9.2 Nature of High-Temperature Flows . . . . . . . . . . . . . . . . . . 458

9.3 Chemical Effects in Air: The Velocity-Altitude Map . . . . . . . 459

9.4 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 461

Chapter 10. Some Aspects of the Thermodynamics of Chemically

Reacting Gases (Classical Physical Chemistry) . . . . . . 463

10.1 Introduction: Definition of Real Gases and Perfect Gases . . . . 464

10.2 Various Forms of the Perfect-Gas Equation of State . . . . . . . . 466

10.3 Various Descriptions of the Composition of a Gas Mixture . . . 472

xiii



10.4 Classification of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . 474

10.5 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . 478

10.6 Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . 481

10.7 Calculation of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 483

10.8 Gibbs Free Energy and the Entropy

Produced by Chemical Nonequilibrium . . . . . . . . . . . . . . 485

10.9 Composition of Equilibrium Chemically

Reacting Mixtures: The Equilibrium Constant . . . . . . . . . . 488

10.10 Heat of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

10.11 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 497

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Chapter 11. Elements of Statistical Thermodynamics . . . . . . . . . . 501

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

11.2 Microscopic Description of Gases . . . . . . . . . . . . . . . . . . . 503

11.3 Counting the Number of Microstates for a Given

Macrostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

11.4 Most Probable Macrostate . . . . . . . . . . . . . . . . . . . . . . . . 514

11.5 Limiting Case: Boltzmann Distribution. . . . . . . . . . . . . . . . 516

11.6 Evaluation of Thermodynamic Properties in Terms of the

Partition Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

11.7 Evaluation of the Partition Function in Terms of T and V . . . . 524

11.8 Practical Evaluation of Thermodynamic Properties for a

Single Chemical Species . . . . . . . . . . . . . . . . . . . . . . . 528

11.9 Calculation of the Equilibrium Constant . . . . . . . . . . . . . . . 532

11.10 Chemical Equilibrium—Some Further Comments . . . . . . . . . 537

11.11 Calculation of the Equilibrium Composition

for High-Temperature Air. . . . . . . . . . . . . . . . . . . . . . . 538

11.12 Thermodynamic Properties of an Equilibrium

Chemically Reacting Gas . . . . . . . . . . . . . . . . . . . . . . . 542

11.13 Equilibrium Properties of High-Temperature Air . . . . . . . . . . 547

11.14 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 557

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Chapter 12. Elements of Kinetic Theory . . . . . . . . . . . . . . . . . . . 559

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

12.2 Perfect-Gas Equation of State (Revisited) . . . . . . . . . . . . . . 560

12.3 Collision Frequency and Mean Free Path . . . . . . . . . . . . . . 564

12.4 Velocity and Speed Distribution Functions: Mean Velocities . . 567

12.5 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 571

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Chapter 13. Chemical and Vibrational Nonequilibrium . . . . . . . . . 575

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

xiv



13.2 Vibrational Nonequilibrium: The Vibrational

Rate Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

13.3 Chemical Nonequilibrium: The Chemical Rate Equation. . . . . 584

13.4 Chemical Nonequilibrium in High-Temperature Air . . . . . . . . 590

13.5 Chemical Nonequilibrium in H2-Air Mixtures . . . . . . . . . . . 595

13.6 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 597

Chapter 14. Inviscid High-Temperature Equilibrium Flows . . . . . . 599

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

14.2 Governing Equations for Inviscid High-Temperature

Equilibrium Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

14.3 Equilibrium Normal and Oblique Shock-Wave Flows. . . . . . . 604

14.4 Equilibrium Quasi-One-Dimensional Nozzle Flows . . . . . . . . 617

14.5 Frozen and Equilibrium Flows: The Distinction . . . . . . . . . . 623

14.6 Equilibrium and Frozen Specific Heats . . . . . . . . . . . . . . . . 626

14.7 Equilibrium Speed of Sound . . . . . . . . . . . . . . . . . . . . . . 629

14.8 Equilibrium Conical Flow . . . . . . . . . . . . . . . . . . . . . . . . 633

14.9 Equilibrium Blunt-Body Flows . . . . . . . . . . . . . . . . . . . . . 636

14.10 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 643

Design Example 14.1: Hypersonic Waveriders—Part 4 . . . . . 644

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

Chapter 15. Inviscid High-Temperature Nonequilibrium Flows . . . . 647

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

15.2 Governing Equations for Inviscid, Nonequilibrium Flows . . . . 649

15.3 Nonequilibrium Normal and Oblique Shock-Wave Flows . . . . 655

15.4 Nonequilibrium Quasi-One-Dimensional Nozzle Flows . . . . . 663

15.5 Nonequilibrium Blunt-Body Flows . . . . . . . . . . . . . . . . . . 671

15.6 Binary Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

15.7 Nonequilibrium Flow over Other Shapes: Nonequilibrium

Method of Characteristics. . . . . . . . . . . . . . . . . . . . . . . 683

15.8 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 687

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

Chapter 16. Kinetic Theory Revisited: Transport Properties

in High-Temperature Gases . . . . . . . . . . . . . . . . . . . 691

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

16.2 Definition of Transport Phenomena . . . . . . . . . . . . . . . . . . 692

16.3 Transport Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 696

16.4 Mechanism of Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 700

16.5 Energy Transport by Thermal Conduction and

Diffusion: Total Thermal Conductivity . . . . . . . . . . . . . . 702

16.6 Transport Properties for High-Temperature Air . . . . . . . . . . . 705

16.7 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 709

xv



Chapter 17. Viscous High-Temperature Flows . . . . . . . . . . . . . . . 711

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

17.2 Governing Equations for Chemically

Reacting Viscous Flow . . . . . . . . . . . . . . . . . . . . . . . . 712

17.3 Alternate Forms of the Energy Equation . . . . . . . . . . . . . . . 715

17.4 Boundary-Layer Equations for a Chemically Reacting Gas . . . 719

17.5 Boundary Conditions: Catalytic Walls . . . . . . . . . . . . . . . . 726

17.6 Boundary-Layer Solutions: Stagnation-Point Heat

Transfer for a Dissociating Gas . . . . . . . . . . . . . . . . . . . 729

17.7 Boundary-Layer Solutions: Nonsimilar Flows . . . . . . . . . . . 739

17.8 Viscous-Shock-Layer Solutions to Chemically

Reacting Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

17.9 Parabolized Navier–Stokes Solutions to

Chemically Reacting Flows . . . . . . . . . . . . . . . . . . . . . 749

17.10 Full Navier–Stokes Solutions to Chemically

Reacting Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

17.11 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 756

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

Chapter 18. Introduction to Radiative Gas Dynamics . . . . . . . . . . 759

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760

18.2 Definitions of Radiative Transfer in Gases . . . . . . . . . . . . . . 760

18.3 Radiative-Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . 763

18.4 Solutions of the Radiative-Transfer Equation:

Transparent Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

18.5 Solutions of the Radiative-Transfer Equation:

Absorbing Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

18.6 Solutions of the Radiative-Transfer Equation:

Emitting and Absorbing Gas . . . . . . . . . . . . . . . . . . . . . 769

18.7 Radiating Flowfields: Sample Results. . . . . . . . . . . . . . . . . 773

18.8 Surface Radiative Cooling . . . . . . . . . . . . . . . . . . . . . . . . 780

18.9 Summary and Comments . . . . . . . . . . . . . . . . . . . . . . . . 781

Design Example 18.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 782

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

Postface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

Supporting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

xvi



Preface to the Second Edition

Almost 20 years have passed since the publication of the first edition of this book.
During those 20 years, much progress has been made in hypersonic and
high-temperature gas dynamics, principally in the extensive use of sophisticated
modern computational fluid dynamics and in the design of serious flight
hardware. The physical and mathematical fundamentals of hypersonic and high-
temperature gas dynamics, however, have by their very nature remained the same.

This book is about the fundamentals, which have not changed. Therefore,
almost all of the content of the first edition has been carried over the present
edition. Indeed, now is a good moment to pause and read the preface of the
first edition. Everything said there is appropriate to the second edition.
For example, the book remains a self-contained teaching instrument for those stu-
dents and readers interested in learning hypersonic and high-temperature gas
dynamics starting with the basics. This book assumes no prior familiarity with
either subject on the part of the reader. If you have never studied hypersonic
and/or high-temperature gas dynamics and if you have never worked in the
area, then this book is for you. On the other hand, if you have worked and/or
are working in these areas and you want a cohesive presentation of the fundamen-
tals, a development of important theory and techniques, a discussion of salient
results with emphasis on the physical aspects, and a presentation of modern think-
ing in these areas, then this book is also for you.

As with the first edition, this second edition is written in an informal, conver-
sational style. This book talks to you, just as if you and I were sitting down
together at a table discussing the subject matter. I want you to have fun learning
these topics. This is not difficult because the areas of hypersonic and high-
temperature gas dynamics are full of interesting and exciting phenomena and
applications.

What is new and different about the second edition? A lot! Much new material
has been added to accomplish two purposes, namely, to bring the book up to date
and to enhance even further the pedagogical goal of helping the reader to learn.
For example:

1) A lot of new literature has been published in the discipline over the past 20
years. This new edition draws from the modern literature in order to update the
presentations. This is not a book about the state of the art—it is about funda-
mentals. But the state of the art is used to reinforce the fundamentals.

2) The topic of shock-shock interactions, particularly the important type-IV
interaction, has been added as a new extensive section in Chapter 5.
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3) Although this book emphasizes the fundamentals, modern hypersonic and
high-temperature gas dynamics is moving more and more toward design of viable
systems. Therefore, this edition has a design flavor not present in the first edition.
At the back of a number of chapters, design examples that illustrate the appli-
cation of the fundamentals to methods of design are added. A number of these
design examples focus on different aspect of hypersonic waverider design.
Waveriders were not treated in the first edition. Because they are an interesting
configuration for possible future hypersonic vehicles they are extensively
treated here.

4) Chapter previews have been added at the beginning of most of the chapters.
These are pedagogical tools to provide the reader with insight about what each
chapter is about and why the material is so important. They are written in a
particularly informal manner—plain speaking—to help turn the reader on to
the content. In these previews I am unabashedly admitting to providing some
fun for the readers.

5) Road maps have been placed at the beginning of almost every chapter to
help guide the reader through the logical flow of the material—another pedago-
gical tool to enhance the self-learning nature of this book.

Special thanks go to Rodger Williams of the AIAA for suggesting, encoura-
ging, and essentially commissioning this second edition, and with whom it is
always a pleasure to work, and to the entire AIAA publications team who have
always made me feel like one of them. Thanks also to Susan Cunningham who
typed the original manuscript of the first edition 20 years ago and who received
the call again for the added material for the second edition.

Finally, I want to acknowledge in a very special way the late Rudolph Edse,
my mentor and advisor at The Ohio State University, who gave me the true
appreciation for the fundamentals, and Dr. John D. Lee and the rest of the
faculty of the Department of Aeronautical and Astronautical Engineering at
Ohio State during the 1960s who taught me all there was to know about
hypersonic flow.

John D. Anderson, Jr.
July 2006
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Preface to the First Edition

This book is designed to be a self-contained teaching instrument for those stu-
dents and readers interested in learning hypersonic flow and high-temperature
gas dynamics. It assumes no prior familiarity with either subject on the part
of the reader. If you have never studied hypersonic and/or high-temperature
gas dynamics before, and if you have never worked extensively in the area,
then this book is for you. On the other hand, if you have worked and/or are
working in these areas, and you want a cohesive presentation of the funda-
mentals, a development of important theory and techniques, a discussion of the
salient results with emphasis on the physical aspects, and a presentation of
modern thinking in these areas, then this book is also for you. In other words,
this book is aimed for two roles: 1) as an effective classroom text, which can
be used with ease by the instructor and which can be understood with ease by
the student; and 2) as a viable, professional working tool on the desk of all engin-
eers, scientists, and managers who have any contact in their jobs with hypersonic
and/or high-temperature flow.

The only background assumed on the part of the reader is a basic knowledge of
undergraduate fluid dynamics, including a basic introductory course on compres-
sible flow; that is, the reader is assumed to be familiar with material exemplified
by two of the author’s previous books, namely, Fundamentals of Aerodynamics
(McGraw-Hill, 1984), and the first half of Modern Compressible Flow: with
Historical Perspective (McGraw-Hill, 1982). Indeed, throughout the present
book, frequent reference is made to basic material presented in these two
books. Finally, the present book is pitched at the advanced senior and first-year
graduate levels and is designed to be used in the classroom as the main text
for courses at these levels in hypersonic flow and high-temperature gas dynamics.
Homework problems are given at the ends of most chapters in order to enhance its
use as a teaching instrument.

Hypersonic aerodynamics is an important part of the entire flight spectrum,
representing the segment at the extreme high velocity of this spectrum. Interest
in hypersonic aerodynamics grew in the 1950s and 1960s with the advent of
hypersonic atmospheric entry vehicles, especially the manned space program
as represented by Mercury, Gemini, and Apollo. Today, many new, exciting
vehicle concepts involving hypersonic flight are driving renewed and, in some
cases, frenzied interest in hypersonics. Such new concepts are described in
Chapter 1. This book is a response to the need to provide a basic education in
hypersonic and high-temperature gas dynamics for a new generation of engineers
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and scientists, as well as to provide a basic discussion of these areas from a
modern perspective. Six texts in hypersonic flow were published before 1966;
the present book is the first basic classroom text to become available since
then. Therefore, the present book is intended to make up for this 20-year
hiatus and to provide a modern education in hypersonic and high-temperature
gas dynamics, while discussing at length the basic fundamentals.

To enhance the reader’s understanding and to peak his or her interest, the
present book is written in the style of the author’s previous ones, namely, it is
intentionally written in an informal, conversational style. The author wants the
reader to have fun while learning these topics. This is not difficult because the
areas of hypersonic and high-temperature gas dynamics are full of interesting
and exciting phenomena and applications.

The present book is divided into three parts. Part 1 deals with inviscid
hypersonic flow, emphasizing purely the fluid-dynamic effects of the Mach
number becoming large. High-temperature effects are not included. Part 2
deals with viscous hypersonic flow, emphasizing the purely fluid-dynamic
effects of including the transport phenomena of viscosity and thermal conduction
at the same time that the Mach number becomes large. High-temperature effects
are not included. Finally, Part 3 deals with the influence of high temperatures on
both inviscid and viscous flows. In this fashion, the reader is led in an organized
fashion through the various physical phenomena that dominate high-speed
aerodynamics. To further enhance the organization of the material, the reader
is given a “road map” in Fig. 1.24 to help guide his or her thoughts as we progress
through our discussions.

When this book was first started, the author’s intent was to have a Part 4,
which would cover the miscellaneous but important topics of low-density
flows, experimental hypersonics, and applied aerodynamics associated with
hypersonic vehicle design. During the course of writing this book, it quickly
became apparent that including Part 4 would vastly exceed the length constraints
allotted to this book. Therefore, the preceding matters are not considered in any
detail here. This is not because of a lack of importance of such material, but rather
because of an effort to emphasize the basic fundamentals in the present
book. Therefore, Parts 1, 2, and 3 are sufficient; they constitute the essence of
a necessary fundamental background in hypersonic and high-temperature gas
dynamics. The material of the missing Part 4 will have to wait for another time.

The content of this book is influenced in part by the author’s experience
in teaching such material in courses at the University of Maryland. It is also influ-
enced by the author’s three-day short course on the introduction to hypersonic
aerodynamics, which he has had the privilege to give at 10 different laboratories,
companies, and universities over the past year. These experiences have fine tuned
the present material in favor of what the reader wants to know and what he or she
is thinking.

Several organizations and people are owed the sincere thanks of the author in
aiding the preparation of this book. First, the author is grateful to the National Air
and Space Museum of the Smithsonian Institution where he spent an enlightening
sabbatical year during 1986–l987 as the Charles Lindbergh Professor in the
Aeronautics Department. A substantial portion of this book was written
during that sabbatical year at the museum. Secondly, the author is grateful to
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the University of Maryland for providing the intellectual atmosphere conducive
to scholarly projects. Also, many thanks go to the author’s graduate students in
the hypersonic aerodynamics program at Maryland—thanks for the many enligh-
tening discussions on the nature of hypersonic and high-temperature flows.
For the mechanical preparation of this manuscript, the author has used his own
word processor named Susan O. Cunningham—a truly “human” human being
who has typed the manuscript with the highest professional standards. Finally,
once again the author is grateful for the support at home provided by the
Anderson family, who allowed him to undertake this project in the first place,
and for joining him in the collective sigh of relief upon its completion.

I would like to express my thanks for the many useful comments and sug-
gestions provided by colleagues who reviewed this text during the course of its
development, especially to Judson R. Baron, Massachusetts Institute of Technol-
ogy; Daniel Bershader, Stanford University; John D. Lee, Ohio State University;
and Maurice L. Rasmussen, University of Oklahoma.

John D. Anderson, Jr.
October 1987
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1
Some Preliminary Thoughts

Almost everyone has their own definition of the term hyper-
sonic. If we were to conduct something like a public opinion
poll among those present, and asked everyone to name a
Mach number above which the flow of a gas should properly
be described as hypersonic there would be a majority of
answers round about five or six, but it would be quite poss-
ible for someone to advocate, and defend, numbers as small
as three, or as high as 12.

P. L. Roe, comment made in a lecture at
the Von Kármán Institute. Belgium, January 1970

Chapter Preview

This is the first of many short preview boxes in this book—one for each of the

chapters. Their purpose is to tell you in plain language right up front what to

expect from each chapter and why the material is important and exciting.

They are primarily motivational; they are here for you—to encourage you

to actually enjoy reading the chapter.
Part of the success of learning a new subject is simply to get going. The

purpose of this chapter is to get going on our journey through hypersonic
and high-temperature gas dynamics. It starts with some history. When and
how did the first human-made object achieve hypersonic flight? When was
the first time that a human flew hypersonically? What is so special about
hypersonic flight anyway? Why is it important? Why do aerodynamicists
single out hypersonic as a special flight regime separate from the more
general regime of supersonic flight? After all, both supersonic and hypersonic
flight deal with speeds above Mach 1. So what is so special about hypersonic
speeds that we can write a book about the subject? These are more than just
interesting questions—they are important questions that demand answers.
This chapter supplies the answers. The preliminary thoughts supplied here,
moreover, set the stage and the tone for the rest of our discussions in this
book. A study of hypersonic flow is fun—it can be technically demanding
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at times as we will see, but it can also be fun. So sit back, relax, and especially

enjoy this first chapter. Let it give you a smooth takeoff on our flight through

the worlds of hypersonic and high-temperature gas dynamics—a flight that is

both intellectually and professionally rewarding.

1.1 Hypersonic Flight—Some Historical Firsts

The day is Thursday, 24 February 1949; the pens on the automatic plotting
boards at South Station are busy tracking the altitude and course of a rocket,
which just moments before had been launched from a site three miles away on
the test range of the White Sands Proving Ground. The rocket is a V-2, one of
many brought to the United States from Germany after World War II. By this
time, launching V-2s had become almost routine for the crews at White Sands,
but on this day neither the launch nor the rocket are “routine.” Mounted on top
of this V-2 is a slender, needle-like rocket called the WAC Corporal, which
serves as a second stage to the V-2. This test firing of the combination V-2/
WAC Corporal is the first meaningful attempt to demonstrate the use of a multi-
stage rocket for achieving high velocities and high altitudes and is part of a larger
program labeled “Bumper” by the U.S. Army. All previous rocket launchings of
any importance, both in the United States and in Europe, had utilized the single-
stage V-2 by itself. Figure 1.1 shows a photograph of the “Bumper” rocket as it
lifts off the New Mexico desert on this clear, February day. The pen plotters track
the V-2 to an altitude of 100 miles at a velocity of 3500 mph, at which point the
WAC Corporal is ignited. The slender upper stage accelerates to a maximum
velocity of 5150 mph and reaches an altitude of 244 miles, exceeding by a
healthy 130 miles previous record set by a V-2 alone. After reaching this peak,
the WAC Corporal noses over and careers back into the atmosphere at over
5000 mph. In so doing, it becomes the first object of human origin to achieve
hypersonic flight—the first time that any vehicle has flown faster than five
times the speed of sound. In spite of the pen plotters charting its course, the
WAC Corporal cannot be found in the desert after the test. Indeed, the only rem-
nants to be recovered later are a charred electric switch and part of the tail section,
and these are found more than a year later, in April 1950.

The scene shifts to the small village of Smelooka in the Ternov District,
Saratov region of Russia. The time is now 1055 hrs (Moscow time) on 12
April 1961. A strange, spherical object has just landed under the canopy of a para-
chute. The surface of this capsule is charred black, and it contains three small
viewing ports covered with heat-resistant glass. Inside this capsule is Flight
Major Yuri Gagarin, who just 108 min earlier had been sitting on top of a
rocket at the Russian cosmodrome at Baikonur near the Aral Sea. What partly
transpired during those 108 min is announced to the world by a broadcast from
the Soviet newsagency Tass at 9 : 59 a.m.:

The world’s first spaceship, Vostok (East), with a man on board was launched
into orbit from the Soviet Union on April 12, 1961. The pilot space-navigator
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of the satellite-spaceship Vostok is a citizen of the U.S.S.R., Flight Major Yuri
Gagarin.

The launching of the multistage space rocket was successful and, after attain-
ing the first escape velocity and the separation of the last stage of the carrier
rocket, the spaceship went into free flight on around-the-earth orbit. According
to preliminary data, the period of the revolution of the satellite spaceship around
the earth is 89.1 min. The minimum distance from the earth at perigee is 175 km
(108.7 miles) and the maximum at apogee is 302 km (187.6 miles), and the angle
of inclination of the orbit plane to the equator is 658 40. The spaceship with the
navigator weighs 4725 kg (10,418.6 lb), excluding the weight of the final stage
of the carrier rocket.

After this announcement is made, Major Gagarin’s orbital craft, called Vostok I,
is slowed at 10 : 25 a.m. by the firing of a retrorocket and enters the atmosphere at
a speed in excess of 25 times the speed of sound. Thirty minutes later, Major Yuri
Gagarin becomes the first man to fly in space, to orbit the Earth, and safely return.

Fig. 1.1 V-2/WAC Corporal liftoff on 24 Feb. 1949, the first object of human origin

to achieve hypersonic flight (National Air and Space Museum).
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Moreover, on that day, 12 April 1961, Yuri Gagarin becomes the first human
being in history to experience hypersonic flight. A photograph of the Vostok I
capsule is shown in Fig. 1.2.

Later, 1961 becomes a bumper year for manned hypersonic flight. On 5 May,
Alan B. Shepard becomes the second man in space by virtue of a suborbital flight
over the Atlantic Ocean, reaching an altitude of 115.7 miles, and entering the
atmosphere at a speed above Mach 5. Then, on 23 June, U.S. Air Force test
pilot Major Robert White flies the X-15 airplane at Mach 5.3, the first X-15
flight to exceed Mach 5. (In so doing, White accomplishes the first “mile-per
second” flight in an airplane, reaching a maximum velocity of 3603 mph.) This
record is extended by White on 9 November, flying the X-15 at Mach 6.

The preceding events are historical firsts in the annuals of hypersonic flight.
They represent certain milestones and examples of the application of hypersonic
aerodynamic theory and technology. The purpose of this book is to present and
discuss this theory and technology, with the hope that the reader, as a student
and professional, will be motivated and prepared to contribute to the hypersonic
milestones of the future.

Fig. 1.2 Vostok I, in which Russian Major Yuri Gagarin became the first human to

fly at hypersonic speed, during the world’s first manned, orbital flight. 12 April 1961

(National Air and Space Museum).
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1.2 Hypersonic Flow—Why Is It Important?

The development of aeronautics and spaceflight, from its practical beginnings
with the Wright Brothers’ first airplane flight on 17 December 1903 and Robert
H. Goddard’s first liquid-fueled rocket launch on 16 March 1926, has been driven
by one primary urge—the urge to always fly faster and higher. Anyone who has
traced advancements in aircraft in the 20th century has seen an exponential
growth in both speed and altitude, starting with the 35-mph Wright flyer at sea
level in 1903, progressing to 400-mph fighters at 30,000 ft in World War II, tran-
sitioning to 1200-mph supersonic aircraft at 60,000 ft in the 1960s and 1970s,
highlighted by the experimental X-15 hypersonic airplane, which achieved
Mach 7 and an altitude of 354,200 ft on 22 August 1963, and finally capped
by the space shuttle—the ultimate in manned airplanes with its Mach 25
reentry into the Earth’s atmosphere from a 200-mile low Earth orbit. (See [1]
for graphs which demonstrate the exponential increase in both aircraft speed
and altitude over the past 100 years.) Superimposed on this picture is the
advent of high-speed missiles and spacecraft: for example, the development of
the Mach 25 intercontinental ballistic missile in the 1950s; the Mach 25
Mercury, Gemini, and Vostok manned orbital spacecraft of the 1960; and of
course the historic Mach 36 Apollo spacecraft, which returned men from the
moon starting in 1969. The point here is that the extreme high-speed end of
the flight spectrum has been explored, penetrated, and utilized since the 1950s.
Moreover, flight at this end of the spectrum is called hypersonic flight, and the
aerodynamic and gas dynamic characteristics of such flight are classified under
the label of hypersonic aerodynamics—one of the primary subjects of this book.

Hypersonic aerodynamics is different than the more conventional and experi-
enced regime of supersonic aerodynamics. These differences will be discussed at
length in Sec. 1.3, along with an in-depth definition of just what hypersonic aero-
dynamics really means. However, we can immediately see that such differences
must exist just by comparing the shapes of hypersonic vehicles with those of
more commonplace supersonic aircraft. For example, Fig. 1.3 shows a Lockheed
F-104, the first fighter aircraft designed for sustained supersonic flight at Mach 2.
This aircraft embodies principles for good supersonic aerodynamic design:

Fig. 1.3 Lockheed F-104, a supersonic airplane designed in the early l950s (National

Air and Space Museum).
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a sharp, needle-like nose and slender fuselage, very thin wings and tail surfaces
(3.36 percent thickness-to-chord ratio) with very sharp leading edges (almost
sharp enough to pose a hazard during ground handling), and with a low aspect
ratio of 2.45 for the straight wing itself—all designed to minimize wave drag
at supersonic speeds. To design a hypersonic airplane for flight at much higher
Mach numbers, it is tempting to utilize these same design principles—only
more so. Indeed, such was the case for an early hypersonic aircraft concept con-
ceived by Robert Carman and Hubert Drake of the NACA (now NASA) in 1953.
One of their hand drawings from an internal NACA memorandum is shown in
Fig. 1.4 (see [2] for more details). Here we see an early concept for a hypersonic
booster/orbiter combination, where each aircraft has a sharp nose, slender fuse-
lage, and thin, low-aspect-ratio straight wings—the same features that are seen in
the F-104—except the aircraft in Fig. 1.4 is designed for Mach 25. However, in
1953 hypersonic aerodynamics was in its infancy. Contrast Fig. 1.4 with another
hypersonic airplane designed just seven years later, the X-20 Dynasoar shown in
Fig. 1.5. Here we see a completely different-looking aircraft—one embodying
new hypersonic principles that were not fully understood in 1953. The X-20
design utilized a sharply swept delta wing with a blunt, rounded leading edge,
and a rather thick fuselage with a rounded (rather than sharp) nose. The fuselage
was placed on top of the wing, so that the entire undersurface of the vehicle was
flat. The X-20 was intended to be an experimental aircraft for rocket-powered
flight at Mach 20. Eclipsed by the Mercury, Gemini, and Apollo manned space-
flight program, the X-20 project was cancelled in 1963 without the production of
a vehicle. However, the X-20 reflected design features that were uniquely

Fig. 1.4 Drake–Carman hypersonic aircraft/orbiter, proposed in 1953 (from [2]).
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hypersonic and that were later contained in the space shuttle. Indeed, the space
shuttle is shown in Fig. 1.6 for further comparison with the earlier concepts
shown in Figs. 1.3 and 1.4. Clearly, hypersonic vehicles are different configur-
ations from supersonic vehicles, and hence we might conclude (correctly) that
hypersonic aerodynamics is different from supersonic aerodynamics. This differ-
ence is dramatically reinforced when we examine Fig. 1.7, which shows the
Apollo space vehicle, designed to return humans from the moon, and to enter
the Earth’s atmosphere at the extreme hypersonic speed of Mach 36. Here we
see a very blunt body with no wings at all. To be objective, we have to realize
that many considerations besides high-speed aerodynamics go into the design
of the vehicles shown in Figs. 1.3–1.7; however, to repeat once again, the import-
ant point here is that hypersonic vehicles are different than supersonic vehicles,
and this is in part because hypersonic aerodynamics is different from supersonic
aerodynamics.

Hypersonic flight, both manned and unmanned, has been successfully
achieved. However, at the time of this writing, it is by no means commonplace.
The era of practical hypersonic flight is still ahead of us, and it poses many exci-
ting challenges to the aerodynamicist. Let us briefly examine some new ideas for
modern hypersonic vehicles. For example, airbreathing hypersonic vehicles
designed for sustained flight in the atmosphere have captured the imagination
of aerospace engineers and mission planners alike. One concept is that of an

Fig. 1.5 Boeing X-20A Dynasoar orbital hypersonic aircraft, 1963 (from [2]).
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Fig. 1.6 Space shuttle (National Air and Space Museum).

Fig. 1.7 Artist’s conception of the atmosphere entry of the Apollo spacecraft

(National Air and Space Museum).
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aerospace plane—ideally an aircraft designed to take off horizontally from a
runway and then accelerate into orbit around the Earth, for the most part
powered by an airbreathing supersonic combustion ramjet engine (scramjet)
with most likely a rocket assist for final insertion into orbit. It will subsequently
carry out a mission in orbit, or within the outer regions of the atmosphere, and
then reenter the atmosphere at Mach 25, finally landing under power on a conven-
tional runway. This idea was first seriously examined by the U.S. Air Force in the
early 1960s, and a combination of airbreathing and rocket propulsion was
intended to power the vehicle. Work on the early aerospace plane was cancelled
in October 1963 mainly because of the design requirements exceeding the state of
the art at that time. The idea was resurrected in the middle 1980s by both NASA
and the U.S. Department of Defense, as well as by aerospace companies in
England and Germany. A generic single-stage-to-orbit aerospace plane is
shown in Fig. 1.8, representative of this second generation of aerospace plane
technology. In the United States, this effort was labeled the National Aerospace
Plane program (NASP). It too was terminated in the mid-1990s after a decade of
intensive research and development. The reason was the same—the design
requirements exceeded the state of the art. This work lives on, however, in the
form of more modest but focused research and technology advancement
efforts. A recent success has been the X-43 Hyper-X unmanned research
vehicle shown in Fig. 1.9. In November 2004 the X-43 made aeronautical engin-
eering history by achieving sustained flight at Mach 10 powered by a scramjet
engine for a period of about 10 s; it was the first sustained atmospheric flight
by a scramjet-powered vehicle. Of more importance, the flight data from the
X-43 verified the predictions based on wind-tunnel and computational-fluid-
dynamic data and proved the basic methodology used for the design of such
vehicles. The door to successful sustained hypersonic atmospheric flight has
been slightly cracked open.

Fig. 1.8 Generic representation of a nominal single-stage-to-orbit vehicle (NASA).
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Other ideas for new hypersonic vehicles include scramjet-powered missiles
to fly in the Mach 6–8 range for military use, both tactical and strategic. In
the United States, at the time of writing, both the U.S. Air Force and the
U.S. Navy have active research and development programs for hypersonic
atmospheric flight vehicles. In terms of getting payloads into orbit, the
single-stage-to-orbit vehicle represented in Fig. 1.8 has a strong competitor in
the form of a two-stage-to-orbit vehicle combination shown generically in
Fig. 1.10. Here, the first stage is a hypersonic ramjet/scramjet-powered airbreath-
ing vehicle, and the second stage is a rocket-powered orbiter riding piggyback.
Finally, dare we mention the possibility of hypersonic commercial air transpor-
tation? At the time of writing, there is no active program to develop even a
second-generation supersonic transport to replace the retired Anglo–French Con-
corde SST. So, is a hypersonic transport only a “pipe dream”? This author thinks
not. Figure 1.11 shows an artist’s rendering, circa 1985, of a futuristic hypersonic
transport. Sometime in the 21st century, but well after the development of a
second-generation SST, such an airplane as shown in Fig. 1.11 will be streaking

Fig. 1.9 X-43A Hyper-X test vehicle (NASA): a) pictorial view and b) three view.
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through the sky, carrying passengers and cargo at Mach numbers of 5 and larger.
The technical, economic, and environmental challenges will be enormous, but I
cannot believe it will not happen.

It is important to mention an aspect that distinguishes hypersonic atmospheric
flight vehicles from conventional subsonic and supersonic airplane design philos-
ophy. For subsonic and supersonic aircraft, the components for providing lift (the
wings), propulsion (the engines and nacelles), and volume (the fuselage) are not
strongly coupled with each other. They are separate and distinct components,
easily identifiable by looking at the airplane; moreover, they can be treated as

Fig. 1.10 Generic representation of a two-stage-to-orbit vehicle (from [270]).

Fig. 1.11 Concept for a hypersonic transport (McDonnell-Douglas Aircraft

Corporation).
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separate aerodynamic bodies with only a moderate interaction when they are
combined in the total aircraft. Modern hypersonic aerodynamic design is
exactly the opposite. Figure 1.12 is an example of an integrated airframe-
propulsion concept for a hypersonic airplane, wherein the entire undersurface
of the vehicle is part of the scramjet engine. Initial compression of the air
takes place through the bow shock from the nose of the aircraft; further com-
pression and supersonic combustion take place inside a series of modules near
the rear of the aircraft, and then expansion of the burned gases is partially realized
through nozzles in the engine modules, but mainly over the bottom rear surface
of the aircraft, which is sculptured to a nozzle-like shape. Hence, the propulsion
mechanism is intimately integrated with the airframe. Moreover, most of the lift
is produced by high pressure behind the bow shock wave and exerted on the rela-
tively flat undersurface of the vehicle; the use of large, distinct wings is not
necessary for the production of high lift. Finally, the fuel for airbreathing hyper-
sonic airplanes shown in Figs. 1.8–1.12 is liquid H2, which occupies a large
volume. All of these considerations combine in a hypersonic vehicle in such a
fashion that the components to generate lift, propulsion, and volume are not sep-
arate from each other; rather, they are closely integrated in the same overall
lifting shape, in direct contrast to conventional subsonic and supersonic
vehicle design.

Finally, return to the question asked at the beginning of this section: Hyperso-
nic flow, why is it important? We now have a feeling for the answer. Hypersonic
flow is important because of the following:

1) It is physically different from supersonic flow.
2) It is the flow that will dictate many of the new exciting vehicle designs for

the 21st century.
Recognizing this importance, the purpose of the present book is to introduce

the reader to the basic fundamentals of hypersonic flow, including an emphasis on

Fig. 1.12 Hypersonic vehicle with integrated scramjet (NASA).
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high-temperature gas dynamics, which, as we will see, is an important aspect of
high-speed flows in general. Wherever pertinent, we will also discuss modern
experimental and computational-fluid-dynamic applications in hypersonic and
high-temperature flow, as well as certain related aspects of hypersonic vehicle
design. Such material is an integral part of modern aerodynamics. Moreover,
the importance of this material will grow steadily into the 21st century, as we
continue to extend the boundaries of practical flight.

1.3 Hypersonic Flow—What Is It?

There is a conventional rule of thumb that defines hypersonic aerodynamics as
those flows where the Mach number M is greater than 5. However, this is no
more than just a rule of thumb; when a flow is accelerated from M ¼ 4.99 to
5.01, there is no “clash of thunder,” and the flow does not “instantly turn from
green to red.” Rather, hypersonic flow is best defined as that regime where
certain physical flow phenomena become progressively more important as the
Mach number is increased to higher values. In some cases, one or more of these
phenomena might become important above Mach 3, whereas in other cases they
may not be compelling until Mach 7 or higher. The purpose of this section is to
briefly describe these physical phenomena; in some sense this entire section will
constitute a “definition” of hypersonic flow. For more details of an introductory
nature, see [3].

1.3.1 Thin Shock Layers

Recall from oblique shock theory (for example, see [4] and [5]) that, for a
given flow deflection angle, the density increase across the shock wave
becomes progressively larger as the Mach number is increased. At higher
density, the mass flow behind the shock can more easily “squeeze through”
smaller areas. For flow over a hypersonic body, this means that the distance
between the body and the shock wave can be small. The flowfield between the
shock wave and the body is defined as the shock layer, and for hypersonic
speeds this shock layer can be quite thin. For example, consider the Mach 36
flow of a calorically perfect gas with a ratio of specific heats, g ¼ cp/cv ¼ 1.4,
over a wedge of 15-deg half-angle. From standard oblique shock theory the
shock-wave angle will be only 18 deg, as shown in Fig. 1.13. If high-temperature,

Fig. 1.13 Thin hypersonic shock layer.
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chemically reacting effects are included, the shock-wave angle will be even
smaller. Clearly, this shock layer is thin. It is a basic characteristic of hypersonic
flows that shock waves lie close to the body and that the shock layer is thin. In
turn, this can create some physical complications, such as the merging of the
shock wave itself with a thick, viscous boundary layer growing from the body
surface—a problem that becomes important at low Reynolds numbers.
However, at high Reynolds numbers, where the shock layer is essentially invis-
cid, its thinness can be used to theoretical advantage, leading to a general analyti-
cal approach called thin shock-layer theory (to be discussed in Chapter 4). In the
extreme, a thin shock layer approaches the fluid-dynamic model postulated by
Issac Newton in 1687; such Newtonian theory is simple and straightforward
and is frequently used in hypersonic aerodynamics for approximate calculations
(to be discussed in Chapter 3).

1.3.2 Entropy Layer

Consider the wedge shown in Fig. 1.13, except now with a blunt nose, as
sketched in Fig. 1.14. At hypersonic Mach numbers, the shock layer over
the blunt nose is also very thin, with a small shock-detachment distance d.
In the nose region, the shock wave is highly curved. Recall that the entropy of
the flow increases across a shock wave, and the stronger the shock, the larger
the entropy increase. A streamline passing through the strong, nearly normal
portion of the curved shock near the centerline of the flow will experience a
larger entropy increase than a neighboring streamline, which passes through a
weaker portion of the shock further away from the centerline. Hence, there are
strong entropy gradients generated in the nose region; this entropy layer flows
downstream and essentially wets the body for large distances from the nose, as
shown in Fig. 1.14. The boundary layer along the surface grows inside this

Fig. 1.14 Entropy layer.
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entropy layer and is affected by it. Because the entropy layer is also a region of
strong vorticity, as related through Crocco’s theorem from classical compressible
flow (for example, see [4]), this interaction is sometimes called a vorticity inter-
action. The entropy layer causes analytical problems when we wish to perform a
standard boundary-layer calculation on the surface because there is a question as
to what the proper conditions should be at the outer edge of the boundary layer.

1.3.3 Viscous Interaction

Consider a boundary layer on a flat plate in a hypersonic flow, as sketched in
Fig. 1.15. A high-velocity, hypersonic flow contains a large amount of kinetic
energy; when this flow is slowed by viscous effects within the boundary layer,
the lost kinetic energy is transformed (in part) into internal energy of the gas—
this is called viscous dissipation. In turn, the temperature increases within the
boundary layer; a typical temperature profile within the boundary layer is also
sketched in Fig. 1.15. The characteristics of hypersonic boundary layers are
dominated by such temperature increases. For example, the viscosity coefficient
increases with temperature, and this by itself will make the boundary layer
thicker. In addition, because the pressure p is constant in the normal direction
through a boundary layer, the increase in temperature T results in a decrease in
density r through the equation of state r ¼ p/RT, where R is the specific gas con-
stant. To pass the required mass flow through the boundary layer at reduced
density, the boundary-layer thickness must be larger. Both of these phenomena
combine to make hypersonic boundary layers grow more rapidly than at
slower speeds. Indeed, the flat-plate compressible laminar boundary-layer
thickness d grows essentially as

d/
M2

1ffiffiffiffiffiffiffi
Rex

p

where M1 is the freestream Mach number and Rex is the local Reynolds number.
(This relation will be derived in Chapter 6.) Clearly, because d varies as the
square of M1, it can become inordinately large at hypersonic speeds.

Fig. 1.15 Temperature profile in a hypersonic boundary layer.
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The thick boundary layer in hypersonic flow can exert a major displacement
effect on the inviscid flow outside the boundary layer, causing a given body
shape to appear much thicker than it really is. Because of the extreme thickness
of the boundary-layer flow, the outer inviscid flow is greatly changed; the
changes in the inviscid flow in turn feed back to affect the growth of the boundary
layer. This major interaction between the boundary layer and the outer inviscid
flow is called viscous interaction. Viscous interactions can have important
effects on the surface-pressure distribution, hence lift, drag, and stability on hyper-
sonic vehicles. Moreover, skin friction and heat transfer are increased by viscous
interaction. For example, Fig. 1.16 illustrates the viscous interaction on a sharp,
right-circular cone at zero degree of angle of attack. Here, the pressure distribution
on the cone surface p is given as a function of distance from the tip. These are
experimental results obtained from [6]. If there were no viscous interaction, the
inviscid surface pressure would be constant, equal to pc (indicated by the horizon-
tal dashed line in Fig. 1.16). However, because of the viscous interaction, the
pressure near the nose is considerably greater; the surface-pressure distribution
decays further downstream, ultimately approaching the inviscid value far down-
stream. These and many other aspects of viscous interactions will be discussed
in Chapter 7.

The boundary layer on a hypersonic vehicle can become so thick that it essen-
tially merges with the shock wave—a merged shock layer. When this happens,
the shock layer must be treated as fully viscous, and the conventional boundary-
layer analysis must be completely abandoned. Such matters will be discussed in
Chapter 9.

1.3.4 High-Temperature Flows

As discussed earlier, the kinetic energy of a high-speed, hypersonic flow is dis-
sipated by the influence of friction within a boundary layer. The extreme viscous

Fig. 1.16 Viscous interaction effect. Induced pressure on a sharp cone at M¥ 5 11

and Re 5 1.88 3 105 per foot.
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dissipation that occurs within hypersonic boundary layers can create very high
temperatures—high enough to excite vibrational energy internally within mol-
ecules and to cause dissociation and even ionization within the gas. If the
surface of a hypersonic vehicle is protected by an ablative heat shield, the pro-
ducts of ablation are also present in the boundary layer, giving rise to complex
hydrocarbon chemical reactions. On both accounts, we see that the surface of a
hypersonic vehicle can be wetted by a chemically reacting boundary layer.

The boundary layer is not the only region of high-temperature flow over a
hypersonic vehicle. Consider the nose region of a blunt body, as sketched in
Fig. 1.17. The bow shock wave is normal, or nearly normal, in the nose
region, and the gas temperature behind this strong shock wave can be enormous
at hypersonic speeds. For example, Fig. 1.18 is a plot of temperature behind a
normal shock wave as a function of freestream velocity, for a vehicle flying at
a standard altitude of 52 km; this figure is taken from [4]. Two curves are
shown: 1) the upper curve, which assumes a calorically perfect nonreacting
gas with the ratio of specific heats g ¼ 1.4, and which gives an unrealistically
high value of temperature; and 2) the lower curve, which assumes an equilibrium
chemically reacting gas and which is usually closer to the actual situation. This
figure illustrates two important points:

1) By any account, the temperature in the nose region of a hypersonic vehicle
can be extremely high, for example, reaching approximately 11,000 K at a Mach
number of 36 (Apollo reentry).

Fig. 1.17 High-temperature shock layer.

SOME PRELIMINARY THOUGHTS 17



2) The proper inclusion of chemically reacting effects is vital to the calcu-
lation of an accurate shock-layer temperature; the assumption that g is constant
and equal to 1.4 is no longer valid.

So we see that, for a hypersonic flow, not only can the boundary layer be
chemically reacting, but the entire shock layer can be dominated by chemically
reacting flow.

For a moment, let us examine the physical nature of a high-temperature gas. In
introductory studies of thermodynamics and compressible flow, the gas is
assumed to have constant specific heats; hence, the ratio g ¼ cp/cv is also con-
stant. This leads to some ideal results for pressure, density, temperature, and
Mach-number variations in a flow. However, when the gas temperature is
increased to high values, the gas behaves in a “nonideal” fashion, specifically
as follows:

1) The vibrational energy of the molecules becomes excited, and this causes
the specific heats cp and cv to become functions of temperature. In turn, the ratio
of specific heats, g ¼ cp/cv, also becomes a function of temperature. For air, this
effect becomes important above a temperature of 800 K.

2) As the gas temperature is further increased, chemical reactions can occur.
For an equilibrium chemically reacting gas, cp and cv are functions of both temp-
erature and pressure, and hence g ¼ f(T, p). For air at 1 atm pressure, O2

Fig. 1.18 Temperature behind a normal shock wave as a function of freestream

velocity at a standard altitude of 52 km (from [4]).
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dissociation (O2! 2O) begins at about 2000 K, and the molecular oxygen is
essentially totally dissociated at 4000 K. At this temperature N2 dissociation
(N2! 2N) begins and is essentially totally dissociated at 9000 K. Above a
temperature of 9000 K, ions are formed (N! Nþ þ e2, and O! Oþ þ e2),
and the gas becomes a partially ionized plasma.

All of these phenomena are called high-temperature effects. (They are fre-
quently referred to in the aerodynamic literature as real-gas effects, but there
are good technical reasons to discourage the use of that label, as we will see
later.) If the vibrational excitation and chemical reactions take place very
rapidly in comparison to the time it takes for a fluid element to move
through the flowfield, we have vibrational and chemical equilibrium flow. If
the opposite is true, we have nonequilibrium flow, which is considerably
more difficult to analyze. All of these effects will be discussed at length in
Chapters 10–18.

High-temperature chemically reacting flows can have an influence on lift,
drag, and moments on a hypersonic vehicle. For example, such effects have
been found to be important for estimating the amount of body-flap deflection
necessary to trim the space shuttle during high-speed reentry. However, by far
the most dominant aspect of high temperatures in hypersonics is the resultant
high heat-transfer rates to the surface. Aerodynamic heating dominates the
design of all hypersonic machinery, whether it be a flight vehicle, a ramjet
engine to power such a vehicle, or a wind tunnel to test the vehicle. This aero-
dynamic heating takes the form of heat transfer from the hot boundary layer to
the cooler surface—called convective heating and denoted by qc in Fig. 1.17.
Moreover, if the shock-layer temperature is high enough the thermal radiation
emitted by the gas itself can become important, giving rise to a radiative flux
to the surface—called radiative heating and denoted by qR in Fig. 1.17. (In the
winter, when you warm yourself beside a roaring fire in the fireplace, the
warmth you feel is not hot air blowing out of the fireplace, but rather radiation
from the hot bricks or stone of the walls of the fireplace. Imagine how “warm”
you would feel standing next to the gas behind a strong shock wave at Mach
36, where the temperature is 11,000 K—about twice the surface temperature of
the sun.) For example, for Apollo reentry radiative heat transfer was more than
30% of the total heating. For a space probe entering the atmosphere of Jupiter,
the radiative heating will be more than 95% of the total heating.

Another consequence of high-temperature flow over hypersonic vehicles is
the “communications blackout” experienced at certain altitudes and velocities
during atmospheric entry, where it is impossible to transmit radio waves
either to or from the vehicle. This is caused by ionization in the chemically
reacting flow, producing free electrons that absorb radio-frequency radiation.
Therefore, the accurate prediction of electron density within the flowfield is
important.

Clearly, high-temperature effects can be a dominant aspect of hypersonic
aerodynamics, and because of this importance Part 3 of this book is devoted
entirely to high-temperature gas dynamics. (Part 3 is self-contained and rep-
resents a study of high-temperature gas dynamics in general, a field with appli-
cations that go far beyond hypersonics, such as combustion, high-energy
lasers, plasmas, and laser-matter interaction, to name just a few.)
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1.3.5 Low-Density Flow

Consider for a moment the air around you; it is made up of individual molecules,
principally oxygen and nitrogen, which are in random motion. Imagine that you
isolate one of these molecules, and watch its motion. It will move a certain distance
and then collide with one of its neighboring molecules, after which it will move
another distance, and collide again with another neighboring molecule, and it will
continue this molecular collision process indefinitely. Although the distance
between collisions is different for each of the individual collisions, over a period
of time there will be some average distance the molecule moves between successive
collisions. This average distance is defined as the mean free path, denoted by l. At
standard sea-level conditions for air, l ¼ 2.176 � 1027 ft, a very small distance.
This implies that, at sea level, when you wave your hand through the air the gas
itself “feels” like a continuous medium—a so-called continuum. Most aerodynamic
problems (more than 99.9% of all applications) are properly addressed by assuming
a continuous medium; indeed, all of our preceding discussion has so far assumed
that the flow is a continuum.

Imagine now that we are at an altitude of 342,000 ft, where the air density is
much lower, and consequently the mean free path is much larger than at sea level;
indeed, at 342,000 ft, l ¼ 1 ft. Now, when you wave your hand through the air,
you are more able to feel individual molecular impacts; the air no longer feels like
a continuous substance, but rather like an open region punctuated by individual,
widely spaced particles of matter. Under these conditions, the aerodynamic con-
cepts, equations, and results based on the assumption of a continuum begin to
break down; when this happens, we have to approach aerodynamics from a differ-
ent point of view, using concepts from kinetic theory. This regime of aero-
dynamics is called low-density flow.

There are certain hypersonic applications that involve low-density flow, gen-
erally involving flight at high altitudes. For example, as noted in [7] the flow in
the nose region of the space shuttle cannot be properly treated by purely conti-
nuum assumptions for altitudes above 92 km (about 300,000 ft). For any given
flight vehicle, as the altitude progressively increases (hence the density decreases
and l increases), the assumption of a continuum flow becomes tenuous. An alti-
tude can be reached where the conventional viscous flow no-slip conditions begin
to fail. Specifically, at low densities the flow velocity at the surface, which is
normally assumed to be zero because of friction, takes on a finite value. This
is called the velocity-slip condition. In analogous fashion, the gas temperature
at the surface, which is normally taken as equal to the surface temperature of
the material, now becomes something different. This is called the temperature-
slip condition. At the onset of these slip effects, the governing equations of the
flow are still assumed to be the familar continuum-flow equations, except with
the proper velocity and temperature-slip conditions utilized as boundary con-
ditions. However, as the altitude continues to increase, there comes a point
where the continuum-flow equations themselves are no longer valid, and
methods from kinetic theory must be used to predict the aerodynamic behavior.
Finally, the air density can become low enough that only a few molecules impact
the surface per unit time, and after these molecules reflect from the surface they
do not interact with the incoming molecules. This is the regime of free molecule
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flow. For the space shuttle, the free molecular regime begins about 150 km
(500,000 ft). Therefore, in a simplified sense, we visualize that a hypersonic
vehicle moving from a very rarified atmosphere to a denser atmosphere will
shift from the free molecular regime, where individual molecular impacts on
the surface are important, to the transition regime, where slip effects are import-
ant, and then to the continuum regime.

The similarity parameter that governs these different regimes is the Knudsen
number, defined as Kn ¼ l/L, where L is a characteristic dimension of the body.
The values of Kn in the different regimes are noted in Fig. 1.19, taken from [7].
Note the region where the continuum Navier–Stokes equations hold is described
by Kn , 0.2. However, slip effects must be included in these equations when
Kn . 0.03. The effects of free molecular flow begin around a value or Kn ¼ l
and extend out to the limit of Kn becoming infinite. Hence, the transitional
regime is essentially contained within 0.03 , Kn , 1.0. In a given problem, the
Knudsen number is the criterion to examine in order to decide if low-density
effects are important and to what extent. For example, if Kn is very small, we
have continuum flow; if Kn is very large, we have free molecular flow, and so forth.
A hypersonic vehicle entering the atmosphere from space will encounter the full
range of these low-density effects, down to an altitude below which the full conti-
nuum aerodynamics takes over. Because Kn ¼ l/L is the governing parameter, that
altitude below which we have continuum flow is greater or lesser as the character-
istic length L is larger or smaller. Hence, large vehicles experience continuum flow
to higher altitudes than small vehicles. Moreover, if we let the characteristic length
be a running distance x from the nose or leading edge of the vehicle then Kn ¼ l/x
becomes infinite when x ¼ 0. Hence, for any vehicle at any altitude the flow
immediately at the leading edge is governed by low-density effects. For most
practical applications in aerodynamics, this leading-edge region is very small and
is usually ignored. However, for high-altitude hypersonic vehicles the proper
treatment of the leading-edge flow by low-density methods can be important.

Fig. 1.19 Regimes of applicability of various flow equations for low-density flows

(from [7]).
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To consider low-density effects as part of the “definition” of hypersonic aero-
dynamics might be stretching that definition too much. Recall that we are defin-
ing hypersonic aerodynamics as that regime where certain physical flow
phenomena become progressively more important as the Mach number is
increased to high values. Low-density effects are not, per se, high-Mach-number
effects. However, low-density effects are included in our discussion because
some classes of hypersonic vehicles, as a result of their high Mach number,
will fly at or through the outer regions of the atmosphere and hence will experi-
ence such effects to a greater or lesser extent.

1.3.6 Recapitulation

To repeat, hypersonic flow is best defined as that regime where all or some of
the preceding physical phenomena become important as the Mach number is
increased to high values. To help reinforce this definition, Fig. 1.20 summarizes

Fig. 1.20 Physical effects characteristic of hypersonic flow.
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the important physical phenomena associated with hypersonic flight. Throughout
this book, the fundamental aspects and practical consequences of these phenom-
ena will be emphasized.

1.4 Fundamental Sources of Aerodynamic Force and

Aerodynamic Heating

Any object immersed in a flowing gas experiences a force as a result of the
interaction of the body with the gas—the aerodynamic force, illustrated by the
vector R in Fig. 1.21. The two components of R perpendicular and parallel to
the relative wind far ahead of the body are lift L and drag D, respectively, as
also shown in Fig. 1.21. Similarly, R can be resolved into two components per-
pendicular and parallel to the chord (or axis) of the body, the normal force N and
the axial force A, respectively, shown in Fig. 1.21. These forces are usually

Fig. 1.21 a) Resultant aerodynamic force and the components into which it splits

and b) illustration of pressure and shear stress on an aerodynamic surface.
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couched in terms of force coefficients. Defining the dynamic pressure q1 as

q1 ¼
1
2
r1V2

1

where r1 and V1 are the freestream density and velocity respectively, and choos-
ing some reference area S, we have the following by definition.

Lift coefficient:

CL ¼
L

q1S

Drag coefficient:

CD ¼
D

q1S

Normal-force coefficient:

CN ¼
N

q1S

Axial-force coefficient:

CA ¼
A

q1S

In addition, consider any point on the body. The resultant force R can create a
moment M about this point, and we define

Moment coefficient:

M

q1Sc

where c is a characteristic length of the body, such as the chord length shown in
Fig. 1.21a.

How does nature exert an aerodynamic force on the body? To help answer this
question, pick up this book, and hold it stationary in the palm of your hand. You
are exerting a force on the book, equal to its weight. This force is communicated
to the book by the skin of your hand being in contact with the bottom cover of the
book. This is the only way that the book knows that you are exerting a force on
it—by contact of the book’s surface with your hand. Similarly, the surface of the
body in Fig. 1.21a is in contact with the air—the molecular layer of air immedi-
ately adjacent to the body surface. The only way that the body feels the presence
of the air is through the pressure distribution and shear-stress distribution exerted
on the body surface that is in contact with the air. As illustrated in Fig. 1.21b, the
pressure acts locally normal to the body surface, and shear stress, which is caused
by friction between the body and the molecular layer of air just adjacent to the
body surface, acts locally tangential to the surface. Let s be the distance along
the body surface measured from the leading edge (nose) of the body, as shown
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in Fig. 1.21b. The variation of pressure with distance along the surface, denoted
by p(s), is the pressure distribution, and the variation of shear stress with distance
along the surface, denoted by tw(s), is the shear-stress distribution. Clearly,
pressure and shear stress are distributed loads acting on the body and when inte-
grated over the complete surface area of the body give rise to the resultant aero-
dynamic force vector R shown in Fig. 1.21a. The two hands of nature that reach
out and grab hold of the body, exerting a force on the body, are the pressure dis-
tribution and shear-stress distribution exerted on the body surface. These are the
two fundamental sources of aerodynamic force—and that is all there is.

Except in the cases where viscous interaction is dominant and/or flow separ-
ation takes place, the surface-pressure distribution is essentially, by nature,
an inviscid flow phenomena. Part 1 (Chapters 2–5) of this book deals with hyper-
sonic inviscid flow. Much of the material in Part 1 is focused on the calculation of
pressure distributions over the surface of hypersonic aerodynamic shapes, thus
leading to the prediction of lift and wave drag (a pressure effect).

Shear stress is a viscous flow phenomena. Part 2 (Chapters 6–8) of this book
deals with viscous flow. Some of the material in Part 2 is focused on the calcu-
lation of shear-stress distributions over the surface of hypersonic aerodynamic
shapes, thus leading to the prediction of skin-friction drag. The surface shear
stress is dictated by the velocity gradient at the surface

tw ¼ mw

@u

@y

� �
w

(1:1)

where (@u=@y)w is the velocity gradient at the wall and mw is the viscosity coeffi-
cient at the wall.

Any object immersed in a flowing gas also experiences heat transfer at the
body surface. For the majority of practical cases in high-speed aerodynamics,
heat is transferred from the gas into the body—aerodynamic heating. For low-
speed subsonic flows, aerodynamic heating, though present, is small and not gen-
erally a player. For supersonic flows, however, aerodynamic heating becomes a
consideration. For hypersonic flows, aerodynamic heating is a major player, so
much so that it dictates the configuration design of most hypersonic vehicles.

The sources of aerodynamic heating to a body are related to the hot gas in the
flowfield around the body. The boundary layer adjacent to the body surface is hot
because the high-kinetic-energy hypersonic flow entering the boundary layer is
slowed by viscous effects within the boundary layer, dissipating the kinetic
energy, and transforming it (in part) into internal energy of the gas. The gas in
the inviscid portion of the shock layer between the shock wave and the body is
hot because it has come through a strong shock wave. Shock-wave heating and
intense viscous dissipation are the causes of the hypersonic flow over a body
being hot. Nature, in turn, pumps some of this heat energy into the body in the
form of aerodynamic heating. There are two physical sources, or mechanisms,
that nature uses to transfer the heat into the body: thermal conduction and radi-
ation. Let us examine each one of these mechanisms in turn.

Thermal conduction takes place when a temperature gradient exists in the
gas, and from Fourier’s law of heat conduction the heat transfer to the surface
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qw is given by

qw ¼ �kw

@T

@y

� �
w

(1:2)

where kw is the thermal conductivity of the gas at the wall and (@T=@y)w is the
temperature gradient in the gas at the wall. The minus sign denotes that heat is
conducted in the opposite direction of the temperature gradient. For example,
reflect again on the boundary-layer temperature profile sketched in Fig. 1.15.
The temperature gradient at the wall is clearly seen; at the wall, the gas tempera-
ture increases with distance above the wall; hence, (@T=@y)w is a positive quan-
tity. Consequently, qw flows into the wall in the negative y direction. Thermal
conduction as quantified by Eq. (1.2) is one of nature’s ways to transfer heat to
the surface of a body. The hand of nature that does this is not the temperature
of the gas at the wall, but rather the temperature gradient in the gas at the
wall. Part 2 of this book deals in part with the calculation of temperature gradients
at the wall and hence the conductive heat transfer at the surface.

Thermal radiation is the other hand that nature uses to heat a body (or to cool a
body). If the temperature of the flowfield around a body is hot enough, significant
thermal radiation from the gas to the body takes place. How hot is hot enough? For
air, if the shock-layer temperature is about 10,000 K or higher radiative heat trans-
fer from the hot shock layer to the cooler body becomes a player in the overall
heating of the body. Examples are space vehicles entering the Earth’s atmosphere
at superorbital velocities, such as the Apollo lunar return capsule, where the
shock-layer temperature reached as high as 11,000 K. Almost 30% of the total
heat transfer to the Apollo during atmospheric entry was caused by radiative
heating. For the Galileo probe entering the Jovian atmosphere at 15 km/s,
where the shock-layer temperature exceeded 15,000 K, more than 95% of the
total heat transfer was radiative heating. Radiative heating is treated in Chapter 18.

Parenthetically, we note that the solid surface of the body radiates energy
away from the surface. This is a form of cooling of the surface—radiative
cooling. Solid bodies emit radiation primarily in the infrared part of the spectrum.
(When you stand in front of a fireplace on a cold winter day, and enjoy the heat
from the fire, most of the heat you are feeling is coming from infrared radiation
emitted from the hot bricks or stone of the walls of the fireplace.) Moreover, the
radiative energy emitted from the surface of a solid body is a function of the
surface temperature, following the T4 variation of a blackbody. Surface radiation,
therefore, can be used effectively as part or all of the thermal protection mechan-
ism for a hypersonic vehicle.

In summary, the two sources of aerodynamic heating are the temperature gra-
dient in the gas at the body surface, adding heat to the body by means of thermal
conduction, and the hot temperature that exists globally throughout the shock
layer, adding heat to the body by means of thermal radiation from each hot
fluid element in the flowfield. Frequently, the former mode of heating is called
convective heating, although thermal conduction at the surface is the hand that
nature uses to transfer the energy to the surface. The latter mode of heating is
simply called radiative heating.
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1.5 Hypersonic Flight Paths: Velocity-Altitude Map

Although this is a book on hypersonic and high-temperature gas dynamics, we
must keep in mind that the frequent application of this material is to the design
and understanding of hypersonic flight vehicles. In turn, it is helpful to have
some knowledge of the flight paths of these vehicles through the atmosphere
and the parameters that govern such flight paths. This is the purpose of the
present section. In particular, we will examine the flight path of lifting and
nonlifting hypersonic vehicles during atmospheric entry from space.

Consider a vehicle flying at a velocity V along a flight path inclined at the
angle u below the local horizontal, as shown in Fig. 1.22. The forces acting on
the vehicle are lift L, drag D, and weight W; the thrust is assumed to be zero;
hence, we are considering a hypersonic glide vehicle. Summing forces along
and perpendicular to the curvilinear flight path, we obtain the following equations
of motion from Newton’s second law.

Along flight path:

W sin u� D ¼ m
dV

dt
(1:3)

Perpendicular to flight path:

L�W cos u ¼ �m
V2

R
(1:4)

Fig. 1.22 Force diagram for reentry body.
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In Eq. (1.4), R is the local radius of curvature of the flight path. For most entry
conditions, u is small; hence, we assume sin u � 0 and cos u � 1. For this
case, Eqs. (l.3) and (l.4) become, noting that m ¼ W/g

�D ¼
W

g

dV

dt
(1:5)

L�W ¼ �
W

g

V2

R
(1:6)

The drag can be expressed in terms of the drag coefficient CD as D ¼ 1
2
rV2SCD,

where r is the freestream density and S is a reference area. Hence, Eq. (1.5)
becomes

�
1

2
rV2SCD ¼

W

g

dV

dt

Rearranging, we obtain

�
1

g

dV

dt
¼

W

CDS

� ��1
rV2

2
(1:7)

In Eq. (1.7), W=CDS is defined as the ballistic parameter; it clearly influences the
flight path of the entry vehicle via the solution of Eq. (1.7). For a purely ballistic
reentry (no lift), W=CDS is the only parameter governing the flight path for a
given entry angle.

Returning to Eq. (l.6) and expressing the lift in terms of the lift coefficient
CL as L ¼ 1

2
rV2SCL, we obtain

1

2
rV2SCL �W ¼ �

W

g

V2

R

Rearranging,

1�
1

g

V2

R
¼

W

CLS

� ��1
rV2

2
(1:8)

In Eq. (1.8), W/CL S is the lift parameter; it clearly influences the flight path of a
lifting-entry vehicle via the solution of Eq. (1.8).

Equations (1.7) and (1.8) illustrate the importance of W=CDS and W=CLS
in determining the flight path through the atmosphere of a vehicle returning
from space. Such flight paths are frequently plotted on a graph of altitude vs
velocity—a velocity-altitude map, an example of which is shown in Fig. 1.23.
Here, two classes of flight paths are shown: 1) lifting entry, governed mainly
by W=CLS, and 2) ballistic entry, governed mainly by W=CDS. The vehicle
enters the atmosphere at either satellite velocity (such as from orbit) or at
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escape velocity (such as a return from a lunar mission). As it flies deeper into the
atmosphere, it slows as a result of aerodynamic drag, giving rise to flight paths
shown in Fig. 1.23. Note that vehicles with larger values of W=CLS and/or
W=CDS penetrate deeper into the atmosphere before slowing. The lifting-entry
curve for W/CLS ¼ 100 lb/ft2 pertains approximately to the space shuttle; the
curve initiated at escape velocity with W/CDS ¼ 100 lb/ft2 pertains approxi-
mately to the Apollo entry capsule. Velocity-altitude maps are convenient
diagrams to illustrate various aerothermodynamic regimes of supersonic flight,
and they will be used as such in some of our subsequent discussion.

1.6 Summary and Outlook

The major purposes of this chapter have been motivation and orientation—
motivation as to the importance, interest, and challenge associated with hyper-
sonic aerodynamics, and orientation as to what hypersonics entails. For the
remainder of this book, our purpose is to present and discuss the important
fundamental aspects of hypersonic and high-temperature gas dynamics and to
highlight various practical applications as appropriate. Towards this end, the
book is organized into three major parts, as diagramed in Fig. 1.24. These
three parts are as follows.

Part 1—Inviscid Flow: Here, the purely fluid-dynamic effect of large Mach
number is emphasized, without the added complications of viscous and high-
temperature effects. In this part, we examine what happens when the freestream
Mach number M1 becomes large and how this influences aerodynamic theory at
high Mach numbers. Here we calculate pressure distributions on surfaces and
obtain the aerodynamic lift and wave drag on hypersonic bodies.

Fig. 1.23 Atmospheric entry flight paths on a velocity-altitude map.
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Part 2—Viscous Flow: Here, the combined effect of high Mach number and
finite Reynolds number will be examined. The purely fluid-dynamic effect of
hypersonic flow with friction and thermal conduction will be presented; again,
high-temperature effects will not be included. Here, we calculate the shear
stress at the surface and the resulting skin friction drag on hypersonic bodies.
In addition we calculate the temperature gradients in the gas at a surface and
the resulting aerodynamic heating to hypersonic bodies as a result of thermal
conduction (convective aerodynamic heating).

Part 3—High-Temperature Flow: Here, the important aspects of high-
temperature gas dynamics will be presented. Emphasis will be placed on the
development of basic physical chemistry principles and how they affect both
inviscid and viscous flows. High-temperature flows find application in many
fields in addition to hypersonic aerodynamics, such as combustion processes,
explosions, plasmas, high-energy lasers, etc. Therefore, Part 3 will be a self-
contained presentation of high-temperature gas dynamics in general, along
with pertinent applications to hypersonic flow. Here we also calculate the radia-
tive heating of a hypersonic body caused by intense radiation from very high-
temperature shock layers.

Figure 1.24 is a block diagram showing each one of the three parts just dis-
cussed, along with the major items to be discussed under each part. In essence,
this figure is a road map for our excursions in hypersonic and high-temperature
gas dynamics. Figure 1.24 is important, and we will refer to it often in order to see
where we are, where we have been, and where we are going in our presentation.

Problems

1.1 Consider the supersonic and hypersonic flow of air (with constant ratio of
specific heats, g ¼ 1.4) over a 20-deg half-angle wedge. Let u denote the
wedge half-angle and b the shock-wave angle. Then b-u is a measure of
the shock-layer thickness. Make a plot of b-u vs the freestream Mach
number M1 from M1 ¼ 2.0 to 20.0. Make some comments as to what
Mach-number range results in a “thin” shock layer.

1.2 The lifting parameter W/CDS is given Fig. 1.23 in units of lb/ft2. Fre-
quently, the analogous parameter m=CDS is used, when m is the vehicle
mass; the units of m=CDS are usually given in kg/m2. Derive the appropri-
ate conversion between these two sets of units, that is, what number must
W=CDS expressed in lb/ft2 be multiplied by to obtain m=CDS in kg/m2?
(Comment: Even at the graduate level, it is useful now and then to go
through this type of exercise.)
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Part 1
Inviscid Hypersonic Flow

In Part 1 we emphasize the purely fluid-dynamic effects of high
Mach number; the complicating effects of transport phenomena
(viscosity, thermal conduction, and diffusion) and high-
temperature phenomena will be treated in Parts 2 and 3, respec-
tively. In dealing with inviscid, hypersonic flow in Part 1, we are
simply examining the question: what happens to the fluid
dynamics of an inviscid flow when the Mach number is made
very large? We will see that such an examination goes a long
way toward the understanding of many practical hypersonic
applications.
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2
Hypersonic Shock and Expansion-Wave

Relations

It is clear that the thorough study of gas-dynamic disconti-
nuities and their structures combines in an essential way
the fields of hydrodynamics, physics, and chemistry, and
that there is no lack of problems which deserve attention.

Wallace D. Hayes, Princeton University, 1958

Chapter Preview

This chapter is short and sweet. Shock waves and expansion waves are ubiqui-

tous features in supersonic and hypersonic flowfields. The detailed analysis

and calculation of shock and expansion wave properties are bread-and-butter

topics in the study of compressible flow. This chapter goes a step further; here,

the assumption of very high Mach numbers ahead of the waves allows the

rather elaborate, but exact, shock- and expansion-wave relations to be

reduced to much simpler, albeit approximate, equations that hold for hyper-

sonic flow. You might ask—so what? Indeed, for an accurate calculation of

the details of a hypersonic flow you should always use the exact shock- and

expansion-wave equations. The value of this chapter lies elsewhere—it lies

in the world of hypersonic aerodynamic theory. This chapter is the front end

of the beautiful intellectual triumphs that are the foundation of the hypersonic

aerodynamic theories to be developed in subsequent chapters. One such theory

is hypersonic similarity, to be explained and developed in Chapter 4. But right

away, in the present chapter, the approximate hypersonic shock- and

expansion-wave relations expose one of the most important parameters in

hypersonic aerodynamic theory—the hypersonic similarity parameter. But

we are getting ahead of ourselves. For right now, just sit back and enjoy the

clean and neat development of the simplified equations for shock and expan-

sion waves afforded by the assumption of high Mach numbers in the flow

ahead of the waves. Then store these hypersonic shock- and expansion-wave

relations on your mental bookshelf for future use in subsequent chapters.
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2.1 Introduction

Consider an airplane flying at Mach 28 at the outer regions of the Earth’s
atmosphere, say at an altitude of 120 km (approximately 400,000 ft). Upon
descent into the lower regions of the atmosphere, the aircraft can follow one of
the lifting trajectories shown on the altitude-velocity map in Fig. 2.1.� Super-
imposed on this figure are lines of constant Mach number. The purpose of this
figure is to emphasize the obvious fact that such hypersonic vehicles encounter
exceptionally high Mach numbers. Moreover, the flight path remains hypersonic
over most of its extent. Figure 2.1 justifies the study of high-Mach-number flows
and underscores the question: what happens in a purely fluid-dynamic sense when
the Mach number becomes very large? This question has particular relevance in
regard to the basic shock- and expansion-wave relations. In the present chapter,
we will obtain and examine the limiting forms of both the conventional shock-
wave equations and the Prandtl–Meyer expansion-wave relations when the
upstream Mach number increases toward infinity. These limiting forms are inter-
esting in their own right; however, of more importance, they are absolutely
necessary for the development of various inviscid hypersonic theories to be
discussed in subsequent chapters.

2.2 Basic Hypersonic Shock Relations

Anytime a supersonic flow is turned into itself (such as flowing over a wedge,
cone, or compression corner), a shock wave is created. Also, if a sufficiently high
backpressure is created downstream of a supersonic flow, a standing shock wave
can be established. Such shock waves are extremely thin regions (on the order of
1025 cm in air) across which large changes in density, pressure, velocity, etc.
occur. These changes take place in a continuous fashion within the shock wave
itself, where viscosity and thermal conduction are important mechanisms.
However, because the wave is usually so thin, to the macroscopic observer the
changes appear to take place discontinuously. Therefore, in conventional super-
sonic aerodynamics shock waves are usually treated as mathematical and phys-
ical discontinuities. As the Mach number is increased to hypersonic speeds, no
dramatic qualitative difference occurs. The same exact shock relations that are
obtained in supersonic aerodynamics also hold at hypersonic speeds. However,
some interesting approximate and simplified forms of the shock relations are
obtained in the limit of high Mach number; these forms are obtained next.

Consider the flow through a straight oblique shock wave, as sketched in
Fig. 2.2. Upstream and downstream conditions are denoted by subscripts 1 and
2, respectively. For a calorically perfect gas (constant specific heats, hence
g ¼ cp=cv ¼ constant), the classical results for changes across the shock are

�Velocity-altitude maps are discussed in Sec. 1.5. In that section, the parameters W/CDS and
W/CLS are introduced. Related parameters are m/CDS and m/CLS, where m is the mass of the
vehicle. Figure 2.1 is shown in terms of SI units, and the lift parameter is couched in terms of
m rather than W. In comparing values of W/CLS and m/CLS, for example, note that m/CLS
(in kg/m2) ¼ 5 � W/CLS (in lb/ft2), that is, a value of W/CLS ¼ 1000 lb/ft2 is equal to
m/CLS ¼ 5000 kg/m2. The same ratio holds, of course, for W/CDS and m/CDS.
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Fig. 2.2 Oblique shock-wave geometry.

Fig. 2.1 Velocity-altitude map with superimposed lines of constant Mach number.
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given in any standard textbook on compressible flow (for example, see [4] and
[5]). To begin, the exact oblique shock relation for pressure ratio across the
wave is given by the following.

Exact:

p2

p1

¼ 1þ
2g

gþ 1
(M2

1 sin2 b� 1) (2:1)

where b is the wave angle, shown in Fig. 2.2. In the limit as M1 goes to infinity,
the term M2

1 sin2 b� 1, and hence Eq. (2.1) becomes the following.
As M1 ! 1:

p2

p1

¼
2g

gþ 1
M2

1 sin2 b (2:2)

In a similar vein, the density and temperature ratios are as follows.
Exact:

r2

r1

¼
(gþ 1)M2

1 sin2 b

(g� 1)M2
1 sin2 bþ 2

(2:3)

As M1 ! 1:

r2

r1

¼
gþ 1

g� 1
(2:4)

T2

T1

¼
( p2=p1)

(r2=r1)
(from the equation of state p ¼ rRT)

As M1 ! 1:

T2

T1

¼
2g (g� 1)

(gþ 1)2
M2

1 sin2 b (2:5)

Returning to Fig. 2.2, note that u2 and v2 are the components of the flow velocity
behind the shock wave parallel and perpendicular to the upstream flow (not
parallel and perpendicular to the shock wave itself, as is frequently done).
With this in mind, the following is true.

Exact:

u2

V1

¼ 1�
2(M2

1 sin2 b� 1)

(gþ 1)M2
1

(2:6)

As M1 ! 1:

u2

V1

¼ 1�
2 sin2 b

gþ 1
(2:7)
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Exact:

v2

V1

¼
2(M2

1sin2 b� 1) cos b

(gþ 1) M2
1

(2:8)

For large M1, Eq. (2.8) can be approximated by

v2

V1

¼
2(M2

1 sin2 b) cotb

(gþ 1) M2
1

¼
2 sin b cos b

gþ 1
(2:9)

Because 2 sinb cos b ¼ sin 2b, then from Eq. (2.9) this follows:
As M1 ! 1:

v2

V1

¼
sin 2b

gþ 1
(2:10)

In the preceding, the choice of velocity components parallel and perpendicular to
the upstream flow direction rather than to the shock wave is intentional.
Equations (2.7) and (2.10) will be used to great advantage in subsequent chapters
to demonstrate some physical aspects of the velocity field over slender hyper-
sonic bodies.

Note from Eqs. (2.2) and (2.5) that both p2=p1 and T2=T1 become infinitely
large as M1 ! 1. In contrast, from Eqs. (2.4), (2.7), and (2.10), r2=r1, u2=V1,
and v2=V1 approach limiting finite values as M1 ! 1.

In aerodynamics, pressure distributions are usually quoted in terms of the non-
dimensional pressure coefficient Cp rather than the pressure itself. The pressure
coefficient is defined as

Cp ¼
p2 � p1

q1

(2:11)

where p1 and q1 are the upstream (freestream) static pressure and dynamic
pressure, respectively. (In later chapters we will use the subscript 1 to denote
freestream conditions, such as freestream pressure p1 and freestream dynamic
pressure q1. However, consistent with standard shock-wave nomenclature, we
denote the freestream conditions by the subscript 1 in the present section.) By
definition, the dynamic pressure is given by

q1 ¼
1
2
r1V2

1

This is a definition only—it is used for all flows, from incompressible to hypersonic.
(Note: For incompressible flow, q1 ¼

1
2
r1V2

1 is exactly the difference between the
total and static pressure of the freestream; for all other aerodynamic speed
regimes, q1 ¼

1
2
r1V2

1 is a definition only, with no exact physical significance.) In
high-speed flow theory, it is convenient to express q1 in terms of Mach number
and pressure M1 and p1, rather than velocity and density V1 and r1. This is easily
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accomplished by recalling that the speed of sound a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g p1=r1

p
and that the Mach

number M1 ¼ V1/a1. Hence,

q1 ¼
1

2
r1V2

1 ¼
1

2
r1V2

1

gp1

gp1

¼
gp1

2

V2
1

a2
1

or

q1 ¼
g

2
p1M2

1 (2:12)

Equation (2.12) is a very convenient expression for dynamic pressure and can be
viewed almost as an alternate definition of q1. We can now write the pressure coeffi-
cient as

Cp ¼
p2 � p1

q1

¼
2

gM2
1

p2

p1

� 1

� �
(2:13)

Combining Eqs. (2.1) and (2.13), we obtain an exact relation for Cp behind an
oblique shock wave as follows.

Exact:

Cp ¼
4

gþ 1
sin2 b�

1

M2
1

� �
(2:14)

In the hypersonic limit, the following is shown.
As M1 ! 1:

Cp ¼
4

gþ 1

� �
sin2 b (2:15)

The relationship between Mach number M1, shock angle b, and deflection angle u
is expressed by the so-called u-b-M relation (see [4] and [5]).

Exact:

tan u ¼ 2 cot b
M2

1 sin2 b� 1

M2
1(gþ cos 2b)þ 2

� �
(2:16)

This relation is plotted in Fig. 2.3, which is a standard plot of wave angle vs
deflection angle, with Mach number as a parameter. From this figure, note
that, in the hypersonic limit, when u is small, b is also small. Hence, in this
limit we can insert the usual small-angle approximations into Eq. (2.16):

sin b � b

cos 2b � 1

tan u � sin u � u

resulting in

u ¼
2

b

M2
1b

2 � 1

M2
1(gþ 1)þ 2

� �
(2:17)
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Applying the high-Mach-number limit to Eq. (20.17), we have

u ¼
2

b

M2
1b

2

M2
1(gþ 1)

� �
(2:18)

In Eq. (2.18) M1 cancels, and we finally obtain in both the small-angle and hyper-
sonic limits:

As M1!1

and

u hence b is small

9=
;

b

u
¼

gþ 1

2
(2:19)

Note that for g ¼ 1:4,

b ¼ 1:2u (2:20)

It is interesting to observe that, in the hypersonic limit for a slender wedge, the
wave angle is only 20% larger than the wedge angle—a graphic demonstration
of a thin shock layer in hypersonic flow. (Check Fig. 1.13, drawn from exact

Fig. 2.3 u-b-M diagram.
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oblique shock results, and note that the 18-deg shock angle is 20% larger than the
15-deg wedge angle at Mach 36—truly an example of the hypersonic limit.)

For your convenience, the limiting hypersonic shock relations obtained in this
section are summarized in Fig. 2.2. These limiting relations, which are clearly
simpler than the corresponding exact oblique shock relations, will be important
for the development of some of our hypersonic aerodynamic techniques in sub-
sequent chapters.

2.3 Hypersonic Shock Relations in Terms of the Hypersonic

Similarity Parameter

In the study of hypersonic flow over slender bodies, the product M1u is an
important governing parameter, where, as before, M1 is the freestream Mach
number and u is the flow deflection angle. Indeed, we will demonstrate in
Chapter 4 that M1u is a similarity parameter for such flows. Denoting M1u by
K, we state

K ; M1u ; hypersonic similarity parameter

In our future discussions, it will be helpful to express the oblique shock relations
in terms of K, particularly in the case of pressure ratio p2/p1. This is the purpose
of the present section.

Return to the exact u-b-M relation given by Eq. (2.16). As expressed, this is an
explicit relation for u ¼ u(b). Obtaining the exact inverse relation, b ¼ b(u),
from Eq. (2.16) is tedious. However, in the combined limit of hypersonic
flow and small angles, an approximate explicit relation for b ¼ b(u) can be
obtained. This will be our first step toward introducing K ¼ M1u into the shock
relations. Specifically, for small angles Eq. (2.16) reduces to Eq. (2.17), rewritten
here as

M2
1b

2 � 1 ¼
M2

1(gþ 1)

2
þ 1

� �
bu (2:21)

In Eq. (2.21), assume that M1 is large and finite; hence, 1
2

(gþ 1)M2
1 � 1.

However, because b is small we cannot assume that M2
1b

2 is large compared
to unity. With this, Eq. (2.21) becomes

M2
1b

2 � 1 ¼
gþ 1

2
M2

1bu (2:22)

Rearranging, we obtain

b

u

� �2

�
gþ 1

2

b

u

� �
�

1

M2
1u

2
¼ 0 (2:23)
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This is a quadratic equation in terms of b=u; solving by means of the quadratic
formula,

b

u
¼

gþ 1

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

M2
1u

2

s
(2:24)

[In Eq. (2.24), the minus sign on the radical has been ruled out; it would produce
the nonphysical result of a negative b=u:] [Note: Equation (2.24) is the desired
explicit relations for b ¼ b(u), good for the limit of hypersonic Mach numbers
and small angles.]

Now return to Eq. (2.1), which is an exact relation for the pressure ratio across
an oblique shock wave. Assuming small angles, this becomes

p2

p1

¼ 1þ
2g

gþ 1
(M2

1b
2 � 1) (2:25)

If we wish to apply Eq. (2.25) at hypersonic but finite Mach numbers, we repeat
again that, although M1 is large, the product M1b might not be large; hence, for
this case Eq. (2.25) cannot be reduced further. However, within the framework of
these assumptions Eq. (2.24) gives an explicit relation for b ¼ b(u), which can be
introduced into Eq. (2.25) to obtain an expression for p2/p1 in terms of the deflec-
tion angle u. This is carried out as follows. Combining Eqs. (2.23) and (2.24),

b

u

� �2

¼
gþ 1

2

gþ 1

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

M2
1u

2

s2
4

3
5þ 1

M2
1u

2

or

b2 ¼
(gþ 1)

2

(gþ 1)

4
þ
gþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

M2
1u

2

s2
4

3
5u2 þ

1

M2
1

(2:26)

Substituting Eq. (2.26) into (2.25), we obtain

p2

p1

¼ 1þ
g (gþ 1)

4
M2

1u
2 þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

M2
1u

2

s
M2

1u
2 (2:27)

Again denoting M1u by K, Eq. (27) is written as

p2

p1

¼ 1þ
g(gþ 1)

4
K2 þ gK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

K2

s
(2:28)
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Equation (2.28) is the desired result; it gives the pressure ratio across an oblique
shock wave in terms of the hypersonic similarity parameter, subject to the com-
bined assumptions of high (but finite) Mach number and small angles. Because
the pressure field behind a two-dimensional oblique shock is constant, Eq.
(2.28) also gives the pressure p2 on the surface of a wedge of deflection angle u.

To round out our present discussion associated with the hypersonic similarity
parameter, consider the pressure coefficient, defined in Eq. (2.13). Substituting
Eq. (2.28) into (2.13), we obtain

Cp ¼
2

gM2
1

g(gþ 1)

4
K2 þ gK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

K2

s2
4

3
5

or, multiplying and dividing by u2,

Cp ¼
2u2

gK2

g(gþ 1)

4
K2 þ gK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

K2

s2
4

3
5

or

Cp ¼ 2u2 gþ 1

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

K2

s2
4

3
5 (2:29)

Note from Eq. (2.29) that, for hypersonic flow over wedges with small deflection
angles,

Cp

u2
¼ f (K, g) (2:30)

We will find later that relations analogous to Eq. (2.30) abound in the theory of
hypersonic flow over slender bodies.

2.4 Hypersonic Expansion-Wave Relations

Consider the centered Prandtl–Meyer expansion around a corner of deflection
angle u, as sketched in Fig. 2.4. An expansion fan consisting of an infinite number
of Mach waves originates at the corner and spreads downstream. The Mach
number and pressure upstream of the wave are M1 and p1, respectively; the cor-
responding quantities downstream of the wave are M2 and p2 respectively. From
basic compressible flow (for example, see [4] and [5]), the relation between u,
M1, and M2 is given by

u ¼ n(M2)� n(M1) (2:31)
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where n is the Prandtl–Meyer function

n(M) ¼

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

g� 1

s
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1

gþ 1
(M2 � 1)

s" #
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

(2:32)

For large Mach numbers,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

� M. Hence, Eq. (2.32) can be written for
hypersonic flow as

n(M) ¼

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

g� 1

s
tan�1

ffiffiffiffiffiffiffiffiffiffiffi
g� 1

gþ 1

s
M � tan�1 M (2:33)

Recalling the trigonometric identity

tan�1 x ¼
p

2
� tan�1 1

x

� �
(2:34)

and the series expansion

tan�1 1

x

� �
¼

1

x
�

1

3x3
þ

1

5x5
�

1

7x7
þ � � � (2:35)

we obtain by combining Eqs. (2.34) and (2.35),

tan�1 x ¼
p

2
�

1

x
þ

1

3x3
�

1

5x5
þ

1

7x7
þ � � � (2:36)

Utilizing Eq. (2.36) to expand Eq. (2.33), we have

n(M) ¼

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

g� 1

s
p

2
�

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

g� 1

s
1

M
þ � � �

 !
�

p

2
�

1

M
þ � � �

� �
(2:37)

Fig. 2.4 Centered expansion wave.
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At high Mach number, the higher-order terms associated with Eq. (2.37),
that is, terms such as 1/3M3, 1/5M5, etc., can be ignored. For this case,
Eq. (2.37) yields

v(M) ¼

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

g� 1

s
p

2
�

gþ 1

g� 1

� �
1

M
�
p

2
þ

1

M
(2:38)

Substituting Eq. (2.38) into (2.31), we obtain, for hypersonic Mach numbers,

u ¼
1

M2

�
gþ 1

g� 1

� �
1

M2

�
1

M1

þ
gþ 1

g� 1

� �
1

M1

or

u ¼
2

g� 1
�

1

M1

�
1

M2

� �
(2:39)

Equation (2.39) is the hypersonic relation for Prandtl–Meyer expansion waves; it
is an approximate relation that becomes more accurate as M1 and M2 become
larger. Recall that M increases through an expansion wave; hence, u in
Eq. (2.39) is a positive quantity. This is consistent with the sketch shown
in Fig. 2.4, where the deflection angle u is treated as a positive quantity.

The flow through an expansion wave is isentropic; hence the isentropic
pressure relation holds as follows (again for example, see [4] and [5]):

p2

p1

¼
1þ (g� 1)=2 M2

1

1þ (g� 1)=2 M2
2

� �g=(g�1)

(2:40)

For large Mach numbers, the hypersonic approximation for Eq. (2.40) becomes

p2

p1

¼
M1

M2

� �2g=(g�1)

(2:41)

Rearranging Eq. (2.39), we obtain

M1

M2

¼ 1�
g� 1

2
M1u (2:42)

Combining Eqs. (2.41) and (2.42), the pressure ratio across the expansion wave,
at hypersonic speeds, becomes

p2

p1

¼ 1�
g� 1

2
M1u

� �2g=(g�1)

(2:43)
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Defining, as before, M1u as the hypersonic similarity parameter K, Eq. (2.43) can
be written as

p2

p1

¼ 1�
g� 1

2
K

� �2g=(g�1)

(2:44)

Equation (2.44) is, for the expansion wave, the analog of Eq. (2.28) for the shock
wave. In both cases, the pressure ratio p2=p1 is a function of K and g. However,
whereas Eq. (2.28) for the shock wave assumed both high Mach number and
small angles, Eq. (2.44) for the expansion wave assumes only high Mach
number; Eq. (2.44) is not restricted to small angles.

Finally, the pressure coefficient Cp is, from Eqs. (2.13) and (2.44),

Cp ¼
2

gM2
1

p2

p1

� 1

� �
¼

2

gM2
1

1�
g� 1

2
K

� �2g=(g�1)

�1

" #

Multiplying and dividing the right-hand side by u2, we obtain

Cp ¼
2u2

gK2
1�

g� 1

2
K

� �2g=(g�1)

�1

" #
(2:45)

Equation (2.45) for the hypersonic expansion wave is analogous to Eq. (2.29) for
the hypersonic shock wave. Indeed, analogous to Eq. (2.30), Eq. (2.45) gives the
result, now becoming familiar, that

Cp

u2
¼ f (K, g) (2:46)

for the hypersonic expansion wave.

2.5 Summary and Comments

The conventional shock-wave and expansion-wave relations from basic com-
pressible flow take on simplified but approximate forms at hypersonic Mach
numbers. The more important of these forms are listed next.

2.5.1 Shock Waves

In the limit as M1 ! 1,

p2

p1

¼
2g

gþ 1
M2

1 sin2 b (2:2)
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r2

r1

¼
gþ 1

g� 1
(2:4)

u2

V1

¼ 1�
2 sin2 b

gþ 1
(2:7)

v2

V1

¼
sin 2b

gþ 1
(2:10)

Cp ¼
4

gþ 1

� �
sin2 b (2:15)

In the combined limit, as M1 ! 1 and small angles,

b

u
¼

gþ 1

2
(2:19)

Defining the hypersonic similarity parameter as M1u ; K, we have, in the inter-
mediate case of high but finite Mach number and small angles,

p2
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¼ 1þ
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4
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Cp ¼ 2u2 gþ 1

4
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Note:

Cp

u2
¼ f (K, g) (2:30)

2.5.2 Expansion Waves

In the case of high but finite Mach numbers, we have

u ¼
2

g� 1

1

M1

�
1

M2

� �
(2:39)

where u is the deflection angle and M1 and M2 are the Mach numbers upstream
and downstream of the expansion wave. Also, for the same assumption

p2

p1

¼ 1�
g� 1

2
K

� �2g=(g�1)

(2:44)

where K ¼ M1u

Cp ¼
2u 2

gK2
1�

g� 1

2
K

� �2g=(g�1)

�1

" #
(2:45)
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Note:

Cp

u2
¼ f (K, g) (2:46)

Problem

2.1 Starting with the basic continuity, momentum, and energy equations
for flow across an oblique shock wave (for example, see [4]), derive
Eqs. (2.6) and (2.8). Note that u2 and v2 in these equations are the velocity
components behind the shock parallel and perpendicular to the upstream
velocity respectively—not parallel and perpendicular to the shock wave
as is usually taken in most standard shock-wave derivations.
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3
Local Surface Inclination Methods

Newton’s ideas are as old as reason and as new as research.

J. C. Hunsaker, comments to the Royal Society,
Cambridge, England, at the occasion of

the Newton Tercentenary Celebration, July 1946

A striking difference between linear and nonlinear waves
concerns the phenomenon of interaction: the principle of
superposition holds for linear waves but not for nonlinear
waves. As a consequence, for example, excess pressures
of interfering sound waves are merely additive: in contrast
to this fact, interaction and reflection of nonlinear waves
may lead to enormous increases in pressure.

Richard Courant and K. O. Fredericks, 1948

Chapter Preview

The calculation of surface-pressure distributions over hypersonic bodies—

that is the exclusive name of the game for this chapter. The resulting aerody-

namic lift and wave drag are also treated here. This is our first opportunity in

this book to calculate such pressure distribution and aerodynamic forces. And

we do it in the quickest and easiest way possible by cutting directly to the

body surface, calculating the pressure there, but nowhere else in the flowfield.

All we need to know to calculate the pressure at a point on the surface of a

body in a given hypersonic freestream is the local inclination angle the

surface makes at that point with the freestream direction. Sounds very

straightforward, does it not? But there is no free lunch here. We pay for

this simplicity by sacrificing accuracy. How much? We will see. We will

also see that the several methods discussed here are incredibly simple and

straightforward.
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These simple methods are grouped under the heading of “local surface

inclination methods,” for obvious reasons. In the early days of hypersonic

aerodynamics—in the 1950s—these methods were about the only thing

going. This is how aeronautical engineers in those days made estimates of

surface pressures for the design of hypersonic vehicles. Today, in the world

of modern computational fluid dynamics and very sophisticated calculations

of complete flowfields around hypersonic bodies, the material in this

chapter takes on the role of “back-of-the-envelope” calculations. This is the

modern value of the methods discussed here—for you to carry them around

in the pocket of your mind so that you can whip them out at any time to

make a quick estimate of hypersonic pressure distributions, lift, and wave

drag. These methods can be used as reality checks in the world of hypersonic

vehicle design and performance.

This chapter is a great way to get off the ground in learning hypersonic

aerodynamics. It is straightforward and to the point. It gives you some

immediate tools to work with and allows you to make some fun calculations.

So read on and have fun.

3.1 Introduction

Hypersonic flow is inherently nonlinear. This is intuitively obvious when we
think of the important physical aspects of hypersonics discussed in Chapter 1—
aspects such as high-temperature chemically reacting flows, viscous interaction,
entropy layers, etc. It is hard to imagine that such complex phenomena could be
described by simple linear relationships. Even without these considerations, the
basic theory of inviscid compressible flow, when the Mach number becomes
large, does not yield aerodynamic theories that are mathematically linear. This
is in stark contrast to supersonic flow, which, for thin bodies at small angles of
attack, can be described by a linear partial differential equation, leading to the
familiar supersonic expression for pressure coefficient on a surface (or stream-
line) with local deflection angle u:

Cp ¼
2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M 2
1 � 1

p (3:1)

In Eq. (3.1), M1 is the freestream Mach number. Equation (3.1) is a classic result
from inviscid, linearized, two-dimensional, supersonic flow theory (for example,
see [4] and [5]). It is simple and easy to apply. Unfortunately, it is not valid at
hypersonic speeds, for reasons to be discussed in Chapter 4.

A virtue of Eq. (3.1) is that for a specified freestream Mach number it gives
the pressure coefficient on the surface of a body strictly in terms of the local
deflection angle of the surface u. That is, within the framework of supersonic
linearized theory, Cp at any point on a body does not depend on the details of
the flowfield away from that point; thus, it does not require a detailed solution
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of the complete flowfield. In essence, Eq. (3.1) provides a local surface incli-
nation method for the prediction of pressure distributions over two-
dimensional supersonic bodies (restricted to thin bodies at small angles of
attack). Such simplicity is always welcomed by practicing aerodynamicists
who have to design flight vehicles. This leads to the question: although hyper-
sonic aerodynamics is nonlinear, and hence Eq. (3.1) does not hold, are there
other methods, albeit approximate, that allow the rapid estimate of pressure
distributions over hypersonic bodies just in terms of the local surface incli-
nation angle? In other words, is there a viable local surface inclination
method for hypersonic applications? The answer is yes; indeed, there are
several such methods that apply to hypersonic bodies. The purpose of this
chapter is to present these methods.

Finally, examine the road map given in Fig. 1.24. Note that the material
discussed in Chapter 2, as well as the present chapter, is itemized on the far
left side of the road map. Keep in mind that we are still discussing inviscid
hypersonic flow, where essentially we are examining the purely fluid-dynamic
effect of large Mach numbers.

Also, a more detailed road map for the present chapter is given in Fig. 3.1. We
begin with Newtonian flow, a classic fluid-dynamic theory postulated by Isaac
Newton in 1687, which resulted in very poor accuracy for low-speed fluid-
dynamic applications over the subsequent centuries. Only with the advent of
modern hypersonic aerodynamic applications has Newtonian theory really
come into its own. Newtonian theory provides the most straightforward and
simplest prediction of surface pressure on a hypersonic body. That is why we
start with it here. Moreover, we will explore several aspects of Newtonian flow
as itemized in the subheadings in Fig. 3.1. Two other primary methods for the

Fig. 3.1 Road map for Chapter 3.
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direct calculation of surface pressure on a hypersonic body are also listed in
Fig. 3.1, namely, the tangent-wedge/tangent-cone and the shock-expansion
methods. These methods are slightly more elaborate than Newtonian, but
provide inherently better accuracy. The road map for this chapter, Fig. 3.1, is rela-
tively short and straightforward, but it is worthwhile to keep it in mind as you
progress through the chapter.

3.2 Newtonian Flow

Three centuries ago, Isaac Newton established a fluid-dynamic theory that
later was used to derive a “law” for the force on an inclined plane in a moving
fluid. This law indicated that the force varies as the square of the sine of the
deflection angle—the famous Newtonian sine-squared law. Experimental inves-
tigations carried out by d’Alembert more than a half-century later indicated that
Newton’s sine-squared law was not very accurate, and, indeed, the pre-
ponderance of fluid-dynamic experience up to the present day confirms this
finding. The exception to this is the modern world of hypersonic aerodynamics.
Ironically, Newtonian theory, developed 300 years ago for the application to
low-speed fluid dynamics, has direct application to the prediction of pressure
distributions on hypersonic bodies. What is the application and why? The
answers are the subject of this section.

In propositions 34 and 35 of his Principia, first published in 1687, Newton
modeled a fluid flow as a stream of particles in rectilinear motion, much like a
stream of pellets from a shotgun blast, which, when striking a surface, would
lose all of their momentum normal to the surface but would move tangentially
to the surface without loss of tangential momentum. This picture is illustrated
in Fig. 3.2, which shows a stream with velocity V1 impacting on a surface of
area A inclined at the angle u to the freestream. From this figure, we see that

(Change in normal velocity) ¼ V1 sin u

{Mass flux incident on a surface area Ag ¼ r1V1A sin u

fTime rate of change of

momentum of this mass fluxg ¼ (r1V1A sin u)(V1 sin u)

¼ r1V2
1A sin2 u

Fig. 3.2 Schematic for Newtonian impact theory.

54 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



From Newton’s second law, the time rate of change of momentum is equal to
the force F exerted on the surface

F ¼ r1V2
1 A sin2 u

or

F

A
¼ r1V2

1 sin2 u (3:2)

The force F in Eq. (3.2) requires some interpretation. Newton assumed the stream
of particles to be rectilinear, that is, he assumed that the individual particles do
not interact with each other, and have no random motion. Because of this lack
of random motion, F in Eq. (3.2) is a force associated only with the directed
linear motion of the particles. On the other hand, modern science recognizes
that the static pressure of a gas or liquid is a result of the purely random
motion of the particles—motion not included in Newtonian theory. Hence, in
Eq. (3.2), F/A, which has the dimensions of pressure, must be interpreted as
the pressure difference above the freestream static pressure, namely,

F

A
¼ p� p1

where p is the surface pressure and p1 is the freestream static pressure. Hence,
from Eq. (3.2)

p� p1 ¼ r1V2
1sin2 u

or

p� p1

1
2
r1V 2

1

¼ 2 sin2 u

or

Cp ¼ 2 sin2 u (3:3)

Equation (3.3) is the famous Newtonian sine-squared law for pressure coefficient.
What does the Newtonian pressure coefficient have to do with hypersonic

flow? To answer this question, recall Fig. 1.13, which illustrated the shock
wave and thin shock layer on a 15-deg wedge at Mach 36. An elaboration of
this picture is given in Fig. 3.3, which shows the streamline pattern for the
same Mach 36 flow over the same wedge. Here, upstream of the shock wave,
we see straight, parallel streamlines in the horizontal freestream direction; down-
stream of the shock wave, the streamlines are also straight but parallel to the
wedge surface inclined at a 15-deg angle. Now imagine that you examine
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Fig. 3.3 from a distance, say, from across the room. Because the shock wave lies
so close to the surface at hypersonic speeds, Fig. 3.3 “looks” as if the incoming
flow is directly impinging on the wedge surface and then is running parallel to the
surface downstream—precisely the picture Newton drew in 1687. Therefore, the
geometric picture of hypersonic flowfields has some characteristics that closely
approximate Newtonian flow; Newton’s model had to wait for more than
two-and-a-half centuries before it came into own. By this reasoning, Eq. (3.3)
should approximate the surface-pressure coefficient in hypersonic flow. Indeed,
it has been used extensively for this purpose since the early 1950s.

In applying Eq. (3.3) to hypersonic bodies, u is taken as the local deflection
angle, that is, the angle between the tangent to the surface and the freestream.
Clearly, Newtonian theory is a local surface inclination method, where Cp

depends only on the local surface deflection angle; it does not depend on any
aspect of the surrounding flowfield. To be specific, consider Fig. 3.4a, which
shows an arbitrarily shaped two-dimensional body. Assume that we wish to esti-
mate the pressure at point P on the body surface. Draw a line tangent to the body
at point P; the angle between this line and the freestream is denoted by u. Hence,
from Newtonian theory the value of Cp at this point is given by Cp ¼ 2 sin2 u.
Now consider a three-dimensional body such as sketched in Fig. 3.4b. We

Fig. 3.3 Streamlines in the thin hypersonic shock layer.

Fig. 3.4 Geometry for Newtonian applications in a) two-dimensional flow and

b) three-dimensional flow.
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wish to estimate the pressure at an arbitrary point P on this body. Draw a unit
normal vector n to the surface at point P. Consider the freestream velocity as a
vector V1. Then, by definition of the vector dot product, and using a trigono-
metric identity, we obtain

V1 � n ¼ jV1j cosf ¼ jV1j sin
p

2
� f

� �
(3:4)

where f is the angle between n and V1. The vectors n and V1 define a plane, and
in that plane the plane the angle u ¼ p/2 2 f is the angle between a tangent to
the surface and the freestream direction. Thus, from Eq. (3.4)

V1 � n ¼ jV1j sin u

or

sin u ¼
V1

jV1j
� n (3:5)

The Newtonian pressure coefficient at point P on the three-dimensional body
is then Cp ¼ 2 sin2 u, where u is given by Eq. (3.5).

In the Newtonian model of fluid flow, the particles in the freestream impact
only on the frontal area of the body; they cannot curl around the body and
impact on the backsurface. Hence, for that portion of a body that is in the
“shadow” of the incident flow, such as the shaded region sketched in Fig. 3.5,
no impact pressure is felt. Hence, over this shadow region it is consistent to
assume that p ¼ p1, and therefore Cp ¼ 0, as indicated in Fig. 3.5.

It is instructive to examine Newtonian theory applied to a flat plate, as
sketched in Fig. 3.6. Here, a two-dimensional flat plat with chord length c is at

Fig. 3.5 Shadow region on the leeward side of a body, from Newtonian theory.
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an angle of attack a to the freestream. Because we are not including friction and
because surface pressure always acts normal to the surface, the resultant aero-
dynamic force is perpendicular to the plate, that is, in this case the normal
force N is the resultant aerodynamic force. (For an infinitely thin flat plate, this
is a general result that is not limited to Newtonian theory or even to hypersonic
flow). In turn, N is resolved into lift and drag, denoted by L and D respectively, as
shown in Fig. 3.6. According to Newtonian theory, the pressure coefficient on the
lower surface is

Cpl
¼ 2 sin2 a (3:6)

and that on the upper surface, which is in the shadow region, is

Cpu
¼ 0 (3:7)

Defining the normal-force coefficient as cn ¼ N/q1 S, where S ¼ (c)(1), we can
readily calculate cn by integrating the pressure coefficients over the lower and
upper surfaces (for example, see the derivation given in [5]).

cn ¼
1

c

ðc

0

(Cpl
� Cpu

) dx (3:8)

where x is the distance along the chord from the leading edge. Substituting
Eqs. (3.6) and (3.7) into (3.8), we obtain

cn ¼
1

c
(2 sin2a)c

Fig. 3.6 Flat plate at angle of attack. Illustration of aerodynamic forces.
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or

cn ¼ 2 sin2a (3:9)

From the geometry of Fig. 3.6, we see that the lift and drag coefficients,
defined as cl ¼ L/q1S and cd ¼ D/q1S, respectively, where S ¼ (c)(1), are
given by

cl ¼ cn cosa (3:10)

and

cd ¼ cn sina (3:11)

Substituting Eq. (3.9) into Eqs. (3.10) and (3.11), we obtain

cl ¼ 2 sin2a cosa (3:12)

and

cd ¼ 2 sin3a (3:13)

Finally, from the geometry of Fig. 3.6, the lift-to-drag ratio is given by

L

D
¼ cota (3:14)

[Note that Eq. (3.14) is a general result for inviscid flow over a flat plate. For
such flows, the resultant aerodynamic force is the normal force N. From the
geometry shown in Fig. 3.6, the resultant aerodynamic force makes the
angle a with respect to lift, and clearly, from the right triangle between L,
D, and N, we have L/D ¼ cot a. Hence, Eq. (3.14) is not limited to just
Newtonian theory.]

The results just obtained above for the application of Newtonian theory to
an infinitely thin flat plate are plotted in Fig. 3.7. Here L/D, cl, and cd are
plotted vs angle of attack a. From this figure, note the following aspects:

1) The value of L/D increases monotonically as a is decreased. Indeed,
L/D! 1 as a! 0. However, this is misleading; when skin friction is
added to this picture, D becomes finite at a ¼ 0, and then L/D! 0 as
a! 0.

2) The lift curve peaks at about a � 55 deg. (To be exact it can be
shown from Newtonian theory that maximum cl occurs at a ¼ 54.7 deg;
the proof of this is left as a homework problem.) It is interesting to note
that a � 55 deg for maximum lift is fairly realistic; the maximum lift co-
efficient for many practical hypersonic vehicles occurs at angles of attack
in this neighborhood.
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3) Examine the lift curve at low angle of attack, say, in the range of a from 0
to 15 deg. Note that the variation of cl with a is very nonlinear. This is in direct
contrast to the familiar result for subsonic and supersonic flow, where for thin
bodies at small a the lift curve is a linear function of a. (Recall, for example,
that the theoretical lift slope from incompressible thin airfoil theory is 2p per
radian). Hence, the nonlinear lift curve shown in Fig. 3.7 is a graphic demon-
stration of the nonlinear nature of hypersonic flow.

Consider two other basic aerodynamic bodies: the circular cylinder of infinite
span and the sphere. Newtonian theory can be applied to estimate the hypersonic
drag coefficients for these shapes; the results are as follows.

1) Circular cylinder of infinite span:

cd ¼
D

q1S

S ¼ 2R

Fig. 3.7 Newtonian results for a flat plate.

60 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



where R ¼ radius of cylinder,

cd ¼
4
3

(from Newtonian theory)

2) Sphere:

CD ¼
D

q1S

S ¼ pR2

where R ¼ radius of sphere,

CD ¼ 1 (from Newtonian theory)

The derivations of these drag-coefficient values are left for homework problems.
The preceding results from Newtonian theory do not explicitly depend on

Mach number. Of course, they implicitly assume that M1 is high enough for
hypersonic flow to prevail; outside of that, the precise value of M1 does not
enter the calculations. This is compatible with the Mach-number independence
principle, to be discussed in Chapter 4. In short, this principle states that certain
aerodynamic quantities become relatively independent of Mach number if M1 is
made sufficiently large. Newtonian results are the epitome of this principle.

3.3 Modified Newtonian Law

Lester Lees [8] proposed a modification to Newtonian theory, writing
Eq. (3.3) as

Cp ¼ Cpmax
sin2 u (3:15)

where Cpmax
is the maximum value of the pressure coefficient, evaluated at a

stagnation point behind a normal shock wave, that is,

Cpmax
¼

pO2
� p1

1
2
r1V 2

1

(3:16)

where pO2
is the total pressure behind a normal shock wave at the freestream

Mach number. From exact normal shock-wave theory, the Rayleigh pitot tube
formula gives (see [5])

pO2

p1

¼
(gþ 1)2M2

1

4gM2
1 � 2(g� 1)

� �g=(g�1)
1� gþ 2gM2

1

gþ 1

� �
(3:17)

Noting that 1
2
r1V2

1 ¼ (g/2)p1 M2
1, Eq. (3.16) becomes

C pmax
¼

2

gM2
1

pO2

p1

� 1

� �
(3:18)
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Combining Eqs. (3.17) and (3.18), we obtain

C pmax
¼

2

gM2
1

(gþ 1)2M2
1

4gM2
1 � 2(g� 1)

� �g=(g�1)
1� gþ 2gM2

1

gþ 1

� �
� 1

( )
(3:19)

This relation is plotted in Fig. 3.8. Note that, in the limit as M! 1, we have

C pmax
!

(gþ 1)2

4g

� �g(g�1)
4

gþ 1

� �

! 1:839 for g ¼ 1:4

! 2:0 for g ¼ 1

Equation (3.15), with Cpmax
given by Eq. (3.19), is called the modified Newtonian

law. Note the following:
1) The modified Newtonian law is no longer Mach-number independent. The

effect of a finite Mach number enters through Eq. (3.19).
2) As both M1! 1 and g! 1, Eqs. (3.15) and (3.19) yield Cp ¼ 2 sin2 u.

That is, the straight Newtonian law is recovered in the limit as M1! 1 and
g! 1.

For the prediction of pressure distributions over blunt-nosed bodies, modified
Newtonian, Eq. (3.15), is considerably more accurate than the straight
Newtonian, Eq. (3.3). This is illustrated in Fig. 3.9, which shows the pressure dis-
tribution over a paraboloid at Mach 8. The solid line is an exact finite-difference

Fig. 3.8 Variation of stagnation-pressure coefficient with M¥ and g.
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solution of the blunt-body flowfield (to be discussed in Chapter 5); the solid
symbols are the modified Newtonian results from Eqs. (3.15) and (3.19). Note
the excellent agreement, particularly over the forward portion of the nose. The
dashed line is the straight Newtonian result from Eq. (3.3); it lies 9% above the
exact result. The inspiration for Lester Lee’s modification to Newtonian theory
appears obvious when examining Fig. 3.9. Clearly, from the proper physics of
the flow, the pressure at the stagnation point on the body is equal to the stagnation
pressure behind a normal shock wave, that is, the pO2

given by Eq. (3.17); this
yields the exact pressure coefficient at the stagnation point, given by Eq.
(3.19). Therefore, it is rational to simply replace the coefficient 2 in Eq. (3.3)
with the value Cpmax

, as shown in Eq. (3.15). This forces Newtonian theory to
be exact at the stagnation point, and as can be seen in Fig. 3.9, the variation of
Cp away from the stagnation point closely follows a sine-squared behavior.

3.4 Centrifugal Force Corrections to Newtonian Theory

In the derivation of the straight Newtonian law, Eq. (3.3), we considered
flow over a flat surface, such as the model sketched in Fig. 3.1. However, we
proceeded to apply Eq. (3.3) to curved surfaces, such as in Figs. 3.4, 3.5, and
3.9. Is this theoretically consistent? The answer is no; for flow over a curved
surface, there is a centrifugal force acting on the fluid elements, which will
affect the pressure on the surface. For an application of Newtonian theory to
curved surfaces that is totally consistent with theoretical mechanics, we must
modify the discussion in Sec. 3.2 to take into account the centrifugal force
effects. This is the purpose of the present section. Moreover, the results of this
section are needed to support the discussion in the next section on the real
meaning of Newtonian theory.

Fig. 3.9 Surface-pressure distribution over a paraboloid at M¥ 5 8.0; pO2
is the

total pressure behind a normal shock wave at M¥ 5 8.0.
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To physically understand the nature of centrifugal force on a flowfield,
consider a fluid element moving at velocity V along a curved streamline with
radius of curvature R, as sketched in Fig. 3.10. The fluid element is experiencing
a radial acceleration V2/R with an attendant centrifugal force in the radial
direction, as also shown in Fig. 3.10. To balance this centrifugal force and
keep the fluid element moving along the streamline, the pressure pþ dp on the
top surface of the element must be larger than the pressure p on the bottom
surface, that is, there must be a positive pressure gradient in the radial direction.
One could then theorize that, in the flow over a convex surface, the pressure
would decrease in a normal direction toward the surface. This is a general
fluid dynamic trend, not just limited to Newtonian theory. However, it is
especially true for the mechanics associated with the Newtonian model. For
flow over a convex surface, we should expect the Newtonian pressure to be
decreased as a result of the centrifugal effect. This is derived as follows.

Consider Fig. 3.11, which illustrates the Newtonian flow over a curved
surface. Consistent with the Newtonian model, all particles that impact the
surface subsequently move tangentially over the surface in an infinitely thin
layer. For the time being, assume this layer to have small thickness Dn; later
we will let Dn! 0 consistent with the Newtonian approximation. Therefore,
in Fig. 3.11 we are considering a thin layer of flow over the body, bounded by
the dashed line and the body itself. (For clarity of presentation, the thickness
of this layer is greatly magnified in Fig. 3.11.) Consider point i on the body
surface. At point i we wish to calculate the pressure pi. Through point i, consider

Fig. 3.10 Centrifugal force on a fluid element moving along a curved streamline.
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a streamline coordinate system, where s and n are coordinates locally tangential
and perpendicular to the streamline. The radius of curvature of the streamline is
R. The layer of flow over the body is so thin that we assume R is the same for all
of the streamlines crossing the coordinate n drawn from point i over the distance
Dn. As a result of this assumption, because the surface at point i is at the angle ui

with respect to the freestream, then the angle at point 2 made by the outer edge of
the layer (dashed line) with respect to the freestream is also ui. Now consider a
streamtube within the layer, as shown by the shaded region in Fig. 3.11. In the
freestream ahead of the layer, the height of this streamtube is dy, where y is
the coordinate perpendicular to the freestream, and the velocity is V1. Immedi-
ately upon entering the layer, the flow direction is assumed to be u, the local
deflection angle of the body at that location, and the magnitude of the velocity
is V1 cos u—all consistent with the Newtonian model. Where the streamtube
crosses the normal coordinate n drawn through point i, the thickness of the
streamtube is dn, and the velocity is V. Concentrate on this part of the streamtube,
that is, where it crosses n. At this location, Newton’s second law written in
streamline coordinates for the motion of a fluid element is, in the normal direction
(for example, see [9]),

@p

@n
¼

rV2

R
(3:20)

Equation (3.20) states that the centrifugal force per unit volume of a fluid element
rV2/R is exactly balanced by the normal pressure gradient @p/@n. Integrating

Fig. 3.11 Shock-layer model for centrifugal force corrections to Newtonian theory.
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Eq. (3.20) across the layer from point i to point 2, we have

ðp
2

pi

dp ¼

ðDn

0

rV2

R
dn (3:21)

Assuming two-dimensional flow, the constant mass flow through the shaded
streamtube dictates that

r1V1 dy ¼ pV dn (3:22)

Substituting Eq. (3.22) into (3.21), we obtain

p2 � pi ¼

ðyiþDn cos ui

0

r1V1

R
V dy (3:23)

where the direction of integration now becomes the vertical coordinate y. Note
that the vertical coordinates of points i and 2 are yi and yiþ Dn cos ui, respect-
ively. Recall that dy in Eqs. (3.22) and (3.23) is the incremental height of the
streamtube measured in the freestream and that all of the mass flow through
the section of the layer of thickness Dn above point i originates in the total ver-
tical extent of the freestream from the bottom line up to point 2. Hence, in Eq.
(3.23) the limits of integration are taken from y ¼ 0 to y ¼ yiþ Dn cos ui.
Making the assumption of an infinitesimally thin layer, we let Dn! 0 or,
more correctly, yi� Dn cos ui. In this limit, Eq. (3.23) becomes

p2 � pi ¼

ðyi

0

r1V1

R
V dy (3:24)

We now make another assumption consistent with the Newtonian model.
Because Newtonian theory assumes inelastic collisions of the particles with the
surface wherein all of the normal momentum is lost but the tangential momentum
is preserved, it is consistent to assume that the velocity of any given particle after
collision is constant. Hence, in Fig. 3.11, we assume that the flow velocity along
the shaded streamtube inside the layer is constant, that is, V ¼ V1 cos u along the
streamtube, including the section above point i. With this, and recalling that R is
assumed constant for all streamlines crossing n above point i, Eq. (3.24) becomes

p2 � pi ¼
r1V2

1

R

ðyi

0

cos u dy (3:25)

Recall from the definition of radius of curvature that, at point i,

R ¼ �
1

(du=ds)i

¼ �
1

(du=dy)i sin ui

(3:26)
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Combining Eqs. (3.25) and (3.26) and rearranging, we have

pi ¼ p2 þ r1V2
1

du

dy

� �
i

sin ui

ðyi

0

cos u dy (3:27)

Subtracting p1 from both sides of Eq. (3.27) and dividing by q1, we obtain the
pressure coefficient

C pi
¼ C p2

þ 2
du

dy

� �
i

sin ui

ðyi

0

cos u dy (3:28)

Finally, at point 2 the flow is just entering the layer and is being deflected through
the angle ui; there is no centrifugal effect at this point, and hence from Newtonian
theory the pressure coefficient at point 2 must be interpreted as the straight
Newtonian result given by Eq. (3.3), namely, 2 sin2 ui. With this, Eq. (3.28) is
written as

Cpi
¼ 2 sin2 ui þ 2

du

dy

� �
i

sin ui

ðyi

0

cos u dy (3:29)

Equation (3.29) is the Newtonian pressure coefficient at point i on a curved
two-dimensional surface taking into account the centrifugal force correction.
The first term on the right-hand side is the straight Newtonian result; the
second term is the theoretically consistent correction for centrifugal effects. An
analogous equation for axisymmetric bodies is

Cpi
¼ 2 sin2 ui þ 2

du

dy

� �
i

sin ui

yi

ðyi

0

y cos u dy (3:30)

Equation (3.30) can be written in terms of the local cross-sectional area A ¼ py2.

C pi
¼ 2 sin2 ui þ 2

du

dA

� �
i

sin ui

ðAi

0

cos u dA (3:31)

The derivations of Eqs. (3.30) and (3.31) are left as homework problems.
The results embodied in Eqs. (3.29–3.31) were first obtained by Adolf

Busemann in 1933 [10], with analogous approaches given in [11] and [12]. For
this reason, Newtonian theory as modified for centrifugal force effects is
frequently called Newtonian–Busemann theory.

Note from Eqs. (3.29–3.31) that Newtonian theory with the centrifugal
modification is not totally a local surface inclination result. The value of Cpi

depends not only on the local inclination angle ui, but also on the shape of the
body upstream of point i through the presence of the integral terms. In some
sense, this is compatible with the true physical nature of steady supersonic and
hypersonic flows where conditions at a given point are influenced by pressure
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waves from the upstream region but not from the downstream region. (Recall
that information cannot propagate upstream in steady supersonic flow.)
However, do not be misled; this aspect of Newtonian–Busemann theory has
nothing to do with the true physical picture of the propagation of information
via pressure waves—indeed, such propagation is not a part of the Newtonian
model. Rather, the integral terms in Eqs. (3.29–3.31) are simply expressions
associated with the mass flow through the layer immediately above point i in
Fig. 3.11. This mass flow depends on the velocity profile along n, V ¼ V(n). In
the Newtonian model shown in Fig. 3.11, recall that we assumed that the flow
velocity is constant along a streamline inside the layer, and hence the value of
V at a given n depends on the location (hence the local value of u) where the
streamline first enters the layer. This is how the dependence of Cpi on the
shape of the body upstream of point i enters the formulation.

Equations (3.29) and (3.30) take on a particularly simple form for slender
bodies, where u is small. For small u,

sin ui ! uiðyi

0

cos u dy! yi

Also, letting ds be an incremental length along the surface, dy ¼ sin u ds, and
hence sin ui(du/dy)i ¼ (du/ds)i ¼ ki, where ki is the curvature of the surface
at point i. Thus, Eqs. (3.29) and (3.30) become (dropping the subscript)

Cp ¼ 2(u2 þ k y): for slender 2-D bodies (3:32a)

Cp ¼ 2u2 þ k y: for slender bodies of revolution (3:32b)

For flow over a blunt body, the centrifugal correction actually makes things
worse. For example, Fig. 3.12 shows predictions for the pressure coefficient
over a circular cylinder based on all three types of Newtonian-like flow:
Newtonian, modified Newtonian, and Newtonian–Busemann. These results are
compared with an exact numerical calculation carried out by Van Dyke for
M1 ¼ 1 (see [14]). Note from Fig. 3.12 that Newtonian theory gives the
correct qualitative variation, but is off by a constant percentage, and that modified
Newtonian is quite accurate. However, the Newtonian–Busemann results are
neither qualitatively nor quantitatively correct. A similar trend occurs for
slender-body cases as shown in Fig. 3.13. Here, the pressure distribution over
a 10% thick biconvex airfoil is predicted by both Newtonian and Newtonian–
Busemann theories and compared with exact numerical results from the
method of characteristics. For g ¼ 1.4, the Newtonian–Busemann is again
worse than straight Newtonian. In Fig. 3.13, the method-of-characteristic
results are obtained from [15], and the Newtonian results from [13] and [16].
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In light of the results shown in Figs. 3.12 and 3.13, we conclude that the
centrifugal force correction to Newtonian theory, although correct from the
point or view of theoretical mechanics, is simply not valid for practical appli-
cations. For this reason, the centrifugal force corrections are rarely, if ever,
seen in contemporary applications of Newtonian theory for hypersonic vehicle

Fig. 3.12 Surface-pressure distributions for flow past a circular cylinder: M¥ 5 ¥
and g 5 1.4 (from [13]).

Fig. 3.13 Surface-pressure distribution over a 10% thick biconvex airfoil. Shape of

the airfoil is shown in Fig. 3.14: M¥ 5 ¥, and g 5 1.4 (from [15]).
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design. Therefore, why have we spent an entire section of this book discussing
such corrections? Is it only an academic exercise, at best? The answer is—not
quite. This is the subject of the next section.

3.5 Newtonian Theory—What It Really Means

In Secs. 3.2–3.4, the theoretical basis of Newtonian theory was developed,
including the centrifugal force effects. Given the Newtonian flow model,
Eq. (3.3) for a flat surface and Eqs. (3.29) and (3.30) for curved surfaces are
precise results, obtained by the rigorous application of theoretical mechanics to
the postulated model. On the other hand, when we apply Newtonian theory to
practical hypersonic flow problems in air we have seen in Secs. 3.3 and 3.4 that
the best agreement with exact results is obtained without the centrifugal force cor-
rections, which at first glance appears theoretically inconsistent. Indeed, straight
Newtonian theory [Eq. (3.3), or Lee’s modification given by Eq. (3.15)] frequently
gives very acceptable results for pressure distributions over hypersonic bodies in
air, whether or not these bodies have straight or curved surfaces. Therefore, is
Newtonian theory just an approximation that fortuitously gives reasonable
results for hypersonic flow? Is the frequently obtained good agreement between
Newtonian and exact results just a fluke? The answer is no—Newtonian theory
has true physical significance if, in addition to considering the limit of
M1! 1, we also consider the limit of g! 1.0. Let us examine this in more
detail.

Temporarily discard any thoughts of Newtonian theory, and simply recall the
exact oblique shock relation for Cp as given by Eq. (2.14), repeated next (with
freestream conditions now denoted by a subscript 1 rather than a subscript 1,
as used in Chapter 2):

Cp ¼
4

gþ 1
sin2 b�

1

M 2
1

� �
(2:14)

Equation (2.15) gave the limiting value of Cp as M1! 1 repeated here.
As M1 ! 1:

Cp !
4

gþ 1
sin2 b (2:15)

Now take the additional limit of g! 1.0. From Eq. (2.15), in both limits as
M1! 1 and g! 1.0, we have

Cp ! 2 sin2 b (3:33)

Equation (3.33) is a result from exact oblique shock theory; it has nothing to do
with Newtonian theory (as yet). Keep in mind that b in Eq. (3.33) is the wave
angle, not the deflection angle.
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Let us go further. Consider the exact oblique shock relation for r2/r1,
given by Eq. (2.3) repeated here (again with subscript 1 replacing the
subscript 1):

r2

r1

¼
(gþ 1)M 2

1 sin2 b

(g� 1)M 2
1 sin2 bþ 2

(2:3)

Equation (2.4) was obtained as the limit where M1! 1, namely
As M1! 1:

r2

r1

!
gþ 1

g� 1
(2:4)

In the additional limit as g! 1, we find that
As g! 1 and M1 ! 1:

r2

r1

! 1 (3:34)

That is, the density behind the shock is infinitely large. In turn, mass flow con-
sideration then dictate that the shock wave is coincident with the body surface.
This is further substantiated by Eq. (2.19), which is good for M1! 1 and
small deflection angles

b

u
!

gþ 1

2
(2:19)

In the additional limit as g! 1, we have
As g! 1 and M1! 1 and u and b small:

b ¼ u

That is, the shock wave lies on the body. In light of this result, Eq. (3.33) is
written as

Cp ¼ 2 sin2 u (3:35)

Examine Eq. (3.35). It is a result from exact oblique shock theory, taken in the
combined limit of M1! 1 and g! 1. However, it is also precisely the
Newtonian result given by Eq. (3.3). Therefore, we make the following
conclusion. The closer the actual hypersonic flow problem is to the limits
M1! 1 and g! 1, the closer it should be described physically by Newtonian
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flow. Also in this combined limit, the centrifugal correction becomes physically
appropriate, and the Newtonian–Busemann theory gives better results than
straight Newtonian. For example, Fig. 3.14 illustrates the pressure coefficient
over a 10% thick biconvex airfoil at M1 ¼ 1; this is the same type of compari-
son made in Fig. 3.13. However, Fig. 3.14 is for g ¼ 1.05, and clearly the
Newtonian–Busemann theory gives much closer agreement with the exact
method of characteristics than does the straight Newtonian. This is in direct
contrast with the results for g ¼ 1.4, shown in Fig. 3.13. Therefore, we conclude
that the application of Newtonian theory to hypersonic flow has some direct
theoretical substance, becoming more accurate as g! 1. Furthermore, for
hypersonic flows in air with g ¼ 1.4, we would not expect the full Newtonian
theory (properly including centrifugal effects) to be accurate, and, as we have
seen in Figs. 3.12 and 3.13, it is not. On the other hand, for air with g ¼ 1.4,
agreement between exact results and the straight Newtonian theory (without
centrifugal effects) does indeed appear to be rather fortuitous.

We might ask the rather academic question: if in the limit of M1! 1 and
g ! 1, the shock-layer thickness goes to zero, then how can there be any
centrifugal force felt over this zero thickness? The answer is, of course, that in
the same limit the density becomes infinite, and although the shock layer
approaches zero thickness, the infinite density felt over this zero thickness is
an indeterminate form that yields a finite centrifugal force.

As a final note on our discussion of Newtonian theory, consider Fig. 3.15.
Here, the pressure coefficients for a 15-deg half-angle wedge and a 15-deg half-
angle cone are plotted vs freestream Mach number for g ¼ 1.4. The exact wedge
results are obtained from oblique shock theory, and the exact cone results
are obtained from the solution of the classical Taylor–Maccoll equation (for
example, see [4]) as tabulated in [17] and [18]. Both sets of results are compared
with Newtonian theory, Cp ¼ 2 sin2 u, shown as the dashed line in Fig. 3.14. This
comparison demonstrates two general aspects of Newtonian results:

1) The accuracy of Newtonian results results improves as M1 increases. This
is to be expected from our preceding discussion. Note from Fig. 3.15 that below

Fig. 3.14 Same as Fig. 3.13, except with g 5 1.05 (from [15]).
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M1 ¼ 5 the Newtonian results are not even close, but the comparison becomes
much closer as M1 increases above 5.

2) Newtonian theory is usually more accurate for three-dimensional bodies
(e.g., the cone) than for two-dimensional bodies (e.g., the wedge). This is
clearly evident in Fig. 3.15, where the Newtonian result is much closer to the
cone results than to the wedge results.

These two trends are general conclusions that seem to apply to Newtonian results
for hypersonic bodies in air. Furthermore, we are tempted to say that Newtonian
results for blunt bodies should use the modified Newtonian formula [Eq. (3.15)],
and that such results usually produce acceptable accuracy, as illustrated in Figs.
3.9 and 3.12. In contrast, we suggest that Newtonian results for slender bodies
should use the straight Newtonian law [Eq. (3.3)], and we observe that its
accuracy might not be totally acceptable in some cases. For example, for
Fig. 3.15, at M1 ¼ 20, the percentage error in using Newtonian results is 19
and 5% for the wedge and cone, respectively—not as accurate as might be
required for some applications. If the modified Newtonian formula [Eq. (3.15)]
had been used in Fig. 3.15, the errors would be even larger because Cpmax , 2.
Therefore, we conclude that although Newtonian theory is very useful because
of its simplicity, in some applications its accuracy leaves something to be desired.

Fig. 3.15 Comparison between Newtonian and exact results for the pressure

coefficient on a sharp wedge and a sharp cone.
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As a parenthetical comment, Fig. 3.15 illustrates another trend that is charac-
teristic of hypersonic flow. Note that, at low M1 the exact values of Cp for both
the wedge and cone decrease rapidly with increasing Mach number. However,
at higher values of M1 the pressure coefficient for each shape tends to seek a
plateau, approaching a value that becomes rather independent of M1 at high
Mach number. This is an example of the Mach-number independence
principle, to be discussed in Chapter 4. There we will see that a number
of properties in hypersonic flow, including Cp, lift coefficient, wave-drag
coefficient, and moment coefficient become relatively independent of M1 at
high Mach number.

3.5.1 Worked Example: Comparison of Newtonian with

Exact Theory

The purpose of this worked example is to provide even better insight into the
advantages and disadvantages of Newtonian theory, especially as applied to
slender bodies at small angles of attack. Vehicles designed for efficient hyper-
sonic flight for sustained periods of time in the atmosphere will most likely be
slender shapes at small angles of attack. Is Newtonian theory a reasonable
method for estimating the pressure distribution on such vehicles? Let us take a
look by considering the most slender of vehicles, namely, a thin flat plate, at a
moderate angle of attack.

Consider an infinitely thin flat plate at an angle of attack of 15 deg in a Mach 8
flow. Assume inviscid flow. Calculate the pressure coefficients on the top and
bottom surface of the plate, the lift and drag coefficients, and the lift-to-drag
ratio using a) exact shock-wave and expansion-wave theory and b) Newtonian
theory. Compare the results.

Solution: exact theory. Consider the flat plate shown in Fig. 3.16. The flow
over the top goes through an expansion wave, and the flow over the bottom goes
through an oblique shock wave. First, consider the flow through the expansion
wave. Using the terminology in Fig. 2.4, M1 ¼ 8, and from Eq. (2.32), the
Prandtl–Meyer function is n1 ¼ 95.62 deg. From Eq. (2.31),

n2 ¼ uþ n1 ¼ 15 degþ 95:62 deg ¼ 110:62 deg

With n2 ¼ 110.62 deg, Eq. (2.32) yields for M2,

M2 ¼ 14:32

The flow through an expansion wave is isentropic; hence, the total pressure is
constant through the wave. Let po denote the total pressure. Because the total
pressure is constant,

po2
¼ po1

74 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



and we can write the static-pressure ratio across the expansion wave as

p2

p1

¼
po1
= p1

po2
= p2

For a calorically perfect gas, the ratio of total to static pressure at a point in
the flow is a function of the local Mach number at that point (for example, see
[4] and [5]), given by

po

p
¼ 1þ

g� 1

2
M2

� � g

g�1

Hence,

p2

p1

¼
po1
=p

1

po2
=p

2

¼
1þ (g� 1=2)M 2

1

1þ (g� 1=2)M 2
2

� � g

g�1

With M1 ¼ 8 and M2 ¼ 14.32, this gives

p2

p1

¼ 0:0203

The pressure coefficient is given by Eq. (2.13)

C p
2
¼

2

gM2
1

p
2

p
1

� 1

� �

Fig. 3.16 Wave system on a flat plate in hypersonic flow.
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Hence,

C p2
¼

2

(1:4)(8)2
(0:0203� 1) ¼ �0:0219

To obtain the pressure coefficient on the bottom surface from oblique shock
theory, Eq. (2.16) with u ¼ 15 deg and M1 ¼ 8 yields a shock-wave angle of
b ¼ 21 deg. From Eq. (2.1) with b ¼ 21 deg and M1 ¼ 8, and denoting the
pressure behind the shock as p3 consistent with Fig. 3.16, we have

p3

p1

¼ 9:443

Hence, the pressure coefficient on the bottom surface is

C p3
¼

2

gM 2
1

p3

p1

� 1

� �

C p3
¼

2

(1:4)(8)2
(9:443� 1) ¼ 0:1885

From Eq. (3.8), the normal-force coefficient is simply

cn ¼ C p3
� C p2

¼ 0:1885� (�0:0219) ¼ 0:2104

From Eq. (3.10)

cl ¼ cn cosa ¼ 0:2104 cos 15 deg ¼ 0:2032

and from Eq. (3.11),

cd ¼ cn sina ¼ 0:2104 cos 15 deg ¼ 0:0545

Finally,

L

D
¼

cl

cd

¼
0:2032

0:0545
¼ 3:73

Note: For more details on how to make these exact shock-wave and expansion-
wave calculations, for example, see [4] and [5]. As a case in point, in the pre-
ceding calculations, Eq. (2.16) was used to find the shock-wave angle, b ¼ 21
deg. To do this arithmetically, Eq. (2.16) would have to be solved by trial and
error. In reality, the value b ¼ 21 deg was obtained from a graphical plot of
Eq. (2.16) called the u-b-M curves, as explained in [4] and [5].
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Solution: Newtonian theory. From Eq. (3.7) for the upper surface of
the plate,

Cp2
¼ 0

From Eq. (3.6) for the lower surface of the plate,

C p3
¼ 2 sin2a ¼ 2 sin215 deg ¼ 0:134

From Eq. (3.12)

cl ¼ 2 sin2 a cosa ¼ 2(sin215 deg)(cos 15 deg) ¼ 0:1294

and from Eq. (3.13),

cd ¼ 2 sin3a ¼ 2 sin315 deg ¼ 0:03468

Finally,

L

D
¼

cl

cd

¼
0:1294

0:03468
¼ 3:73

3.5.2 Commentary

The preceding example provides some important comparisons between exact
theory and Newtonian theory. First, compare the work effort to obtain the
answers. Going through the exact calculations was much more work than using
the simple Newtonian theory. Indeed, the Newtonian calculations were essen-
tially “one-liners” to get the answers—nothing could be more simple. This com-
parison highlights the value of Newtonian theory—absolute simplicity. But this
simplicity is obtained at a cost, namely, a loss of accuracy. For example, for the
pressure coefficient on the bottom surface of the plate, we have the following.

Exact:

C p3
¼ 0:1885

Newtonian:

C p3
¼ 0:134

Newtonian theory underpredicts the pressure coefficient on the lower surface by
29%. For the top surface of the plate, we have the following.

Exact:

C p2
¼ �0:0219

LOCAL SURFACE INCLINATION METHODS 77



Newtonian:

C p2
¼ 0

Newtonian theory overpredicts the pressure coefficient on the upper surface by a
100% of the exact value. For the lift coefficient, we have the following.

Exact:

cl ¼ 0:2032

Newtonian:

cl ¼ 0:1294

For the drag coefficient, we have the following.
Exact:

cd ¼ 0:0545

Newtonian:

cd ¼ 0:03468

The Newtonian results underpredict both cl and cd by 36%. However, the values
of L/D ratio compare exactly.

Exact:

L

D
¼ 3:73

Newtonian:

L

D
¼ 3:73

This is no surprise, for two reasons. First, the Newtonian values of cl and cd are
both underpredicted by the same percentage; hence, their ratio is not affected.
Second, the value of L/D for inviscid flow over a flat plate, no matter what
theory is used to obtain the pressures on the top and bottom surfaces, is simply
a matter of geometry as discussed earlier in conjunction with Eq. (3.14). From
this equation,

L

D
¼ cota ¼ cot 15 deg ¼ 3:73

A conclusion from the preceding example as well as from the comparison
shown in Fig. 3.15 is that Newtonian theory when applied to hypersonic
slender bodies at small to moderate angles of attack does not do a good job of
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estimating surface pressure or the resulting lift and wave drag. Newtonian theory
is much more applicable to hypersonic blunt bodies; the Newtonian pressure dis-
tribution around the nose of a blunt body is reasonably accurate as illustrated in
Fig. 3.9.

3.5.3 Lift-to-Drag Ratio for Hypersonic Bodies—Comment

The magnitude of the lift-to-drag ratio calculated in the preceding example
is important to note—it is very low in comparison to those values for a flat
plate in subsonic or even supersonic flow. Here is a harbinger of things to
come. Hypersonic flight vehicles suffer from characteristically low values of
L/D. This is not good news when designing hypersonic vehicles for sustained
flight in the atmosphere. The lift-to-drag ratio of a body is a direct measure of
its aerodynamic efficiency (for example, see [1]). For example, everything else
being equal, the higher is the value of L/D, the larger is the range of the
vehicle. The design of hypersonic vehicles with reasonable values of L/D is a
challenge and a quest, as will be discussed later in this book.

3.6 Tangent-Wedge Tangent-Cone Methods

Referring again to the road map given in Fig. 1.24, we remind ourselves
that we are discussing a class of hypersonic prediction methods based only
on a knowledge of the local surface inclination relative to the freestream. The
Newtonian theory discussed in Secs. 3.2–3.5 was one such example; the
tangent-wedge/tangent-cone methods presented in this section are two others.

Let us consider first the tangent-wedge method, applicable to two-dimensional
hypersonic shapes. Consider the two-dimensional body shown as the hatched
area in Fig. 3.17. Assume that the nose of the body is pointed and that the

Fig. 3.17 Illustration of the tangent-wedge method.
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local surface inclination angle u at all points along the surface is less than the
maximum deflection angle for the freestream Mach number. Consider point i
on the surface of the body; we wish to calculate the pressure at point i. The
local deflection angle at point i is ui. Imagine a line drawn tangent to the body
at point i; this line makes an angle ui with respect to the freestream and can be
imagined as the surface of an equivalent wedge with a half-angle of ui, as
shown by the dashed line in Fig. 3.17. The tangent-wedge approximation
assumes that the pressure at point i is the same as the surface pressure on the
equivalent wedge at the freestream Mach number M1, that is, pi is obtained
directly from the exact oblique shock relations for a deflection angle of ui and
a Mach number of M1.

The tangent-cone method for application to axisymmetric bodies is analogous
to the tangent-wedge method and is illustrated in Fig. 3.18. Consider point i on
the body: a line drawn tangent to this point makes the angle ui with respect
to the freestream. Shown as the dashed line in Fig. 3.18, this tangent line can
be imagined as the surface of an equivalent cone, with a semiangle of ui. The
tangent-cone approximation assumes that the pressure at point i is the same as
the surface pressure on the equivalent cone at a Mach number of M1, that is,
pi is obtained directly from the cone tables such as [17] and [18].

Both the tangent-wedge and tangent-cone methods are very straightforward.
However, they are approximate methods, not based on any theoretical grounds.
We cannot “derive” these methods from a model of the flow to which basic mech-
anical principles are applied, in contrast to the theoretical basis for Newtonian
flow. Nevertheless, the tangent-wedge and tangent-cone methods frequently
yield reasonable results at hypersonic speeds. Why? We can give an approximate,
“hand-waving” explanation, as follows. First, consider a line drawn perpendicu-
lar to the body surface at point i, across the shock layer as sketched in Fig. 3.17.
Note that the imaginary shock wave from the imaginary equivalent wedge
crosses this line below the point where the actual shock wave from the body

Fig. 3.18 Illustration of the tangent-cone method.
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crosses the line. The region around this line is isolated and magnified in Fig. 3.19.
Now consider the following fact.

Fact: In the hypersonic flow across an oblique shock wave on a slender body, the
y component of the flow velocity v is changed much more strongly than the x
component u.

This fact, which we will revisit several times in the following chapters, is proved
by a combination of Eqs. (2.7), (2.10), and (2.19), which yields in the limit of
M1! 1 (referring to the shock geometry shown in Fig. 2.2)

Du

V1

¼
V1 � u2

V1

!
gþ 1

2
u2 (3:36)

Dv

V1

¼
v2

V1

! u (3:37)

In Eq. (3.36), Du is the change in the x component of velocity across the oblique
shock, and in Eq. (3.37) Dv is the change in the y component of velocity. Clearly,
the change of the v velocity is considerably smaller (order of u2) than the change
of the u velocity (order of u). (Keep in mind that u is a small angle in radians.)
In turn, recalling Euler’s equation dp ¼ 2rVdV, this implies that the major
pressure gradients are normal to the flow. Referring to Fig. 3.19, the principal
change in pressure is therefore along the normal line iab; by comparison,

Fig. 3.19 Segment of a hypersonic shock layer, for use in partial justification of the

tangent-wedge method.
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changes in the flow direction are second order. Hence examining Fig. 3.19, the
surface pressure on the body at point i is dominated by the pressure behind the
shock at point a. Because of the centrifugal force effects, the pressure at point i,
pi, will be less than pa. Now, in the tangent-wedge method pi ¼ pb, where pb is the
pressure behind the imaginary wedge shock (at point b in Fig. 3.19). The pressure
pb is already less than pa because the imaginary wedge shock angle at point b is
less than the actual body-shock angle at point a (bbody . bwedge). Thus we see
that the wedge pressure pb is a reasonable approximation for the surface pressure
pi because in the real flow picture the higher pressure pa behind the body shock
is mitigated by centrifugal effects as the pressure is impressed from the shock to
the body at point i. The same reasoning holds for the tangent-cone method.

Results obtained with the tangent-cone method as applied to a pointed ogive
are shown in Fig. 3.20, taken from [19]. Here, the surface-pressure distribution is
plotted vs distance along the ogive. Four sets of results are presented, each for
a different value of K ¼ M1 (d/l), where d/l is the slenderness ratio of the
ogive. The solid line is an exact result obtained from the rotational method of
characteristics, and the dashed line is the tangent-cone result. Very reasonable
agreement is obtained, thus illustrating the usefulness of the tangent-cone
method, albeit its rather tenuous foundations. The same type of agreement
is typical of the tangent-wedge method. In Fig. 3.20, the parameter K ¼ M1

(d/l ) is called the hypersonic similarity parameter. Its appearance in Fig. 3.20
is simply a precursor to our discussion of hypersonic similarity in Chapter 4.

Fig. 3.20 Surface-pressure distributions for ogives of different slenderness ratio d/l

(from [19]).
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3.7 Shock-Expansion Method

Of the local surface inclination methods discussed so far, the Newtonian
method can be applied to a body surface of any inclination angle, whereas the
tangent-wedge/tangent-cone methods require a local surface angle less than
the shock detachment angle for the given freestream Mach number. This
is why Newtonian theory can be applied to blunt-nosed bodies, but the
tangent-wedge/tangent-cone methods are limited to sharp-nosed bodies with
attached shock waves. The method discussed in the present section—the shock-
expansion method—is in the latter category. It assumes a sharp-nosed body with
an attached shock wave. However, it has more theoretical justification than the
tangent-wedge/tangent-cone methods, as described next.

Consider the hypersonic flow over a sharp-nosed two-dimensional body with
an attached shock wave at the nose as sketched in Fig. 3.21. The deflection angle
at the nose is un. The essence of the shock-expansion theory is as follows:

1) Assume the nose is a wedge with semiangle un. Calculate Mn and pn behind
the oblique shock at the nose by means of exact oblique-shock theory.

2) Assume a local Prandtl–Meyer expansion along the surface downstream of
the nose. We wish to calculate the pressure at point i, pi. To do this, we must first
obtain the local Mach number at point i, Mi. This is obtained from the Prandtl–
Meyer function, assuming an expansion through the deflection angle Du ¼
un 2 ui.

Du ¼

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

g� 1

s
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1

gþ 1
(M 2

n � 1)

s
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� 1

gþ 1
(M2

i � 1)

s

� tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2

n � 1

q
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2

l � 1

q� �
(3:38)

Fig. 3.21 Illustration of the shock-expansion method.
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In Eq. (3.38), Mi is the only unknown; Mn is known from the preceding step 1, and
Du ¼ un � ui is a known geometric quantity. Of course, for air with g ¼ 1.4
tables for the Prandtl–Meyer function abound (for example, see [4]), and in
such a case the tables would be used to calculate Mi rather than attempting to
solve Eq. (3.38) implicitly for Mi.

3) Calculate pi from the isentropic flow relation

pi

pn

¼
1þ (g� 1)=2M 2

n

1þ (g� 1)=2M 2
i

� �g=(g�1)

(3:39)

(Again, for air with g ¼ 1.4, the isentropic flow tables, such as found in [4], can
be used to obtain pi in a more convenient manner.)

Results from the shock-expansion method, obtained from [20] for flow over a
10%-thick biconvex airfoil are shown in Fig. 3.22, as compared with the exact
method of characteristics. Excellent agreement is obtained. This is to be some-
what expected. After passing through the attached shock wave at the nose, the
actual flow does indeed expand around the body, and this expansion process is
approximated by the assumption of a local Prandtl–Meyer expansion. Why
this is not a precisely exact calculation is discussed two paragraphs below.

The shock-expansion method can also be applied to bodies of revolution. The
method is essentially the same as shown in Fig. 3.21, except now un is assumed to
be the semiangle of a cone, and Mn and pn at the nose are obtained from the exact
Taylor–Maccoll cone results. Then the Prandtl–Meyer expansion relations are
applied locally downstream of the nose. This implies that the flow downstream
of the nose is locally two dimensional, which assumes that the divergence of
streamlines in planes tangential to the surface. For bodies of revolution at zero
degree angle of attack, this condition is usually met. Results for the shock-
expansion method applied to ogives at zero angle of attack are shown in

Fig. 3.22 Surface-pressure distribution over the same 10%-thick airfoil as shown in

Fig. 3.14; comparison of the shock-expansion method with exact results from the

method of characteristics: M¥ 5 ¥ (from [20]).
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Fig. 3.23, obtained from [21]. The ogive has a slenderness ratio d/l ¼ 1/3. In
Fig. 3.23a, the results are for a supersonic Mach number M1 ¼ 2.73, whereas
in Fig. 3.23b, the results are for a slightly hypersonic case M1 ¼ 5.05. The
circles are experimental data, the solid line represents an exact result from the
method of characteristics, and the dashed line is from the shock-expansion
method. Note that, for the supersonic case the shock-expansion method yields
poor agreement; however, for the hypersonic case the shock-expansion method
is much closer to the hypersonic case, and the shock-expansion method is
much closer to the exact result. There is a reason for this, as explained in the
following.

Consider Fig. 3.24, which contains schematics of supersonic and hypersonic
flows over a pointed body with an attached shock wave. Downstream of the

Fig. 3.23 Pressure distribution over an ogive with d/l 5 1/3 at zero angle of attack

with g 5 1.4 (from [21]): a) supersonic case and b) hypersonic case.

Fig. 3.24 Schematic of shock-wave and Mach-wave patterns: a) supersonic and

b) hypersonic.
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shock wave, expansion waves are generated at the surface of the body and
propagate outward, eventually intersecting the bow shock wave. These expansion
waves reflect from the shock wave; the reflected waves propagate back to the
body surface, as shown by the dashed lines in Fig. 3.24. Shock-expansion
theory ignores the effect of these reflected waves on the body surface pressure.
Now consider just the supersonic case sketched in Fig. 3.24a. At supersonic
Mach numbers, the shock angles and the incident and reflected wave angles
are large. [The incident and reflected waves are essentially Mach waves with
the Mach angle m ¼ arcsin (1/M ), where M is the local Mach number; at low
Mach number, m is large.] As a result, as seen in Fig. 3.24a, the reflected
waves influence a considerable portion of the body surface, and this influence
is not taken into account by the shock-expansion method. In contrast, for the
hypersonic case shown in Fig. 3.24b, the shock and Mach angles are much
smaller, and the reflected waves propagate much further downstream before
they hit the body surface. As a result the reflected waves do not greatly influence
the surface pressure, especially on the forward portion of the body. Therefore, the
real hypersonic picture satisfies the assumption of shock-expansion theory more
closely than the supersonic picture, and it is no surprise that shock-expansion
theory yields better agreement at higher Mach numbers.

3.8 Summary and Comments

This chapter has dealt with hypersonic local surface inclination methods—
such methods predict the local surface pressure as a function of the local
surface inclination angle relative to the freestream direction u. The methods
discussed were 1) the straight Newtonian method, which yields

Cp ¼ 2 sin2 u (3:3)

2) the modified Newtonian method, which states

Cp ¼ C pmax
sin2 u (3:15)

3) the Newton–Busemann method, which takes into account the centrifugal force
correction. For a two-dimensional body, this result is

C pi
¼ 2 sin2 ui þ 2

du

dy

� �
i

sin ui

ðyi

0

cos u dy (3:29)

4) the tangent-wedge method, where the pressure at point i on a two-dimensional
body is assumed to be the same as a wedge with deflection angle ui; 5) the
tangent-cone method, where the pressure at point i on an axisymmetric body is
assumed to be the same as a cone with the semicone angle of ui; and 6) the shock-
expansion method, where the pressure distribution downstream of the attached
shock wave on a two- or three-dimensional body is assumed to be given by a
local Prandtl–Meyer expansion. It is not possible to state with any certainty
which of the preceding methods is the best for a given application. All of these
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methods have their strengths and weaknesses, and some intuitive logic is required
to choose one over the others for a given problem. For example, in the prediction
of the pressure distribution over a hypersonic airplane any distinguishable por-
tions of the fuselage might be treated with the tangent-cone method, whereas
the wings might be better treated with the tangent-wedge method. Of course,
for surfaces with large inclination angles (greater than the maximum deflection
angle for an oblique shock wave at the given M1) the Newtonian method is
appropriate. Within the confines of the Newtonian method itself, for blunt
surfaces, where u is very large, modified Newtonian is best, whereas straight
Newtonian usually yields better results for slender bodies. In both cases, for
g ¼ 1.4 the centrifugal force correction leads to poor results and should not be
used. (Keep in mind that although the centrifugal force correction is theoretically
consistent with mechanical principles, it is quantitatively correct only in the
combined limit of M1! 1 and g! 1.)

In regard to all of the local surface inclination methods discussed here, none of
the preceding judgments on accuracy and applicability are totally definitive, and
they all must be taken in the spirit of suggestions only. However, one definitive
statement can be made about all of these methods, namely, that they are straight-
forward and easy to apply. For this reason, they are popular design tools for
the investigation of large numbers of different hypersonic bodies. Indeed, all
of the local surface inclination methods discussed in this chapter are embodied
in an industry-standard computer program called the “Hypersonic Arbitrary
Body Program” originally prepared by Gentry [22], and for this reason frequently
referred to as the “Gentry program.” This program has been in wide use through-
out industry and government since the early 1970s. All of these methods
discussed in this chapter are options within the Gentry program, which can be
called at will for application to different portions of a hypersonic body. This
program, and modified versions of it, is widely used in the preliminary design
and analysis of hypersonic vehicles. It is mentioned here only to reinforce the
engineering practicality of the methods discussed in this chapter.

Design Example 3.1

This is the first of a number of design examples in this book. The main thrust
of this book is to present the fundamental aspects of hypersonic and high-
temperature gas dynamics. We will from time to time, however, seize the
moment to elaborate on the design applications of the fundamentals. This is
such a moment.

The Hypersonic Arbitrary Body program (HABP), an elaborate computer
program for predicting the surface-pressure, shear-stress, and heat-transfer distri-
butions over hypersonic bodies of arbitrary shape, as well as their lift, drag, and
moment coefficients, uses the local surface inclination methods discussed in this
chapter. In fact, HABP offers a choice of 17 different pressure-prediction
methods, but the primary ones of choice are Newtonian, modified Newtonian,
tangent wedge, tangent cone, and shock expansion—all discussed in this chapter.
The methods used for the prediction of shear stress and heat transfer are discussed
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in Chapter 6. The purpose of HABP is to provide an easy-to-use, fast, and reliable
hypersonic aerodynamic prediction code for use in the preliminary design of hyper-
sonic vehicles. Developed by the Douglas Aircraft Company in 1964, the code
was greatly expanded in 1973, and then further updated in 1980. As mentioned
earlier, this code is frequently referred to as the Gentry program after one of its
originators [22]. The HABP is still in use today as a preliminary design tool.

An interesting and completely independent evaluation of HABP was made by
Carren M. E. Fisher of British Aerospace P.L.C. In [225], Fisher presents calcu-
lations made with the Mark IV version of HABP for a variety of different vehicle
configurations for which experimental data exist. In HABP, the vehicle surface is
divided into a large number of flat surfaces (panels). For example, Fig. 3.25
shows the paneling used to represent the geometry of the space shuttle.
Knowing the freestream Mach number and the angle of inclination of each
panel relative to the freestream, a chosen local surface inclination method is
used to obtain the pressure coefficient on each panel. Table 3.1, from [225],
lists the available methods that can be chosen; there is a list for the windward
side of the vehicle and a separate list for the leeward side.

Consider the tangent ogive-cylinder boattail shape given at the top of
Fig. 3.26. Shown below the vehicle shape are results for the normal-force coeffi-
cient CN, center-of-pressure location Xcp, moment coefficient about the nose Cm,
and the axial-force coefficient CA, respectively, as a function of angle of attack
for a freestream Mach number of 4.63. The solid triangles are experimental
data from Landrum ([226]). These data are compared with results from HABP
using four different pressure-prediction methods labeled according to the num-
bering in Table 3.1. The curve labeled 1,1 (K ¼ 2.0) pertains to item 1, modified
Newtonian, for the windward side and item 1, Newtonian (i.e., Cp ¼ 0), on
the leeward side; K is the modified Newtonian correction factor, given by

Fig. 3.25 Panel distribution over the space shuttle for an HAPB calculation (from

Fisher [225]).
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Cp ¼ K sin2 u. Here, K ¼ 2.0; hence, Cp ¼ 2 sin2 u, which is really the straight
Newtonian results. The curve labeled 1,1 (K ¼ 1.81) is the same set of
methods except with a different value of K, where Cp ¼ 1.81 sin2 u. The curve
labeled 14, 1 uses the Dahlem–Buck empirical method (not described in this
chapter) for the windward side and the Newtonian (Cp ¼ 0) for the leeward
side. And finally the fourth curve uses 6,4, inclined cone, for both the windward
and leeward sides of the ogive portion of the vehicle, and 3,2 (K ¼ 1.81), tangent
wedge for the windward side and a combination of modified Newtonian with
K ¼ 1.81 and Prandtl–Meyer for the leeward side of the cylinder-boattail
portion. Comparing the results shown in Fig. 3.26, this fourth curve gives

Table 3.1 List of options in HAPBa

Method no.

Impact method

(applied to

windward side

of vehicle)

Shadow method

(applied to

leeward side

of vehicle)

1 Modified Newtonian Newtonian (i.e., Cp ¼ 0)

2 Modified Newtonian and

Prandtl–Meyer

Modified Newtonian and

Prandtl–Meyer

3 Tangent-wedge

(Using oblique shock)

Prandtl–Meyer expansion

4 Tangent-wedge empirical Inclined-cone

5 Tanget-cone Van Dyke unified

6 Inclined-cone High Mach number base

pressure (Cp ¼ 21/M2)

7 Van Dyke unified Shock-expansion

(using Strip theory)—

Prandtl–Meyer

expansion from freestream

on first element of

each stream-wise strip

8 Blunt-body skin-friction

Shear-force

Input pressure coefficient

9 Shock-expansion

(using Strip theory)

Free molecular flow

10 Free-molecular flow Mirror Dahlem–Buck

11 Input pressure coefficient ACM Empirical data

12 Hankey flat-surface

Empirical

OSU Blunt body empirical

13 Delta-wing empirical

14 Dahlem–Buck empirical

15 Blast-wave pressure increments

16 Modified tangent cone

17 OSU Blunt body empirical

aImpact methods 16 and 17 and shadow methods 10, 11, and 12 are recent updates to S/HABP.
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Fig. 3.26 Aerodynamic coefficients for a tangent ogive-cylinder boat-tail

configuration, where M¥ 5 4.63 (from Fisher [225]).
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the best agreement with experiment, illustrating the value of mixing and
matching various options available in HABP for different parts of the vehicle.
The normal-force coefficient CN is accurately predicted, and the location of the
center-of-pressure Xcp and the moment coefficient about the nose Cm are reason-
ably predicted. All of the pressure prediction methods underpredict the
axial-force coefficient CA because skin friction is not included in these particular
results. Also, keep in mind that the results shown in Fig. 3.26 are for M1 ¼ 4.63,
a relatively low Mach number for applicability of the local surface inclination
methods discussed in this chapter.

Return to Fig. 3.25, which shows the panel distribution for a space shuttle cal-
culation. Predicted aerodynamic data for the space shuttle at Mach 13.5 obtained
from HABP are compared with wind tunnel and flight data in Fig. 3.27. The pre-
dictions from HABP use only one combination, 1,1 (K ¼ 2.0), that is, straight
Newtonian. The wind-tunnel and flight data are from [227]. Figure 3.27 gives
the variations of CN, CA, Cm, CD, CL, and L/D as functions of angle of attack.
The wind-tunnel data span the complete angle-of-attack interval, whereas only
one flight data point is shown on each graph because Mach 13.5 pertains to a
specific point on the entry flight path, hence to only one specific space shuttle
angle of attack. For the most part, the HABP calculations are markably close
to the wind-tunnel data over the range of angle of attack. The flight data, given
here from STS-1, for some of the coefficients deviate slightly from both the wind-
tunnel data and the HABP calculations. But on the whole, we can see that HABP
is a useful engineering prediction code for the space shuttle aerodynamics.

This statement is reinforced by the data shown in Fig. 3.28. Here the lift, drag,
and moment coefficients, and the lift-to-drag ratio, for the space shuttle are given
as a function of Mach number as the shuttle flies down its entry flight path. The
flight data from STS-5 are given by the circles, and the preflight predictions
from [227] are given by the triangles. Calculations using four different
methods from HABP are also shown in Fig. 3.28. The discontinuities shown
here are caused by shuttle maneuvers, which are not accounted for in the calcu-
lations. The two HABP methods labeled “with shielding” refer to the shielding
option in HABP, which accounts for the reduction in pressure on an elemental
panel that is shielded (hidden) from the freestream flow by another panel; for
such shielded panels the pressure coefficient is set to zero. Clearly, from the
results shown in Fig. 3.28 HABP gives a reasonable prediction of the space
shuttle aerodynamic characteristics with the exception of the moment coefficient.
The discrepancy in the moment coefficient calculations is caused by flowfield
chemically reacting effects not included in HABP (and not reflected in the
NASA preflight prediction data, which are largely based on cold-flow hypersonic
wind-tunnel tests); at the end of Sec. 14.9, this matter is discussed at length, and
the effect of chemically reacting flow on the moment coefficient is shown.

Very recently, Kinney [228] at the NASA Ames Research Center developed a
new aerodynamic prediction code labeled CBAERO, the Configuration Based
Aerodynamic software package, much in the same spirit as the earlier HABP.
This new code makes pressure predictions using the modified Newtonian,
tangent-wedge, and tangent-cone methods discussed in this chapter. In contrast
to HABP, however, CBAERO uses panels on the body surface that are an
unstructured mesh of triangles, such as shown in Fig. 3.29 for the surface of
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Fig. 3.27 Aerodynamic coefficient predictions using Newtonian theory, where

M¥ 5 13.5 (from Fisher [225]).
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the space shuttle. Compared to rectangular panels, this surface grid of triangles
allows a more precise definition of complex vehicle geometries. Moreover, exist-
ing unstructured mesh-generation programs developed for use in computational
fluid dynamics (CFD) can be used here for the body surface paneling. Indeed,
this allows CBAERO results to be compared more directly with CFD results
using the same mesh. In Fig. 3.29, the shuttle surface is covered by 103,104
triangles. Other modern features contained in CBAERO are the inclusion of high-
temperature equilibrium chemically reacting flow thermodynamics (discussed in
Chapter 14), the engineering prediction method of Tauber as well as the reference
temperature method (discussed in Chapter 6) for convective aerodynamic
heating, and an engineering method for stagnation radiative heat transfer
(discussed in Chapter 18). This allows the use of CBAERO to predict the
surface pressure, surface shear stress, convective heating, and radiative heating
for vehicles operating in the severe aerothermal environments associated
with flight Mach numbers as high as 36—that associated with Apollo–like
atmospheric entries for a lunar mission.

Kinney and Garcia [229] computed surface pressures along the top and bottom
centerlines of the space shuttle at Mach 24.87 and at angle of attack of 40.17 deg,
as given in Fig. 3.30. Two sets of results are shown, one obtained from CBAERO
and the other from a detailed CFD flowfield solution using a NASA Ames

Fig. 3.29 Unstructured triangulated surface for the space shuttle (from Kinney and

Garcia [229]).
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Research Center code labeled DPLR. The DPLR computational-fluid-dynamic
results are the reference standard against which the CBAERO results are com-
pared. The local surface inclination pressure prediction methods in CBAERO
agree very well with the CFD results for both the windward surface (the upper
curves) and the leeward surface (the lower curves).

Fig. 3.30 Centerline pressure distribution for the space shuttle, where M¥ 5 24.87

and angle of attack 40 deg [229].

Fig. 3.31 Lateral pressure distribution for the space shuttle, where M¥ 5 24.87 and

angle of attack 40 deg [229].

LOCAL SURFACE INCLINATION METHODS 95



Fig. 3.32 Apollo command module with surface triangulation for CBAERO [229].

Fig. 3.33 Centerline pressure distribution for the Apollo command module, where

M¥ 5 28.6 and angle of attack 18.2 deg [229].
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Fig. 3.34 Fire II test vehicle with surface triangulation for CBAERO [229].

Fig. 3.35 Centerline pressure distribution for the Project Fire II test vehicle, where

M¥ 5 35.75 and angle of attack 47 deg [229].
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The lateral pressure distributions over the perimeter of a cross section of the
space shuttle body are given in Fig. 3.31. The body cross section is located
8 m downstream of the nose. The pressure distribution is plotted vs the lateral
coordinate y and forms a looped curve because at any given lateral location y
there is a surface point on the windward side and another on the leeward side.
The upper part of the loop (the higher pressures) corresponds to the windward
side, and the lower part of the loop (the lower pressures) corresponds to the
leeward side. Here we see that CBAERO slightly overpredicts the peak pressures
on the windward side, especially along that side portion of the body with large
lateral curvature, where three-dimensional flow effects are stronger.

Fig. 3.36 HL-20 starting geometry and mesh for the optimization process using

CBAERO (from Kinney [230]).
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Results obtained in a more severe aerothermal environment are given for the
Apollo command module in Figs. 3.32 and 3.33. Figure 3.32 illustrates the
triangular panel distribution over the surface of the module; here 29,000 triangles
are used. The calculated centerline pressure distribution for the module at
Mach 28.6, and an angle of attack of 18.2 deg is shown in Fig. 3.33, with results
from CBAERO compared with the CFD results. In general, CBAERO does a
reasonable job of predicting the Apollo Command Module pressure distribution.

Results obtained for an even more severe aerothermal environment are given
for the Project Fire II test vehicle in Figs. 3.34 and 3.35. Figure 3.34 illustrates the

Fig. 3.37 Final optimized geometry and mesh after 100 design iterations using

CBAERO [230].
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triangular panel distribution over the vehicle surface; here 25,800 triangles are
used. The calculated centerline pressure distribution for the test vehicle at
Mach 35.75 and an angle of attack of 47 deg is shown in Fig. 3.35, with
results from CBAERO compared with the CFD results. The CBAERO results
compare very well with the detailed CFD calculations except in the shoulder
region, where CBAERO slightly overpredicts the pressure.

We end this Design Example with an example of CBAERO used for the opti-
mized design of hypersonic vehicles. This example is taken from the work of
Kinney as described in [230]. Starting with the HL-20 crew transfer vehicle
shown in Fig. 3.36 at Mach 20 and an angle of attack of 20 deg as a baseline,
Kinney obtained the optimized shape shown in Fig. 3.37 at the same Mach
number and angle of attack. An angle of attack 20 deg was chosen because the
baseline HL-20 has a maximum value of L/D of 1.514 at this angle of attack.
The objective of the optimization is to maximum L/D while holding the
volume of the vehicle constant and constraining the pitching moment to zero.
The optimized shape in Fig. 3.37 has L/D ¼ 2.78, almost twice that of the base-
line vehicle. Recall that in the optimization procedure the angle of attack is held
constant at 20 deg. Interestingly enough, Kinney found that the resulting opti-
mized shape in Fig. 3.37 actually has a maximum L/D ¼ 3.24 and that it
occurs at an angle of attack near 15 deg. Comparing the optimized shape in
Fig. 3.37 with the baseline HL-20 in Fig. 3.36, Kinney observed that the optim-
ization process drove the optimized geometry towards a wedge-like configuration
on the forward portion of the body and that the windward side of the vehicle took
on a waverider-like shape. (Waveriders are discussed in Chapters 5 and 6.) He
also noted that the fins took on a smooth dihedral shape and were reduced in size.

In conclusion, at the time of writing the local surface inclination methods
discussed in this chapter, although developed for hypersonic applications in
the 1950s, are certainly alive and well today. Indeed, they are the basis of the
modern Configuration Based Aerodynamics prediction code (CBAERO) high-
lighted here, as well as the well-established Hypersonic Arbitrary Body
program (HABP) discussed earlier.

Problems

3.1 Consider the variation of lift with angle of attack for an infinitely thin
flat plate. Using Newtonian theory, prove that maximum lift occurs at
a ¼ 54.7 deg.

3.2 From Newtonian theory, prove that the drag coefficient for a circular
cylinder of infinite span is 4/3.

3.3 From Newtonian theory, prove that the drag coefficient for a sphere is 1.

3.4 In problems 3.1–3.3, are the results changed by using modified Newtonian
theory? Explain.
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3.5 Derive Eqs. (3.29) and (3.30) for the Newtonian pressure coefficient on an
axisymmetric body including centrifugal effects.

3.6 The curves shown in Fig. 3.7 are changed when skin friction on the flat plate
is included. In particular, the variation of L/D with a will peak at a low
angle of attack and go to zero at a ¼ 0. (Why?) Let the drag coefficient
caused by skin friction be assumed constant and denoted by CD0

. Assuming
a Newtonian pressure distribution, show that the maximum value of
L/D is 0:667=C1=3

D0
and occurs at an angle of attack (in radians) of

a ¼ C
1=3
Dn

. Furthermore, at (L/D)max show that CD0
¼ 1

3
CD, where CD is

the total drag coefficient. [In other words, we can state that, at (L/D)max,
wave drag is twice the friction drag.]

3.7 Using Newtonian theory, show that, at hypersonic speeds, stagnation
pressure is about twice the dynamic pressure q1, where, by definition,
q1 ¼

1
2
r1V2

1.
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4
Hypersonic Inviscid Flowfields:

Approximate Methods

No knowledge can be certain, if it is not based upon mathe-
matics or upon some other knowledge which is itself based
upon the mathematical sciences. Instrumental, or mechan-
ical, science is the noblest and, above all others, the most
useful.

Leonardo da Vinci (1425–1519)

Chapter Preview

This chapter is an intellectual excursion into the world of hypersonic aerody-

namic theory. The material in this chapter is what people thought and what

they did to calculate hypersonic flowfields before the advent and subsequent

modern use of computational fluid dynamics. Today, a new practitioner learn-

ing hypersonic aerodynamics is frequently rushed into the use of massive

computer programs, and the beauty and usefulness of the approximate flow-

field analyses in this chapter are frequently overlooked. What a shame, and

so this chapter presents some “golden nuggets” of hypersonic analyses that

can really help the beginning student and the practitioner to better understand

the nature of hypersonic flows. These golden nuggets are also very practical.

They can help to reduce the amount of computational and experimental effort

that might initially seem necessary for the solution of a given problem or the

creation of a new design. For example, say that you have data, numerical or

experimental, for the lift coefficient on a hypersonic body at Mach 10. Do you

have to repeat the calculations or experiments to obtain the lift coefficient

on the same, or a related body, at Mach 20? The principles of Mach-number

independence and hypersonic similarity say NO! You might be wasting your

time and money because by using these principles you can extract the lift

coefficient at Mach 20 from the Mach 10 data. Pretty useful, say what?

These principles are developed in the present chapter.
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This chapter is full of useful hypersonic flow physics, around which the

theory is wrapped. Did you know that if a slender hypersonic body, say in

the shape of a ballpoint pen, went blasting past you at Mach 15 that the

major change in the flow velocity would be in a direction perpendicular

to the motion of the body and that the change in flow velocity parallel to

the body would be practically nil? This physical variation is proven in the

present chapter. Now you might say, “interesting, but so what?” Well, this

interesting physical phenomenon leads directly to one of the most elegant

and powerful theories in inviscid hypersonic flow, namely, the hypersonic

equivalence principle and the resulting blast wave theory for calculating the

surface-pressure distribution over a blunt-nosed slender body at hypersonic

speeds. Blast wave theory leads to powerful, but simple, equations that

allow fast, back-of-the envelope calculations. You need to know about all

this, as well as much more in this chapter. So read on, allow yourself to

enjoy the intellectual beauty of these approximate theoretical methods, and

place the resulting practical equations on your analytical tool box for future

use, both in your studies and in your practice.

4.1 Introduction

Examining the road map in Fig. 1.24, we note that our discussion of inviscid
hypersonic aerodynamics started with the basic hypersonic shock and expansion
relations (Chapter 2) and then carried on with local surface inclination methods
for predicting pressure distributions on hypersonic bodies (Chapter 3). These dis-
cussions, which constitute the extreme left-hand branch in Fig. 1.24, have in
common the need for only elementary mathematics; for the most part, the deri-
vations and results involved only simple algebra. The reason for this is that
straight oblique shock waves, expansion waves, and local surface inclination
methods involve only localized phenomena—they do not require an integrated
knowledge of whole regions of a flowfield. The material in Chapters 2 and 3
are about as far as we can proceed in this direction. For virtually all other con-
siderations in hypersonic flow, we must examine the details of the complete flow-
field. Therefore, we must now move to the second branch of our road map in
Fig. 1.24, labeled “flowfield considerations.” In so doing, our mathematical
requirements increase because the details of any flowfield are governed by a
system of conservation equations, which can be expressed in either integral or
partial differential equation form. Approximate solutions of these equations for
various hypersonic applications are the subject of the present chapter. Exact
(numerical) solutions will be discussed in Chapter 5.

Another way to scope the material in this chapter is to establish the following
philosophy. Up to as late as 1960, the history of the development of fluid mech-
anics had involved two dimensions: pure experiment and pure theory. With the
advent of computational fluid dynamics after 1960, a new third dimension,
namely, numerical computations, has been added, which complements the
previous two. The science of fluid dynamics is now extended and applied by
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using all three dimensions in concert. The material in the present chapter is in the
dimension of pure theory. The contributions of the other dimensions will be dis-
cussed in subsequent chapters. By its very nature, any hypersonic flowfield analy-
sis before the advent of high-speed digital computers had to be in the dimension
of pure theory. This was the only option for the analysis of hypersonic flows
during the early development of the discipline. Many of these older analyses,
all of which involved some approximations to allow the solution of the governing
equations, are just as relevant to the modern hypersonics of today as they were in
the 1950s. Moreover, they frequently have the advantage of illustrating more
clearly than numerical solutions the effect of various parameters on the physical
results. For these reasons, the present chapter is devoted to the discussion of
approximate analyses of inviscid hypersonic flowfields. In so doing, we will
begin to walk our way down the second branch of the road map in Fig. 1.24.

The local road map for this chapter is given in Fig. 4.1. As with any aerody-
namic flowfield analysis, we start with the governing equations: the continuity,
momentum, and energy equations. Using these equations, first we establish
mathematically the Mach-number independence principle. Then we specialize
these equations for the case of hypersonic flow over slender bodies at small
angles of attack, obtaining the hypersonic small-disturbance equations, which
are used in turn to develop a special aspect of flow similarity applicable to hyper-
sonic slender bodies—the hypersonic similarity principle. One of the most
important uses of the hypersonic small-disturbance equations is the demon-
stration of the hypersonic equivalence principle, which allows the application
of blast wave theory to blunt-nosed slender hypersonic bodies. This application
results in simple equations for the pressure distribution on the body surface
downstream of the blunt nose, as well as the shape of the shock wave generated
by the body. Finally, we apply the governing equations to the thin shock layer
over a blunt-nosed hypersonic body, taking analytical advantage of the thinness
of the shock layer and obtaining a simple method for calculating the pressure dis-
tribution over the nose and downstream surfaces of the body. We are reminded

Fig. 4.1 Road map for Chapter 4.
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again that the focus of the inviscid flow analyses in this chapter and in all others
in Part 1 of this book is the calculation of pressure distributions on the surfaces of
hypersonic bodies. Finally, we note that the road map in Fig. 4.1 has some mys-
terious-sounding destinations. By referring to this road map as you navigate
through the chapter, hopefully all of these destinations will begin to make
some sense to you, and when you reach the end of this chapter it will all hang
together for you.

4.2 Governing Equations

Consider an inviscid, adiabatic (hence, isentropic) flowfield. The derivation of
the governing conservation equations can be found in [4] and [5]; the results,
written in Cartesian coordinates, are as follows.

Continuity:

@r

@t
þ
@(ru)

@x
þ
@(rv)

@y
þ
@(rw)

@z
¼ 0 (4:1)

x momentum:

r
@u

@t
þ ru

@u

@x
þ rv

@u

@y
þ rw

@u

@z
¼ �

@p

@x
(4:2)

y momentum:

r
@v

@t
þ ru

@v

@x
þ rv

@v

@y
þ rw

@v

@z
¼ �

@p

@y
(4:3)

z momentum:

r
@w

@t
þ ru

@w

@x
þ rv

@w

@y
þ rw

@w

@z
¼ �

@p

@z
(4:4)

Energy:

@s

@t
þ u

@s

@x
þ v

@s

@y
þ w

@s

@z
¼ 0 (4:5)

In the preceding, r is density; u, v, and w are the x, y, and z components of velocity,
respectively; p is pressure; and s is entropy. Equations (4.1–4.5) are the well-
known Euler equations, which govern inviscid flows. In reality, the preceding
equations are a somewhat special form of the Euler equations, wherein body
forces are neglected in Eqs. (4.2–4.4), and Eq. (4.5) is a specialized energy
equation for an adiabatic, inviscid flow. In words, Eq. (4.1) is a statement that
mass is conserved; Eqs. (4.2–4.4) are statements of Newton’s second law,
F ¼ ma, in the x, y, and z directions, respectively, and Eq. (4.5) is a statement
that the entropy is constant along a streamline for an inviscid, adiabatic flow. In
some respects, Eq. (4.5) can be called the entropy equation, although it is funda-
mentally an energy equation. For an isentropic process in a calorically perfect
gas (a perfect gas with constant specific heats), p/rg ¼ constant. Hence, if the
entropy is constant along a streamline as stated by Eq. (4.5) then the quantity
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p/rg is also constant along a streamline, and for a calorically perfect gas Eq. (4.5)
can be replaced by

@

@t

p

rg

� �
þ u

@

@x

p

rg

� �
þ v

@

@y

p

rg

� �
þ w

@

@z

p

rg

� �
¼ 0 (4:6)

The solution of the preceding equations for a given problem depends on the
boundary and initial conditions for that problem. Discussions of the appropriate
boundary and initial conditions will be made as appropriate in subsequent
sections.

4.3 Mach-Number Independence

Return again to Fig. 3.15, where values of Cp for both a 15-deg half-angle
wedge and cone are plotted vs Mach number. As noted at the end of Sec. 3.5, at
low supersonic Mach numbers Cp decreases rapidly as M1 is increased.
However, at hypersonic speeds the rate of decrease diminishes considerably,
and Cp appears to reach a plateau as M1 becomes large, that is, Cp becomes
relatively independent of M1 at high Mach numbers. This is the essence of the
Mach-number independence principle; at high Mach numbers certain aerody-
namic quantities such as pressure coefficient, lift, and wave-drag coefficients,
and flowfield structure (such as shock wave shapes and Mach wave patterns)
become essentially independent of Mach number. Indeed, straight Newtonian
theory (discussed in Chapter 3) gives results that are totally independent of
Mach number, as clearly demonstrated by Eq. (3.3). Modified Newtonian
theory exhibits some Mach-number variation via Cpmax

in Eq. (3.15); however,
the variation of Cpmax

with M1 in Fig. 3.8 exhibits a Mach-number independence
at high M1. The hypersonic Mach-number independence principle is more
than just an observed phenomena; it has a mathematical foundation, which is
the subject of this section. We will examine the roots of this Mach-number
independence more closely.

Let us nondimensionalize Eqs. (4.1–4.4) and (4.6) as follows. Define the
nondimensional variables (the barred quantities) as

�x ¼
x

l
�y ¼

y

l
�z ¼

z

l

�u ¼
u

V1

�v ¼
v

V1

�w ¼
w

V1

�p ¼
p

r1V 2
1

�r ¼
r

r1

where l denotes a characteristic length of the flow and r1 and V1 are the
freestream density and velocity, respectively. Assuming steady flow (@/@t ¼ 0),
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we obtain from Eqs. (4.1–4.4) and (4.6)

@
(�r�u)

@�x
þ @

(�r�v)

@�y
þ @
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@�z
¼ 0 (4:7)

�r�u
@�u

@�x
þ �r�v

@�u

@�y
þ �r �w

@�u

@�z
¼ �

@�p

@�x
(4:8)

�r�u
@�v

@�x
þ �r�v

@�v

@�y
þ �r �w

@�v

@�z
¼ �

@�p

@�y
(4:9)

�r�u
@ �w

@�x
þ �r�v

@ �w

@�y
þ �r �w

@ �w

@�z
¼ �

@�p

@�z
(4:10)
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Any particular solution of these equations is governed by the boundary
conditions, which are discussed next.

The boundary condition for steady inviscid flow at a surface is simply the
statement that the flow must be tangent to the surface. Let n be a unit normal
vector at some point on the surface, and let V be the velocity vector at the
same point. Then, for the flow to be tangent to the body

V � n ¼ 0 (4:12)

[If there is any mass transfer through the surface, then V . n ¼ vT, where vT is the
normal velocity of the fluid being transferred into or out of the surface. However,
most inviscid flow problems do not involve mass transfer across the surface, and
Eq. (4.12) is the pertinent boundary condition.] Let nx, ny, and nz be the com-
ponents of n in the x, y, and z directions, respectively. Then, Eq. (4.12) can be
written as

unx þ vny þ wnz ¼ 0 (4:13)

Recalling the definition of direction cosines from analytic geometry, note in
Eq. (4.13) that nx, ny, and nz are also the direction cosines of n with respect to
the x, y, and z axes, respectively. With this interpretation nx, ny, and nz can be con-
sidered dimensionless quantities, and the nondimensional boundary condition at
the surface is readily obtained from Eq. (4.13) as

�unx þ �vny þ �wnz ¼ 0 (4:14)

Assume that we are considering the external flow over a hypersonic body,
where the flowfield of interest is bounded on one side by the body surface and
on the other side by the bow shock wave. Equation (4.14) gives the boundary con-
dition on the body surface. The boundary conditions right behind the shock wave
are given by the oblique shock properties expressed by Eqs. (2.1), (2.3), (2.6), and
(2.8), repeated in the following for convenience (replacing the subscript 1 with
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subinfinity for freestream properties):

p2

p1

¼ 1þ
2g

gþ 1
(M2

1 sin2 b� 1) (2:1)

r2

r1

¼
(gþ 1)M2

1 sin2 b

(g� 1)M2
1 sin2 bþ 2

(2:3)

u2

V1

¼ 1�
2(M2

1 sin2 b� 1)

(gþ 1)M2
1

(2:6)

v2

V1

¼
2(M2

1 sinb� 1) cotb

(gþ 1)M2
1

(2:8)

In terms of the nondimensional variables, and noting that for a calorically perfect
gas p2=p1 ¼ �p2(r1V 2

1)=p1 ¼ �p2V 2
1=RT1 ¼ �p2gV 2

1=a
2
1 ¼ �p2gM2

1, Eqs. (2.1),
(2.3), (2.6), and (2.8) become

�p2 ¼
1

gM2
1

þ
2

gþ 1
sin2 b�

1

M2
1

� �
(4:15)

�r2 ¼
(gþ 1)M2

1 sin2 b

(g� 1)M2
1 sin2 bþ 2

(4:16)

�u2 ¼ 1�
2(M2

1 sin2 b� 1)

(gþ 1)M2
1

(4:17)

�v2 ¼
2(M2

1 sin2 b� 1) cotb

(gþ 1)M2
1

(4:18)

In the limit of high M1, as M1! 1, Eqs. (4.15–4.18) go to [refer to Eqs. (2.2),
(2.4), (2.7), and (2.10)]

�p2 !
2 sin2 b

gþ 1
(4:19)

�r2 !
gþ 1

g� 1
(4:20)

�u2 ! 1�
2 sin2 b

gþ 1
(4:21)

�v2 !
sin 2b

gþ 1
(4:22)

Now consider a hypersonic flow over a given body. This flow is governed by
Eqs. (4.7–4.11), with boundary conditions given by Eqs. (4.14–4.18).

Question: Where does M1 explicitly appear in these equations?

Answer: Only in the shock boundary conditions (4.15–4.18).
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Now consider the hypersonic flow over a given body in the limit of large M1.
The flow is again governed by Eqs. (4.7–4.11), but with boundary conditions
given by Eqs. (4.14) and (4.19–4.22).

Question: Where does M1 explicitly appear in these equations?

Answer: No place!

Conclusion: At high M1, the solution is independent of Mach number.

Clearly, from this last consideration we can see that the Mach-number indepen-
dence principle follows directly from the governing equations of motion with the
appropriate boundary conditions written in the limit of high Mach number.
Therefore, when the freestream Mach number is sufficiently high, the nondimen-
sional dependent variables in Eqs. (4.7–4.11) become essentially independent of
Mach number; this trend applies also to any quantities derived from these nondi-
mensional variables. For example, Cp can be easily obtained as a function of �p
only; in turn, the lift and wave-drag coefficients for the body, CL and CDl

, respect-
ively, can be expressed in terms of Cp integrated over the body surface (for
example, see [5]). Therefore, Cp, CL, and CDw

also become independent of
Mach number at high M1. This is demonstrated by the data shown in Fig. 4.2,
obtained from [23–25], as gathered in [13]. In Fig. 4.2, the measured drag coeffi-
cients for spheres and for a large-angle cone-cylinder are plotted vs Mach
number, cutting across the subsonic, supersonic, and hypersonic regimes. Note
the large drag rise in the subsonic regime associated with the drag-divergence
phenomena near Mach 1 and the decrease in CD in the supersonic regime

Fig. 4.2 Drag coefficient for a sphere and a cone-cylinder from ballistic range

measurements; an illustration of Mach-number independence (from [13]).
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beyond Mach 1. Both of these variations are expected and well understood for
example, see [1] and [5]. For our purposes in the present section, note in particu-
lar the variation of CD in the hypersonic regime; for both the sphere and cone-
cylinder, CD approaches a plateau and becomes relatively independent of
Mach number as M1 becomes large. Note also that the sphere data appear to
achieve Mach-number independence at lower Mach numbers than the cone-
cylinder. This is to be expected, as follows. In Eqs. (4.15–4.18), the Mach
number frequently appears in the combined form M1

2 sin2b; for any given
Mach number, this quantity is larger for blunt bodies (b large) than for slender
bodies (b small). Hence blunt-body flows will tend to approach Mach-number
independence at lower M1 than will slender bodies.

Finally, keep in mind from the preceding analysis that it is the nondimensional
variables that become Mach-number independent. Some of the dimensional
variables, such as p, are not Mach-number independent; indeed, p! 1 as
M1! 1.

4.4 Hypersonic Small-Disturbance Equations

The governing Euler equations discussed in Sec. 4.2 apply to the inviscid flow
over a body of arbitrary shape—large or small, thick or thin, blunt or sharp. In
applications involving low drag and/or high L/D hypersonic configurations, we
are generally dealing with slender-body shapes; some examples are shown in
Figs. 1.11 to 1.12. Therefore, a special, approximate form of the Euler equations,
applicable to hypersonic slender bodies, is useful in studying the aerodynamic
properties of such bodies. The purpose of this section is to obtain these equations,
called the hypersonic small-disturbance equations.

We will follow an approach frequently employed in aerodynamic theory;
instead of using the flow velocity itself as a dependent variable, we will deal
with the change in velocity relative to the freestream, namely, the perturbation
velocity. For example, consider the two-dimensional flow over the slender
body shown in Fig. 4.3. At any given point in the flowfield, the vector velocity
is V. This is resolved into x and y components, u and v respectively. In turn, u
and v can be expressed in terms of changes in velocity relative to the x and y
components of the freestream velocity; these changes are denoted by u0 and v0,
respectively, and are defined by

u ¼ V1 þ u0

v ¼ v0

The preceding relations are written for the case where V1 is aligned with the x
axis; hence, the y component of V1 is simply zero. The changes in velocity u0

and v0 are called perturbation velocities; in general, they do not have to be small.
In this section, we are considering the hypersonic flow over a slender body. In

such a case, u0 and v0 are assumed to be small relative to V1, but not necessarily
small relative to the freestream speed of sound. Hence, we will assume that we
are dealing with small perturbations u0 � V1 and v0 � V1. To study the
nature of these perturbations further, consider the velocity at a point on the
surface of the body, as shown in Fig. 4.3. The body surface is given by
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y ¼ f (x); hence, the flow tangency condition dictates that

v0

V1 þ u0
¼

dy

dx
(on the body) (4:23)

However, examining Fig. 4.3 we see that

dy

dx
¼ O

d

l

� �
(4:24)

where the symbol O means “order of.” Let us define

d

l
¼ t ¼ slenderness ratio

Then from Eqs. (4.23) and (4.24)

v0

V1 þ u0
¼

dy

dx
¼ O(t) (4:25)

Because u0 � V1, then Eq. (4.25) is approximated by

v0

V1

¼ O(t) (4:26)

Fig. 4.3 Illustration of perturbation velocities.
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Let a1 ¼ freestream speed of sound. From Eq. (4.26),

v0

a1

¼
V1

a1

½O(t)�

or

v0

a1

¼ O(M1t) (4:27)

Clearly, from Eq. (4.27), the strength of the disturbance in the flow (relative to
a1) is of the order of the parameter M1t. This parameter will be identified as
the hypersonic similarity parameter in the next section. However, for the time
being, simply keep in mind the definition of the slenderness ratio t ¼ d/l and
the fact that the product M1t is an indication of the strength of the disturbance
created by the body in the flow, as expressed by v0/a1.

Let us now express the steady Euler equations in terms of the perturbation
velocities u0 and v0, that is, in Eqs. (4.1–4.4) and (4.6), with zero time derivatives
for steady flow, replace u with V1 þ u0, v with v0, and w with w0, obtaining

@½r(V1 þ u0)�

@x
þ
@(rv0)

@y
þ
@(rw0)

@z
¼ 0 (4:28)

r(V1 þ u0)
@(V1 þ u0)

@x
þ rv0

@(V1 þ u0)

@y
þ rw0

@(V1 þ u0)

@z
¼ �

@p

@x
(4:29)

r(V1 þ u0)
@v0

@x
þ rv0

@v0

@y
þ rw0

@v0

@z
¼ �

@p

@y
(4:30)

r(V1 þ u0)
@w0

@x
þ rv0

@w0

@y
þ rw0

@w0

@z
¼ �

@p

@z
(4:31)

(V1 þ u0)
@

@x

p

rg

� �
þ v0

@

@y

p

rg

� �
þ w0

@

@z

p

rg

� �
¼ 0 (4:32)

Note in Eqs. (4.28–4.32) that only the velocities are expressed in terms of per-
turbations relative to the freestream values; the remaining flow quantities p
and r are still carried as their whole values. [Sometimes, a perturbation analysis
will also deal with changes in all the dependent variables relative to the free-
stream, i.e., a perturbation pressure p0 and perturbation density r0 would be
defined as p ¼ p1 þ p0 and r ¼ r1 þ r0, respectively. This is not necessary in
our present analysis; in Eqs. (4.28–4.32), p and r are the usual “whole” values
of pressure and density.]

We wish to nondimensionalize Eqs. (4.28–4.32). Moreover, we wish to have
nondimensional variables with an order of magnitude of unity, for reasons to be
made clear later. To obtain a hint about reasonable nondimensionalizing quan-
tities, consider the oblique shock relations in the limit as M1! 1, obtained
in Chapter 2. Also note that for a slender body at hypersonic speeds both the
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shock-wave angle b and the deflection angle u are small; hence,

sinb � sin u � u �
dy

dx
� t

Thus, from Eq. (2.2), repeated here for convenience

p2

p1

!
2g

gþ 1
M2

1 sin2 b (2:2)

we have the order-of-magnitude relationship

p2

p1

! O½M2
1t

2� (4:33)

This in turn implies that the pressure throughout the shock layer over the body
will be on the order of M1

2 t2p1 and hence a reasonable definition for a non-
dimensional pressure, which would be on the order of magnitude of unity is
p̄ ¼ p/g M1

2 t2p1. (The reason for the g will become clear later.) In regard to
density, consider Eq. (2.4), repeated here:

r2

r1

!
gþ 1

g� 1
(2:4)

For g ¼ 1.4, r2/r1! 6, which for our purposes is on the order of magnitude
near unity. Hence, a reasonable nondimensional density is simply r̄ ¼ r/r1. In
regard to velocities, first consider Eq. (2.7), repeated here:

u2

V1

! 1�
2 sin2 b

gþ 1
(2:7)

Define the change in the x component of velocity across the oblique shock as
Du ¼ V1 2 u2. From Eq. (2.7), we have

Du

V1

¼
V1 � u2

V1

!
2 sin2 b

gþ 1
! O(t 2) (4:34)

This implies that the nondimensional perturbation velocity ū0 (which is also a
change in velocity in the x direction) should be defined as ū0 ¼ u0/V1t

2 in
order to be of an order of magnitude of unity. Finally, consider Eq. (2.10)
repeated here:

v2

V1

!
sin 2b

gþ 1
(2:10)
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From Eq. (2.10), we have

Dv

V1

¼
v2

V1

!
sin 2b

gþ 1
! O(t) (4:35)

This implies that the nondimensional perturbation velocity v0 ought to be v0 ¼ v0/
V1t, which is on the order of magnitude of one.

[We pause to observe an interesting physical fact evidenced by Eqs. (4.34) and
(4.35). Because we are dealing with slender bodies, t is a small number, much
less than unity. Hence, by comparing Eqs. (4.34) and (4.35), we see that Du,
which varies as t2, is much smaller than Dv, which varies as t. Therefore, we
conclude in the case of hypersonic flow over a slender body that the change in v
dominates the flow, that is, the changes in u and v are both small compared to V1,
but that the change in v is large compared to the change in u. This fact was
observed earlier, in Sec. 3.6, in conjunction with an argument that the major
changes in properties in a hypersonic shock layer over slender bodies takes
place across the flow rather than along the flow.]

Based on the preceding arguments, we define the following nondimensional
quantities, all of which are on the order of magnitude of unity. Note that we
add a third dimension in the z direction and that y and z in the thin shock layer
are much smaller than x.

�x ¼
x

l
�y ¼

y

lt
�z ¼

z

lt

�u0 ¼
u0

V1t2
�v0 ¼

v0

V1t
�w0 ¼

w0

V1t

�p ¼
p

gM2
1t

2p1

�r ¼
r

r1

(Note: The barred quantities here are different than the barred quantities used in
Sec. 4.3, but because the present section is self-contained there should be no con-
fusion.) In terms of the nondimensional quantities just defined, Eqs. (4.28–4.32)
can be written as follows. From Eq. (4.28),

@

@�x
�r

1

t 2
þ �u0

� �� �
½r1V1t

2� þ
@( �r�v0)

@�y

r1V1t

t

� �
þ
@( �r �w0)

@�z

r1V1t

t

� �
¼ 0 (4:36)

From Eq. (4.29),

�r
1

t 2
þ �u0

� �
@

@�x

1

t2
þ �u0

� �
½r1V 2

1t
4� þ �r �v0

@

@�y

1

t 2
þ �u0

� �
½r1V 2

1t
3�

þ �r �w0
@

@�z

1

t 2
þ �u0

� �
r1V 2

1t
3

t

� �
¼ �

@�p

@�x
½gM2

1t
2p1�
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or, noting that

r1V 2
1 ¼

gp1

gp1

r1V 2
1 ¼ g p1

V 2
1

a2
1

¼ gp1M2
1

we have

�r(1þ �u0t 2)
@�u0

@�x
þ �r�v0

@�u0

@�y
þ �r �w0

@�u0

@�z
¼ �

@�p

@�x
(4:37)

From Eq. (4.30)

�r
1

t 2
þ �u0

� �
@�y0

@�x
½r1V 2

1t
3� þ �r�v0

@�v0

@�y

r1V 2
1t

2

t

� �

þ �r �w0
@�v0

@�z

r1V 2
1t

2

t

� �
¼ �

@�p

@�y

gM2
1t

2p1

t

� �

or

�r(1þ �u0t 2)
@�v0

@�x
þ �r�v0

@�v0

@�y
þ �r �w0

@�v0

@�z
¼ �

@�p

@�y
(4:38)

From Eq. (4.31), similarly we have

�r(1þ �u0t2)
@ �w0

@�x
þ �r�v0

@ �w0

@�y
þ �r �w0

@ �w0

@�z
¼ �

@�p

@�z
(4:39)

From Eq. (4.32)

1

t 2
þ �u0

� �
@

@�x

�p

�rg
½V1t

4g p1M2
1r

g
1� þ �v0

@

@�y

�p

�rg
gV1t

3p1M2
1r

g
1

t

� �

þ �w0
@

@�z

�p

�rg
V1t

3g p1M2
1r

g
1

t

� �
¼ 0

or

(1þ t 2 �u0)
@

@�x

�p

�rg

� �
þ �v0

@

@�y

�p

�rg

� �
þ �w0

@

@�z

�p

�rg

� �
¼ 0 (4:40)

Examine Eqs. (4.36–4.40) closely. Because of our choice of nondimensionalized
variables, each term in these equations is of order of magnitude unity except for
those mulitiplied by t2, which is very small. Therefore, the terms involving t2
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can be ignored in comparison to the remaining terms, and Eqs. (4.36–4.40) can
be written as

@�r

@�x
þ
@(�r�v0)

@�y
þ
@(�r �w0)

@�z
¼ 0

�r
@�u0

@�x
þ �r�v0

@�u0

@�y
þ �r �w0

@�u0

@�z
¼ �

@�p

@�x

�r
@�v0

@�x
þ �r�v0

@�v0

@�y
þ �r �w0

@�v0

@�z
¼ �

@�p

@�y

�r
@ �w0

@�x
þ �r�v0

@ �w0

@�y
þ �r �w0

@ �w0

@�z
¼ �

@�p

@�z

@

@�x

�p

�rg

� �
þ �v0

@

@�y

�p

�rg

� �
þ �w0

@

@�z

�p

�rg

� �
¼ 0

(4:41)

(4:42)

(4:43)

(4:44)

(4:45)

Equations (4.41–4.45) are the hypersonic small-disturbance equations. They
closely approximate the hypersonic flow over slender bodies. They are limited
to flow over slender bodies because we have neglected terms of order t2. They
are also limited to hypersonic flow because some of the nondimensionalized
terms are of order-of-magnitude unity only for high Mach numbers; we made
certain of this in the argument that preceded the definition of the nondimensional
quantities. Hence, the fact that each term in Eqs. (4.41–4.45) is of the
order of magnitude unity [which is essential for dropping the t2 terms in
Eqs. (4.36–4.40)] holds only for hypersonic flow.

Equations (4.41–4.45) exhibit an interesting property. Look for ū0 in these
equations; you can find it only in Eq. (4.42). Therefore, in the hypersonic small-
disturbance equations ū0 is decoupled from the system. In principle, Eqs. (4.41)
and (4.43–4.45) constitute four equations for the four unknowns, r̄, p̄, �v, and
�w0. After this system is solved, then ū0 follows directly from Eq. (4.42). This
decoupling of ū0 from the rest of the system is another ramification of the fact
already mentioned several times, namely, that the change in velocity in the
flow direction over a hypersonic slender body is much smaller than the change
in velocity perpendicular to the flow direction.

Equations (4.41–4.45) were obtained from the general nonlinear governing
equations of motion (4.1–4.5). But in spite of containing the assumption of
small perturbations, Eqs. (4.41–4.45) are still nonlinear. This is one of those dis-
tinctions that sets inviscid hypersonic flow apart from subsonic and supersonic
flow. The small-disturbance equations for subsonic and supersonic flow are
linear and lead to some straightforward solutions for subsonic and supersonic
flows over slender bodies at small angles of attack (for example, see [4] and
[5]). Not so for hypersonic flow. The hypersonic small-disturbance equations
are a set of coupled, nonlinear partial differential equations for which no
general analytical solution has yet been obtained. This circumstance is simply
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another ramification of the fact that there is nothing that is linear in hypersonic
flow theory—hypersonic flow is inherently nonlinear.

The hypersonic small-disturbance equations, however, are used to obtain
some practical information about hypersonic flows over slender bodies. The
first such use will be made in the next section, dealing with hypersonic similarity.

(As a final, parenthetical comment, we now note the importance of obtain-
ing the limiting hypersonic shock relations in Chapter 2. We have already used
these relations several times for important developments. For example, they
were used to help demonstrate Mach-number independence in Sec. 4.3, and they
were instrumental in helping to define the proper nondimensional variables in
the hypersonic small-disturbance equations obtained in this section. So the work
done in Chapter 2 was more than just an academic exercise; the specialized
forms of the oblique shock relations in the hypersonic limit are indeed quite useful.)

4.5 Hypersonic Similarity

The concept of flow similarity is well entrenched in fluid mechanics. In
general, two or more different flows are defined to be dynamically similar
when 1) the streamline shapes of the flows are geometrically similar and 2) the
variation of the nondimensional flowfield properties is the same for the different
flows when plotted in a nondimensional geometric space. Such dynamic simi-
larity is ensured when 1) the body shapes are geometrically similar and 2)
certain nondimensional parameters involving freestream properties and lengths,
called similarity parameters, are the same between the different flows. See [5]
for a more detailed discussion of flow similarity.

In the present section, we discuss a special aspect of flow similarity that
applies to hypersonic flow over slender bodies. In the process, we will identify
what is meant by hypersonic similarity and will define a useful quantity called
the hypersonic similarity parameter.

Consider a slender body at hypersonic speeds. The governing equations are
Eqs. (4.41–4.45). To these equations must be added the boundary conditions
at the body surface and behind the shock wave. At the body surface, the flow
tangency condition is given by Eq. (4.13), repeated here:

unx þ vny þ wnz ¼ 0 (4:13)

In terms of the perturbation velocities defined in Sec. 4.4, Eq. (4.13) becomes

(V1 þ u0)nx þ v0ny þ w0nz ¼ 0 (4:46)

In terms of the nondimensional perturbation velocities defined in Sec. 4.4,
Eq. (4.46) becomes

1

t2
þ �u0

� �
(V1t

2)nx þ �v0(V1t)ny þ �w0(V1t)nz ¼ 0

or

(1þ t 2 �u0)nx þ �v0t ny þ �w0t nz ¼ 0 (4:47)
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In Eq. (4.47), the direction cosines nx, ny, and nz are in the (x, y, z) space; these
values are somewhat changed in the transformed space (x̄, ȳ, z̄) defined in
Sec. 4.4. Letting n̄x, n̄y, and n̄z denote the direction cosines in the transformed
space, we have (within the slender-body assumption)

nx ¼ t �nx ny ¼ �ny nz ¼ �nz (4:48)

The mathematical derivation of Eqs. (4.48) is left as a homework problem.
However, the results are almost intuitively justified, as follows. For a slender
body aligned along the x axis, the unit normal vector at the surface is almost per-
pendicular to the surface. This means that nx is a small number, much less than
unity, whereas ny and nz can be close to unity. In the transformed space, the slope
of the body is increased by a factor 1/t, and the unit normal vector in the trans-
formed space is now more tilted with respect to the x axis by the factor 1/t.
Hence, the direction cosine with respect to the x axis is now n̄x ¼ nx/t. Moreover,
in the transformed plane the unit normal vector is still close enough to being
nearly perpendicular to the x̄ axis to justify that n̄y and n̄z are still close to
unity, just as in the case of ny and nz. Hence, we can say that n̄y � ny and
n̄z � nz. This is a justification for Eq. (4.48). With the relations given in
Eq. (4.48), the boundary condition given by Eq. (4.47) becomes

(1þ t 2 �u0)t �nx þ �v0t �ny þ �w0t �nz ¼ 0

or

(1þ t 2 �u0)�nx þ �v0 �ny þ �w0 �nz ¼ 0 (4:49)

Consistent with the derivation of the hypersonic small-disturbance equations
in Sec. 4.4, we neglect the term of order t2 in Eq. (4.49), yielding the final
result for the surface boundary condition:

�nx þ �v0 �ny þ �w0 �nz ¼ 0 (4:50)

The shock boundary conditions, consistent with the transformed coordinate
system, can be obtained as follows. Consider Eq. (2.3) repeated here:

r2

r1

¼ �r2 ¼
(gþ 1)M2

1 sin2b

(g� 1)M2
1 sin2 bþ 2

(2:3)

or

�r2 ¼
gþ 1

g� 1

� �
M2

1 sin2b

M2
1 sin2bþ 2=(g� 1)

� �
(4:51)

For hypersonic flow over a slender body, b is small. Hence,

sinb � b �
dy

dx

� �
s

¼
d�y

d�x

� �
s

t
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where (dȳ/dx̄) is the slope of the shock wave in the transformed space. Thus,
Eq. (4.51) becomes

�r2 ¼
gþ 1

g� 1

� �
(d�y=d�x)2

s

(d�y=d�x)2
s þ 2=(g� 1)M2

1t
2

� �
(4:52)

Repeating Eq. (2.2) here

p2

p1

¼ 1þ
2g

gþ 1
(M2

1 sin2b� 1) (2:2)

and recalling that �p ¼ p=gM2
1t

2p1. Eq. (2.2) becomes

p2

gM2
1t

2p1

¼
1

gM2
1t

2
þ

2g

gþ 1
(M2

1 sin2b� 1)
1

gM2
1t

2

�p2 ¼
1

gM2
1t

2
þ

2g

gþ 1
M2

1t
2 d�y

d�x

� �2

s

�1

" #
1

gM2
1t

2

�p2 ¼
1

gM2
1t

2
þ

2(d�y=d�x)2
s

gþ 1
�

2

(gþ 1)M2
1t

2

�p2 ¼
2(d�y=d�x)2

s

gþ 1
þ

(gþ 1)� 2g

g (gþ 1)M2
1t

2

�p2 ¼
2

gþ 1

d�y

d�x

� �2

s

þ
1� g

2gM2
1t

2

" #
(4:53)

Repeating Eq. (2.6)

u2

V1

¼ 1�
2(M2

1 sin2b� 1)

(gþ 1)M2
1

(2:6)

and recalling that u2 ¼ V1 þ u02 and ū02 ¼ u02/V1t
2, Eq. (2.6) becomes

1þ
u02
V1

¼ 1�
2½M2

1t
2(d�y=d�x)2

s � 1�

(gþ 1)M2
1

u02
V1t 2

¼
�2½M2

1t
2(d�y=d�x)2

s � 1�

(gþ 1)M2
1t

2

�u02 ¼ �
2

gþ 1

d�y

d�x

� �2

s

�
1

M2
1t

2

" #
(4:54)
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Repeating Eq. (2.8)

v2

V1

¼
2(M2

1 sin2b� 1) cot b

(gþ 1)M2
1

(2:8)

and recalling that v2 ¼ �v02 and �v2 ¼ �v02/V1t, Eq. (2.8) becomes

v02
V1t
¼

2

gþ 1
b2 �

1

M2
1

� �
1

bt

�v02 ¼
2

gþ 1

d�y

d�x

� �2

s

t 2 �
1

M2
1

" #
1

(d�y=d�x)st
2

�v02 ¼
2

gþ 1

d�y

d�x

� �2

s

�
1

M2
1t

2

" #
1

(d�y=d�x)s

(4:55)

Equations (4.52–4.55) represent boundary conditions immediately behind the
shock wave in terms of the transformed variables. Note that these equations
were obtained from the exact oblique shock relations, making only the one
assumption of small wave angle; nothing was said about very high Mach
numbers; hence, Eqs. (4.52–4.55) should apply to moderate as well as to large
hypersonic Mach numbers.

Examine carefully the complete system of equations for hypersonic flow over
a slender body—the governing flow equations (4.41–4.45), the surface boundary
condition (4.50), and the shock boundary conditions (4.52–4.55). For this com-
plete system, the freestream Mach number M1 and the body slenderness ratio t
appear only as the product M1t, and this appears only in the shock boundary con-
ditions. As first stated in Sec. 4.4, the product M1t is identified as the hypersonic
similarity parameter, which we will denote by K.

Hypersonic similarity parameter:

K ; M1t

The meaning of the hypersonic similarity parameter becomes clear from an
examination of the complete system of equations. Because M1t and g are the
only parameters that appear in these nondimensional equations, then solutions
for two different flows over two different but affinely related bodies (bodies
that have essentially the same mathematical shape, but that differ by a scale
factor on one direction, such as different values of thickness) will be the same
(in terms of the nondimensional variables, ū0, �v0, etc.) if g and M1t are the
same between the two flows. This is the principle of hypersonic similarity.

For affinely related bodies at a small angle of attack a, the principle of hyper-
sonic similarity holds as long as in addition to g and M1t, a/t is also the same.
For this case, the only modification to the preceding derivation occurs in the
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surface boundary condition, which is slightly changed; for small a, Eq. (4.50) is
replaced by

�nx þ
a

t

� 	
þ �v0 �ny þ �w0 �nz ¼ 0 (4:56)

The derivation of Eq. (4.56), as well as an analysis of the complete system
of equations for the case of small a, is left to the reader as a homework
problem. In summary, including the effect of angle of attack, the solution
of the governing equations along with the boundary conditions takes the func-
tional form

�p ¼ �p �x, �y, �z, g, M1t,
a

t

� 	

�r ¼ �r �x, �y, �z, g, M1t,
a

t

� 	

etc. Therefore, hypersonic similarity means that if g, M1t, and a/t are the
same for two or more different flows over affinely related bodies, then the
variation of the nondimensional dependent variables over the nondimensional
space p̄ ¼ p̄(x̄, ȳ, z̄), etc., is clearly the same between the different flows.

Consider the pressure coefficient, defined in Eq. (2.13), as

Cp ¼
p� p1

1
2
r1V 2

1

¼
p� p1

(g=2)p1M2
1

This can be written in terms of p̄ as

Cp ¼
2( p� p1)t 2

g p1M2
1t

2
¼ 2t 2 �p�

1

gM 2
1t

2

� �
(4:57)

Because p̄ ¼ p̄( x̄, ȳ, z̄, g, M1t, a/t), then Eq. (4.57) becomes the following func-
tional relation:

Cp

t 2
¼ f1 �x, �y, �z, g, M1t,

a

t

� 	
(4:58)

From Eq. (4.58), we see another aspect of hypersonic similarity, namely, that
flows over affinely related bodies with the same values of g, M1t, and a/t
will have the same value of Cp/t

2.
The viability of hypersonic similarity is reinforced by results that we have

already obtained in Chapter 2. In Sec. 2.3, the hypersonic shock relations for
large M1 and small deflection angles were obtained in terms M1u, where u is
the flow deflection angle through the shock wave. There, we defined M1u ; K
as the hypersonic similarity parameter; this is precisely the same as M1t
because, for slender bodies, u � tan u � d/l ¼ t. Examine Eq. (2.29) and its

122 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



functional form, namely, Eq. (2.30), repeated here:

Cp

t 2
�

Cp

u 2
¼ f (K, g) (2:30)

This states that Cp/t
2 for the flow behind an oblique shock (hence, over a wedge of

slenderness ratio t) is a function of g and K only. Equations (2.45) and (2.46)
obtained for the hypersonic expansion wave give analogous results. Hence, the
results in Secs. 2.3 and 2.4 are precursors to the concept of hypersonic similarity
discussed in the present section. It is recommended that, at this stage, you reread
Secs. 2.3 and 2.4, keeping this point of view in mind.

Hypersonic similarity carries over to lift and wave-drag coefficients as well.
Let us examine this in more detail. To begin with, assume a two-dimensional
body of length l, hence a planform (or top-view) area per unit span of (l)(1).
The lift and wave-drag coefficients can be readily obtained by integrating
the pressure coefficient over the surface of the body, resulting in (for example,
see [5]).

cl ¼
1

l

ðl

0

(C pl
� C pu

) dx (4:59)

and

cd ¼
1

l

ðl

0

(C pl
þ C pu

) dy (4:60)

In Eqs. (4.59) and (4.60), cl and cd are referenced to the planform area, and Cpl
and

Cpu
are the pressure coefficients over the lower and upper surfaces, respectively.

Equation (4.59), written in terms of x̄, is

cl ¼

ð1

0

(C pl
� C pu

) d�x (4:61)

Dividing Eq. (4.61) by t2 and combining with Eq. (4.58), we obtain the following
functional relation for cl/t

2:

cl

t 2
¼

ð1

0

C pl

t 2
�

C pu

t 2

� �
d�x ¼ f2 g, M1t,

a

t

� 	
(4:62)

[Note that for a two-dimensional body ȳ ¼ ȳ(x̄), and there is no variation with z̄;
hence, the integral with respect to x̄ in Eq. (4.62) takes care of the spatial variation
of Cp with respect to x̄, ȳ, z̄ given in Eq. (4.58) resulting, after the integrations, in
simply the functional variation shown by Eq. (4.62).] To obtain an analogous
expression for the wave-drag coefficient, we write Eq. (4.60) in terms of ȳ as
follows:

cd ¼
1

l

ð1

0

(C pl
þ C pu

) d
y

lt

� 	
(lt) ¼ t

ð1

0

(C pl
þ C pu

) d�y (4:63)
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Dividing Eq. (4.63) by t3 and combining with Eq. (4.58), we obtain the following
functional relation for cd/t

3:

cd

t 3
¼

ð1

0

C pl

t2
þ

C pu

t2

� �
d�y ¼ f3 g, M1t,

a

t

� 	
(4:64)

Summarizing the preceding results, we have

cl

t 2
¼ f2 g, M1t,

a

t

� 	
cd

t 3
¼ f3 g, M1t,

a

t

� 	 referenced to planform area

Let us repeat the preceding arguments, except now for a three-dimensional
body. The considerations are only slightly more involved, as follows. Consider
Fig. 4.4, which shows an arbitrary body in an x-y-z coordinate system. In an invis-
cid flow, the net aerodynamic force is caused by the integration of the surface
pressure distribution over the body. Consider an elemental force p dS caused
by the pressure acting on the element of surface area dS, as shown in Fig. 4.4.
The component of this force in the z direction is p dx dy, where (dx dy) is the pro-
jection of dS into the x-y plane. Hence the lift L is

L ¼

ð ð
S

p(x, y, z) dx dy (4:65)

In terms of the transformed variables, Eq. (4.65) becomes

L ¼

ð ð
S

�p(�x, �y, �z) d�x d�y

2
4

3
5(g p1M2

1t
2)(t) (4:66)

We define the lift coefficient for the three-dimensional body as CL ¼ L/q1S,
where q1 ¼ (g/2)p1M1

2 and the area S is taken to be the base area (in contrast

Fig. 4.4 Arbitrary body.
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to the planform area, used for our preceding two-dimensional case). Letting by

and bz be the half-width and half-height of the base respectively (as shown in
Fig. 4.4), then S / bybz ¼ b̄yb̄z(t

2). Note that S is proportional to t2. Hence,
from Eq. (4.66),

CL /
2

g p1M2
1t

2

ð ð
�p(�x, �y, �z) d�x d�y

� �
(g p1M2

1t
2)(t) (4:67)

Recall that p̄(x̄, ȳ, z̄) is obtained from the solution of the hypersonic small-
disturbance equations for a given g, M1t, and a/t. Therefore, the surface inte-
gral given in Eq. (4.67) depends only on g, M1t, and a/t. With this in mind,
Eq. (4.67) leads to the functional relation

CL

t
¼ F1 g, M1t,

a

t

� 	
(4:68)

Returning to Fig. 4.4, the component, of p dS in the x direction is p dy dz.
Hence, the drag D is

D ¼

ð ð
S

p(x, y, z) dy dz

D ¼

ð ð
S

�p(�x, �y, �z) d�y d�z

2
4

3
5(gp1M2

1t
2)(t 2)

CD ¼
D

q1S
/

2

g p1M2
1t

2

ð ð
�p(�x, �y, �z) d�y d�z

� �
(g p1M2

1t
2)(t 2)

or

CD

t 2
¼ F2(g, M1t, a=t) (4:69)

Summarizing the preceding results, we have

CL

t
¼ F1(g, M1t, a=t)

CD

t 2
¼ F2(g, M1t, a=t)

referenced to base area

Examine the results summarized in the preceding two boxes, namely, the results
for cl and cd for a two-dimensional flow, and CL and CD for a three-dimensional
flow. From these results, the principle of hypersonic similarity states that affinely
related bodies with the same values of g, M1t, and a/t will have 1) the same
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values of cl/t
2 and cd/t

3 for two-dimensional flows, when referenced to plan-
form area and 2) the same values of CL/t and CD/t 2 for three-dimensional
flows when referenced to base area.

The validity of the hypersonic similarity principle is verified by the results
shown in Figs. 4.5 and 4.6, obtained from the work of Neice and Ehret [26]. Con-
sider first Fig. 4.5a, which shows the variation Cp/t

2 as a function of distance
downstream of the nose of a slender ogive-cylinder (as a function of x ¼ x/l,
expressed in percent of nose length). Two sets of data are presented, each for a
different M1 and t, but such that the product K ; M1t is the same value,
namely, 0.5. The data are exact calculations made by the method of character-
istics. Hypersonic similarity states that the two sets of data should be identical,
which is clearly the case shown in Fig. 4.5a.

A similar comparison is made in Fig. 4.5b, except for a higher value of the
hypersonic similarity parameter, namely, K ¼ 2.0. The conclusion is the same;
the data for two different values of M1 and t, but with the same K, are identical.
An interesting sideline is also shown in Fig. 4.5b. Two different methods of
characteristics calculations are made—one assuming irrotational flow (the solid
line) and the other treating rotational flow (the dashed line). There are substantial
differences in implementing the method of characteristics for these two cases (for
example, see [4] for more details). In reality, the flow over the ogive-cylinder is
rotational because of the slightly curved shock wave over the nose. The effect of
rotationality is to increase the value of Cp, as shown in Fig. 4.5b. This effect is
noticeable for the high value of K ¼ 2 in Fig. 4.5b. However, Neice and Ehret
state that no significant differences between the rotational and irrotational calcu-
lations resulted for the low value of K ¼ 0.5 in Fig. 4.5a, which is why only one
curve is shown. One can conclude from this comparison the almost intuitive fact
that the effects of rotationality become more important as M1, t, or both are pro-
gressively increased. However, the main reason for bringing up the matter of rota-
tionality is to ask the question: would we expect hypersonic similarity to hold for
rotational flows? The question is rhetorical, because the answer is obvious. Exam-
ining the governing flow equations upon which hypersonic similarity is based,
namely, Eqs. (4.41–4.45), we note that they contain no assumption of irrotational
flow—they apply to both cases. Hence, the principle of hypersonic similarity
holds for both irrotational and rotational flows. This is clearly demonstrated in
Fig. 4.5b, where the data calculated for irrotational flow for two different
values of M1 and t (but the same K ) fall on the same curve, and the data calcu-
lated for rotational flow for the two different values of M1 and t (but the same K)
also fall on the same curve (but a different curve than the irrotational results).

Figures 4.5a and 4.5b contain results at zero angle of attack. For the case of
bodies at angle of attack, our similarity analysis has indicated that a/t is an
additional similarity parameter. This, as well as the general principle of hyperso-
nic similarity, is experimentally verified by the wind-tunnel data shown in
Fig. 4.6. Neice and Ehret [26] reported some experimental pressure distributions
over two sharp, right-circular cones at various angles of attack obtained in the
NACA Ames 10- by 14-in. supersonic wind tunnel. The freestream Mach
numbers were 4.46 and 2.75, and the cones had different slenderness ratios
such that K ¼ 0.91 for both cases. Because the flow was conical, the values of
Cp on the surface were constant along a given ray from the nose, but because
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Fig. 4.5 Pressure distributions over ogive-cylinders, illustration of hypersonic

similarity: a) K 5 0.5 and b) K 5 2.0 (from [26]).
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of the angle of attack Cp varied from one ray to another around the cone as a func-
tion of angular location. Note in Fig. 4.6 that the data along any given ray for the
two different values of M1 and t (but both such that K ¼ 0.91) fall on the same
curve when plotted vs a/t. Hence, the data in Fig. 4.6 are a direct experimental
verification of hypersonic similarity for bodies at angle of attack. (Note that at
a ¼ 0 all of the curves pass through the value of Cp predicted from exact cone
theory, as tabulated by Kopal in [17].)

Hypersonic similarity appears to hold even at very moderate hypersonic Mach
numbers. (The data in Fig. 4.6 even show some correlation at supersonic
Mach numbers.) Indeed, Van Dyke [27] has pointed out a combined
supersonic-hypersonic similarity rule that replaces M1t with t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 � 1
p

,
which closely approximates M1t at high values of M1. By replacing M1t
with t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 � 1
p

, a single similarity rule holds for the entire Mach-number
regime starting just above the transonic range and going to an infinite Mach
number. See [27] for more details.

Question: Over what range of values of K ; M1t does hypersonic similarity hold?

The answer cannot be made precisely. However, many results show that for
very slender bodies (such as a 5-deg half-angle cone), hypersonic similarity

Fig. 4.6 Cone pressure at angle of attack, correlated by hypersonic similarity (from

[26]).
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holds for values of K ranging from less than 0.5 to infinitely large. On the other
hand, for less slender bodies (say, a 20-deg half-angle cone), the data do not cor-
relate well until K . 1.5. Homework problems 4.4 and 4.5 are very instructive in
this regard. However, always keep in mind that hypersonic similarity is based on
the hypersonic small-disturbance equations, and we would expect the results to
become more tenuous as the thickness of the body is increased.

An important historical note is in order here. The concept of hypersonic simi-
larity was first developed by H. S. Tsien in 1946 and published in [28]. In this
paper, Tsien treated a two-dimensional potential (hence irrotational) flow.
This work was further extended by Hayes [29], who showed that Tsien’s results
applied to rotational flows as well. (As noted earlier, the development of hyperso-
nic similarity in the present chapter started right from the beginning with the gov-
erning equations for rotational flow. There is no need to limit ourselves to the
special case treated by Tsien.) However, of equal (or more) historical significance,
Tsien’s 1946 paper seems to be the source that coined the word hypersonic. After
an extensive search of the literature, the present author could find no reference to
the word hypersonic before 1946. Then, in his 1946 paper—indeed, in the title of
the paper—Tsien makes liberal use of the word hypersonic, without specifically
stating that he is coining a new word. In this sense, the word hypersonic seems
to have entered our vocabulary with little or no fanfare.

4.6 Hypersonic Small-Disturbance Theory: Some Results

Return to our road map in Fig. 1.24. We are presently working under the
general heading of flowfield considerations, and we have, so far, treated both
the concepts of Mach-number independence and hypersonic similarity under
this heading. Also, return to our chapter road map in Fig. 4.1. Recall that we
have discussed the general partial differential equations for an inviscid flow
(Sec. 4.2), situated at the top center of Fig. 4.1. From these governing equations,
we have proven mathematically the existence of Mach-number independence
(left box in Fig. 4.1). We have also obtained the hypersonic small-disturbance
equations (Sec. 4.4) represented by the center box in Fig. 4.1. It is important to
note that, in our discussions of both Mach-number independence and hypersonic
similarity, we have only examined the appropriate equations—we have not solved
them. Specifically, our examination of a nondimensional form of the Euler
equations and the boundary conditions in Sec. 4.2 clearly demonstrated the
mathematical justification for Mach-number independence. Similarly, our exam-
ination of the hypersonic small-disturbance equations and the boundary con-
ditions in Sec. 4.4 led to the important conclusions dealing with hypersonic
similarity. But in both cases, we did not actually solve the governing equations.
This is as far as we can proceed in such a fashion: for the remainder of the items
listed under flowfield considerations in Fig. 1.24, we will deal with actual
solutions of the governing equations for specific cases. This will constitute the
remainder of the present chapter (on approximate methods) as well as all of
Chapter 5 (on exact methods).

Consider again the hypersonic small-disturbance equations given by
Eqs. (4.41–4.45). The purpose of the present section is to discuss how these
equations can be solved for the hypersonic flow over slender bodies. The material
in this section is a representative sample of a bulk of solutions generated over
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the past 35 years, all originating with Eqs. (4.41–4.45). Such solutions come
under the general description of hypersonic small-disturbance theory. This
theory was first developed in some detail by Milton Van Dyke [30], and we
will partly follow his approach in this section.

To begin with, consider the hypersonic small-disturbance equations written
for two-dimensional flow, and recall that the x-momentum equation is decoupled
from the remaining equations in the system. For this case, from Eqs. (4.41),
(4.43), and (4.45), we have

@�r

@�x
þ
@(�r�v0)

@�y
¼ 0 (4:70)

�r
@�v0

@�x
þ �r�v0

@�v0

@�y
¼ �

@�p

@�y
(4:71)

@

@�x

�p

�rg

� �
þ �v0

@

@�y

�p

�rg

� �
¼ 0 (4:72)

which are three equations to be solved for the three unknowns �v, p̄, and r̄.
However, this system can be reduced to just one equation in terms of one
unknown by introducing a stream function c, defined as

@c

@�y
¼ �r (4:73)

and

@c

@�x
¼ ��r�v0 (4:74)

To be a valid stream function, c must satisfy the continuity equation. Substi-
tution of Eqs. (4.73) and (4.74) into (4.70) yields

@

@�x

@c

@�y

� �
þ
@

@�y
�
@c

@�x

� �
¼ 0

or

@2c

@�x @�y
�
@2c

@�x @�y
; 0

that is, c as defined in Eqs. (4.73) and (4.74) does indeed satisfy the continuity
equation. Using the subscript notation for partial derivatives, Eqs. (4.73) and
(4.74) become

�r ¼ c�y (4:75)

and

�v0 ¼ �
c�x

�r
¼ �

c�x

c�y

(4:76)
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Also, denote p̄/r̄g by v, where v is a function of c only. This is true because, for
an isentropic flow, p̄/r̄g is constant along a streamline, and by definition of a
stream function (for example, see [5]) c is also constant along a streamline.
Hence,

�p

�rg
¼ v(c) (4:77)

or

�p ¼ v�rg ¼ v(c�y)g (4:78)

From Eq. (4.76),

@�v0

@�x
¼
�c�yc�x�x þ cxc�x�y

(c�y)2
(4:79)

and

@�v0

@�y
¼
�c�yc�x�y þ c�xc�y�y

(c�y)2
(4:80)

From Eq. (4.78),

@�p

@�y
¼ vg (c�y)g�1c�y�y þ (c�y)g

@v

@�y
(4:81)

Because

@v

@�y
¼

@v

@c

� �
@c

@�y
¼ v0c�y

then Eq. (4.81) becomes

@�p

@�y
¼ gv(c�y)g�1c�y�y þ v0(c�y)gþ1 (4:82)

Substitute Eqs. (4.75), (4.76), (4.79), (4.80), and (4.82) into the y-momentum
equation (4.71).

c�y

�c�yc�x�x þ c�xc�x�y

(cy)2

" #
þ (�c�x)

�c�yc�x�y þ cxc�y�y

(c�y)2

" #

¼ �gv(c�y)g�1c�y�y � v0(c�y)gþ1

or

(c�y)2c�x�x � 2cxc�yc�x�y þ (c�x)2c�y�y ¼ (c�y)gþ1½gvc�y�y þ v0(c�y)2� (4:83)
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Equation (4.83) is a single equation for a single unknown, namely, c, based on
the hypersonic small-disturbance assumptions. Note that in the development of
this equation, no additional assumptions were made (other than that of two-
dimensional flow); hence, Eq. (4.83) is of the same order of accuracy as the orig-
inal hypersonic small-disturbance equations.

Equation (4.83) holds for two-dimensional planer flow; hence, it can be applied
to two-dimensional shapes such as airfoils. On the other hand, for axisymmetric
bodies a cylindrical coordinate system (x, r, f) is more convenient, where x and
r are the coordinates parallel and perpendicular respectively to the body centerline,
and f is the familiar azimuthal angle. For an axisymmetric body at zero angle of
attack, the flowfield is independent off and depends on x and r only. For this case,
the governing hypersonic small-perturbation equations become

@�r

@�x
þ
@(�r�v0)

@�r
þ

�r�v0

�r
¼ 0 (4:84)
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�rg
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¼ 0 (4:86)

These are the same as Eqs. (4.70–4.72), except for the additional term in
Eq. (4.84). In the preceding, x̄ ¼ x/l, r̄ ¼ r/tl, �v0 is the nondimensional pertur-
bation velocity in the r̄ direction, and all of the other quantities are the same as
before. For the axisymmetric flow described by Eqs. (4.84) and (4.85), a stream
function c can be defined as

@c

@�r
¼ �r �r (4:87)

@c

@�x
¼ ��r �r�v0 (4:88)

A derivation similar to that for Eq. (4.83) leads to the following equation for
axisymmetric flow (the derivation is left to the reader as homework problem 4.6):

(c�r)
2c�x�x � 2c�xc�rc�x�r þ (c�x)2c�r�r

¼
(c�r)

gþ1

�rg�1
gv c�r�r �

c�r

�r

� �
þ v0(c�r)

2

� � (4:89)

Equation (4.89) is the axisymmetric analog to Eq. (4.83). As before, it is a
single equation in terms of one unknown, namely, c. In principle, Eq. (4.89) is
easier to solve than the original coupled system of three equations, namely,
Eqs. (4.84–4.86).

We will illustrate a solution of Eq. (4.89) for the case of flow over a slender
right-circular cone at zero angle of attack. For this case, we take advantage of

132 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



the nature of conical flow, namely, that flow properties are constant along any ray
emanating from the cone vertex. Consider the sketch shown in Fig. 4.7. Along
any ray making a slope r/x with respect to the centerline, the flow properties
are constant. For this ray, we define a conical variable �u such that

�u ;
�r

�x
¼

r

tx
(4:90)

In addition, for conical flow the stream function c(x̄, r̄) can be expressed as a
function of x̄ and �u through Eq. (4.90), where r̄ ¼ x̄ �u. A proper form for
c ¼ c(x̄, �u) applicable to conical flow is

c ¼ �x2f (�u) (4:91)

An intuitive justification for Eq. (4.91) can be obtained from Fig. 4.7. Recall that
for two-dimensional flow the difference in c between two streamlines is equal to
the mass flow between these streamlines; for an axisymmetric flow the difference
in c between two stream surfaces (designated 1 and 2 in Fig. 4.7) is equal to the
mass flow between these surfaces. This mass flow is proportional to the circular
ring of area between stream surfaces 1 and 2, which in turn is proportional to r2

and thus to r̄2. Hence, it makes sense to define the stream function as c ¼ r̄2g(�u),
where r̄2 is proportional to the area, and g( �u) yields the flow properties
necessary to complete the mass flow expression. However, because r̄ ¼ x̄ �u

Fig. 4.7 Flow model for a cone.
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from Eq. (4.90), then c ¼ r̄2g( �u) ¼ x̄2 �u2g( �u) ¼ x̄2f ( �u), which is Eq. (4.91). We
wish to substitute this expression for c into Eq. (4.89). To do so, we need
expressions for the derivatives of c, constructed in the following. In the
process, keep in mind that c ¼ x̄2f ( �u) and that we are essentially transforming
from one set of independent variables, x̄ and r̄, into another set, x̄ and �u, where
x̄ ¼ x̄ and �u ¼ r̄/x̄. For example, from the chain rule
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� �
�x
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� �
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� �
�x

(4:92)

where the subscripts are added to remind the reader what independent variable is
being held constant for each of the partial differentiations. From Eq. (4.91),

@c
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� �
�x

¼ �x 2f 0(�u) (4:93)

where f 0( �u) ; df/d �u. Also, from Eq. (4.90),
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Because x̄ is being held constant in (@x̄/@r̄)x̄, then
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; 0 (4:95)

Substituting Eqs. (4.93–4.95) into Eq. (4.92), and using the subscript notation for
partial derivatives, we have

c�r ¼ �xf 0(�u) (4:96)

Similarly, from the chain rule applied to cr̄,
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Also, from the chain rule
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From Eq. (4.90),

@ �u
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(4:99)

Noting that (@x̄/@r̄)r ¼ 1, and utilizing Eq. (4.99), Eq. (4.98) becomes

c�r�x ¼ ½�xf 00( �u )� �
�r

�x2

� �
þ f 00( �u )

or

c�r�x ¼ �
�r

�x
f 00( �u )þ f 0( �u ) ¼ � �u f 00( �u )þ f 0( �u ) (4:100)

Similarly, from the chain rule,

c�x ;
@c

@�x

� �
�r

¼
@c

@ �u

� �
x

@ �u

@�x

� �
�r

þ
@c

@�x

� �
�u

@�x

@�x

� �
�r

or

c�x ¼ ½�x
2f 0( �u )� �

�r

�x2

� �
þ 2�x f ( �u) ¼ ��rf 0( �u )þ 2�x f ( �u )

or

c�x ¼ ��x �u f 0( �u)þ 2�xf ( �u) (4:101)

Similarly, from the chain rule,

c�x�x ;
@c�x

@�x

� �
r

¼
@c�x

@ �u

� �
�x

@ �u

@�x

� �
�r

þ
@c�x

@�x

� �
�u

@�x

@�x

� �
�r

(4:102)

From Eq. (4.101),

@c�x

@ �u

� �
�x

¼ ��x �u f 00( �u)� �x f 0( �u )þ 2�xf 0( �u )

¼ ��x �uf 00(u)þ �xf 0( �u ) (4:103)

and

@c�x

@�x

� �
�u

¼ � �u f 0( �u )þ 2f ( �u ) (4:104)
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Substituting Eqs. (4.103) and (4.104) into (4.102), we have

c�x�x ¼ ½��x �u f 00( �u )þ �xf 0( �u )� �
�r

�x2

� �
þ 2f ( �u )� �u f 0( �u )

¼
�r

�x
�u f 00( �u )�

�r

�x
f 0( �u )þ 2f ( �u )� �u f 0( �u )

¼ �u
2
f 00( �u )� �u f 0( �u )þ 2f ( �u )� �u f 0( �u )

or

c�x�x ¼
�u

2
f 00( �u )� 2 �u f 0( �u )þ 2f ( �u ) (4:105)

We have now completed all of our derivative transformations. Substituting
Eqs. (4.96), (4.97), (4.100), (4.101), and (4.105) into Eq. (4.89) and noting that
v0 ; dv/d �u ¼ 0 because the entropy, hence v, is constant between the shock
wave and the body, we have

�x2( f 0)2( �u
2
f 00 � 2 �u f 0 þ 2f )� 2(� �x �u f 0 þ 2�xf )(�xf 0)(� �u f 00 þ f 0)

þ (� �x �u f 0 þ 2�xf )2f 00 ¼
(�x)gþ1(f 0)gþ1

(�r)g�1
gv f 00 �

�xf 0

�r

� �� �

Dividing by x̄2 and grouping coefficients of like powers of �u, this becomes

�u
2
½( f 0)2f 00 � 2( f 0)2f 00 þ ( f 0)2f 00� þ �u ½�2( f 0)3 þ 2( f 0)3 þ 4ff 0f 00 � 4ff 0f 00�

þ 2(f 0)2f � 4f (f 0)2 þ 4f 2f 00 ¼
(�x)g�1(f 0)gþ1

(�r)g�1
gv f 00 �

�x

�r
f 0

� �� �

Recalling that r̄/x̄ ¼ �u and noting that the terms within the square brackets cancel
each other, the preceding equation becomes

4( f )2f 00 � 2f ( f 0)2 ¼ gv
( f 0)gþ1

( �u )g�1
f 00 �

f 0

�u

� �

or, rearranging

f 00 �
f 0

�u
¼

2

gv

( �u )g�1f

(f 0)gþ1
½2ff 00 � ( f 0)2� (4:106)

Equation (4.106) is the governing equation for hypersonic flow over a slender
cone. It was obtained from the system of hypersonic small-disturbance equations;
indeed, it replaces that system with a single ordinary differential equation in
terms of one unknown, namely, f ( �u ). When a system of partial differential
equations is replaced by one or more ordinary differential equations in terms
of one independent variable (in this case �u ), then the solution is said to be
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self-similar. Such is the case here. However, this should be no surprise; the
Taylor–Maccoll equation for the exact solution of conical flows (for example,
see [4]) is also an ordinary differential equation. Hence, Eq. (4.106) can be
viewed as the approximate counterpart of the Taylor–Maccoll equation, appli-
cable to hypersonic flow over slender cones.

Question: Why have we gone to such length to obtain Eq. (4.106), when we could more
easily use the exact Taylor–Maccoll results to obtain hypersonic (as well as superso-
nic) flow over cones, as tabulated, for example, in [17] and [18]?

The answer lies in the fact that, in the present section, we are demonstrating an
actual solution of the hypersonic small-disturbance equations, and we have
chosen to treat the case of a cone specifically because an exact solution exists.
In this fashion, by comparing the results we can obtain some feeling for just
how accurate this small-disturbance theory is. Moreover, we will also demon-
strate how the hypersonic small-disturbance theory leads to a closed-form analyti-
cal solution for flows over cones—an advantage not to be enjoyed by the exact
numerical Taylor–Maccoll results. Therefore let us proceed to solve Eq. (4.106).

Our next step in treating Eq. (4.106) is to recall that v ; p̄/r̄g and to recog-
nize that v is a constant for the isentropic conical flow, equal to its value behind
the oblique shock wave. An expression for v can be obtained directly from the
hypersonic shock-wave relations derived in Sec. 4.5. Examine Eqs. (4.52) and
(4.53) for r̄ and p̄, respectively. For flow over a cone, the shock wave is a straight
oblique surface, with a constant transformed slope, that is, in Eqs. (4.52) and
(4.53), (dȳ/dx̄)s is constant. Moreover,

d�y

d�x

� �
s

¼
1

t

dy

dx
(4:107)

But for hypersonic flow over a slender body

dy

dx
¼ tan b � tan uc � t (4:108)

where uc is the cone angle. Combining Eqs. (4.107) and (4.108), we see that

d�y

d�x

� �
s

� 1 (4:109)

Inserting the results of Eq. (4.109) into Eqs. (4.52) and (4.53) and returning to the
definition of v, we obtain

v ¼
�p

�rg
¼

2

gþ 1
1þ

1� g

2gM2
1t

2

� �
g� 1

gþ 1

� �g
1þ

2

(g� 1) M2
1t

2

� �g

Noting that M1t ¼ K, the hypersonic similarity parameter, the preceding
equation can be written as

v ¼
2

gþ 1

g� 1

gþ 1

� �g

1þ
1� g

2gK2

� �
1þ

2

(g� 1)K2

� �g
(4:110)
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Clearly, v ¼ v(K); it is a constant for a given flow with a given value of K.
Reflecting again on Eq. (4.106), the solution to the flowfield in the form of
f ( �u ) will depend on K as a parameter because v in Eq. (4.106) is a function
of K. This is yet another example of the close relationship between solutions
of the hypersonic small-disturbance equations, hypersonic similarity, and the
hypersonic similarity parameter K.

The solution of Eq. (4.106) must satisfy boundary conditions at the body and
behind the shock wave. Let us address these boundary conditions by first noting
the values of �u on the body and at the shock wave. At the body (the surface of the
cone with semiangle uc)

�u ¼ �u c ¼
�rc

�x
¼

rc

tx

However, from Fig. 4.7, rc/x is precisely t. Thus, from the preceding equation,

At the body �u ¼ �u c ¼ 1

At the shock wave, with wave angle b,

�u ¼
�rs

�x
¼

1

t

rs

x
(4:111)

From Fig. 4.7, and noting that, for hypersonic flow over a slender body, b is
small,

rs

x
¼ tanb � b (4:112)

Thus, combining Eqs. (4.111) and (4.112),

�u ¼
1

t
tanb ¼

b

t
(4:113)

From Fig. 4.7, for a slender cone, we note that

t ¼
rc

x
¼ tan uc � uc

Hence, Eq. (4.113) can be written as

At the shock �u ¼ �u s ¼
b

t
¼

b

uc

¼
shock angle

cone angle
(4:113a)

The boundary conditions for Eq. (4.106) are the known values of f (1) at the
surface and f (b/t) and f 0(b/t) at the shock wave. These values are known
as follows. First, at the surface we know (by definition of the stream

138 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



function) that c ¼ 0. From Eq. (4.91) applied at the surface, we have
c ¼ x̄2f ( �u) ¼ x̄2f (1) ¼ 0. Thus, the body boundary condition is

At the body f (1) ¼ 0 (4:114)

At the shock wave, we can obtain values of both f and f 0 by using Eqs. (4.96)
and (4.101) as follows. From Eq. (4.96),

f 0 ¼
c�r

�x
(4:115)

Substituting Eq. (4.115) into Eq. (4.101), we have

c�x ¼ ��rf 0 þ 2�xf ¼ �
�r

�x
c�r þ 2�xf (4:116)

Substituting Eqs. (4.87) and (4.88) into Eq. (4.116), we obtain

��r �r�v0 ¼ �
�r

�x
(�r �r)þ 2�xf

Solving for f,

f ¼
1

2

�r

�x

� �2

�r�
�r

�x

� �
�r�v0

" #
(4:117)

At the shock wave, Eq. (4.117) becomes

f
b

t

� �
¼

�r

2

�rs

�x

� �2

�
�rs

�x

� �
�v0

" #
(4:118)

However, as noted in Eq. (4.113a),

�rs

�x
¼ �u s ¼

b

t

Hence, Eq. (4.118) becomes

At the shock f
b

t

� �
¼

�r

2

b

t

� �2

�
b

t

� �
�v0

" #
(4:119)

To obtain f 0 at the shock, substitute Eq. (4.87) into Eq. (4.96):

f 0 ¼
cr

�x
¼

�r �r

�x
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At the shock, this becomes

f 0
b

t

� �
¼

�rs

�x
�r ¼

b

t

� �
�r

Thus,

At the shock f 0
b

t

� �
¼

b

t

� �
�r (4:120)

In both Eqs. (4.119) and (4.120), the values of r̄ and �v0 are those values immedi-
ately behind the shock wave, given by Eqs. (4.52) and (4.55), respectively. Recal-
ling from Eq. (4.109) that (dȳ/dx̄)s¼ 1 and noting that M1t¼ K, then Eq. (4.52)
becomes

�r ¼
gþ 1

g� 1

1

1þ 2=½(g� 1)K2�

� �
(4:121)

and Eq. (4.55) becomes

�v0 ¼
2

gþ 1
1�

1

K2

� �
(4:122)

In summary, the boundary conditions for Eq. (4.106) are given by Eq. (4.114) at
the body and Eqs. (4.119) and (4.120) at the shock wave, wherein the values of
�r and �v0 in Eqs. (4.119) and (4.120) are given by Eqs. (4.121) and (4.122).

We are now in a position to set up a straightforward numerical solution to
Eq. (4.106) for the hypersonic flow over a slender cone. In most practical
cases, we are interested in the flow over a cone of specified angle uc (or equiva-
lently specified slenderness ratio t) with a specified M1. However, keep in
mind that, within the framework of hypersonic small-disturbance theory, M1

or t individually are not germane; the solutions depend only on the product,
M1t ¼ K. Scan over the equations we are dealing with, namely, Eqs. (4.106),
(4.110), (4.114), and (4.19–4.l22); note that K is the parameter that appears,
not M1 or t by themselves. (t also appears in the ratio b/t, which is one of
the unknowns of the problem—to be obtained as part of the solution.) Therefore,
let us specify the value of K, and set up a numerical solution for this value of K
as follows:

1) Assume a value of b/t (a suggested value might be 1.1 for g ¼ 1.4). Note
that this establishes an assumed value for the shock-wave angle b.

2) Starting at �u ¼ b/t, that is, starting at the shock wave, with boundary
values of f (b/t) and f 0(b/t) given by Eqs. (4.119) and (4.120), respectively,
numerically integrate Eq. (4.106) in steps of (2D �u), that is, in the direction
of decreasing �u, that is, starting at the shock wave, integrate Eq. (4.106) in the
direction toward the body. This integration can be carried out by any standard
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numerical technique for a nonlinear ordinary differential equation, such as the
Runge–Kutta method.

3) Continue this integration until �u reaches the value �u ¼ 1. Then check to
see if the body boundary condition (4.114) is satisfied; that is, is the relation
f (1) ¼ 0 satisfied by the numerical integration? If not, assume a new value
of b/t, and repeat steps 2 and 3. Repeat this process until the proper value of
b/t is found such that f (1) ¼ 0.

4) We have now arrived at the final result. For the specified value of K, we
have found the ratio of wave angle to cone angle b/t, and we have obtained
numerical values of f and f 0 between the shock (where �u ¼ b/t) and the body
(where �u ¼ 1).

After the preceding numerical procedure is completed, the conventional flow-
field variables can be obtained from f and f 0. For example, from Eqs. (4.77),
(4.78), and (4.96), we can obtain the pressure as

�p ¼ v�rg ¼ v
c�r

�r

� �g
¼ v

�xf 0

�r

� �g

¼ v
f 0

�u

� �g

(4:123)

In turn, the pressure coefficient can be obtained from

Cp ¼
2

gM 2
1

p

p1

� 1

� �
¼

2

gM 2
1

p

p1gM 2
1t

2
(gM 2

1t
2)� 1

� �

¼
2

gM2
1

½�p(gM2
1t

2)� 1�

Dividing by t2, and noting that K ¼ M1t, the preceding equation becomes

Cp

t 2
¼

2

gK 2
(gK2 �p� 1)

Substituting Eq. (4.123) into the preceding, we obtain

Cp

t 2
¼

2

gK 2
gK2v

f 0

�u

� �g
�1

� �
(4:124)

The pressure coefficient on the cone surface can be obtained by inserting �u ¼ 1
and the numerically obtained value of f 0(1) into Eq. (4.124).

A numerical solution to the preceding problem was first obtained by Van Dyke
[30]. Van Dyke’s formulation differs from our preceding derivation in that he
defines K as M1b and utilizes b instead of t in the nondimensional variables.
This has an advantage in the numerical solution of Eq. (4.106) because his
conical coordinate is defined as r/bx [in contrast to our r/tx, from Eq. (4.90)].
In turn, r/bx at the shock wave is unity, and hence f (1) and f 0(1) denote values
at the shock wave, in contrast to our formulation where f (b/t) and f 0(b/t)
denote values at the shock wave. Because b/t is an unknown, we were led to
an iterative numerical solution, assuming values of b/t until we converged on
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the proper body boundary condition. In Van Dyke’s approach, no iteration is
necessary; starting with f (1) and f 0(1) at the shock, he simply integrates until
f ¼ 0 (the body boundary condition). The value of his conical coordinate at
f ¼ 0 yields the ratio of wave angle to cone angle. For pedagogical reasons,
we have deliberately chosen not to follow Van Dyke in this regard; instead, we
maintained a consistent usage of the body slenderness ratio t (instead of b),
and K ¼ M1t, throughout our development, because such usage was introduced
right from the beginning of this chapter having to do with hypersonic similarity,
where K was initially defined as M1t (not M1b). Moreover, in practical appli-
cations, involving a given body, we know t, while b is usually an unknown;
hence, the practical hypersonic similarity parameter is M1t, not M1b. Of
course, in the final solution the flowfield results are the same, no matter which
approach is taken.

Figure 4.8 shows the final results for Cp/t
2 on the surface of the cone, as

reported in [30]. Note from our numerical solution that a specific value of Cp/t
2

on the cone corresponds to the specified value of K. When another value of K
is chosen, another value of Cp/t

2 is obtained from the solution, that is, Cp/t
2

is a function of K, as known from our previous work. This function is given by
the numerical results shown in Fig. 4.8, where Cp/t

2 is plotted vs K ¼ M1t.
The upper line is the present numerical solution; the two lower lines are exact
conical flow results from Kopal [17] for cones of 10- and 15-half-angles. (The
solid circles in Fig. 4.8 correspond to a closed-form analytical expression, to
be discussed subsequently.) The value of Fig. 4.8 is that it illustrates the
degree of accuracy of the hypersonic small-disturbance theory when compared
with exact results; reasonable accuracy is indeed obtained over a wide range of
values of K. The agreement is better for the more slender cone, as expected.
Recall our earlier statement that the application of hypersonic small-disturbance

Fig. 4.8 Cone surface pressure: comparison between exact theory [17], hypersonic

small-disturbance theory [30], and analytical formula [31].
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theory to the flow over a cone is given here partly as an academic exercise—an
exercise to demonstrate for a relatively simple flow what the hypersonic
small-disturbance theory is all about.

There is another reason for treating the case of a cone. For this case, the hyper-
sonic small-disturbance theory leads to a closed-form analytical result for Cp and
b for a given t and M1. This now becomes much more than just an academic
exercise because a closed-form analytic result for Cp for hypersonic flow over
cones allows some very practical engineering calculations. For example, the
tangent-cone method discussed in Sec. 3.6 becomes even simpler and more
useful if we have a formula for Cp on a cone, rather than constantly having to
look up values in the Kopal tables [17]. Moreover, for certain optimization
studies of hypersonic vehicles using the calculus of variations, a closed-form
expression for Cp is absolutely necessary. Therefore, we will end this section
by discussing such closed-form results, thus illustrating one of the most useful
advantages of hypersonic small-disturbance theory.

Starting with Eq. (4.106), Rasmussen [31] integrated twice from the shock
wave, obtaining an integral equation for f (u). By successive approximation,
this led to closed-form analytical expressions for both f ( �u) and f 0(u) as functions
of �u. The details are described in [31], which the reader is encouraged to examine;
hence, no further elaboration will be given here. Utilizing the fact that f (ū)¼ 0 at
the body surface, Rasmussen obtained the following closed-form expression for
the shock-wave angle:

Kb ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

2
þ

1

K2

r
(4:125)

where Kb ¼ M1b. Furthermore, by substituting his closed-form result for f 0( �u )
into Eq. (4.124) Rasmussen obtained the following expression for the pressure
coefficient on a cone:

Cp

u2
c

¼ 1þ
(gþ 1)K2 þ 2

(g� 1)K2 þ 2
ln

gþ 1

2
þ

1

K2

� �
(4:126)

In his analysis, Rasmussen approximated t ¼ tan uc by uc itself; hence, in
Eq. (4.126), K ¼ M1uc. Results from Eq. (4.126) are plotted as the solid
circles in Fig. 4.8. Note that Eq. (4.126) agrees well with the numerical
results of Van Dyke when K . 1. Rasmussen observed that Eq. (4.126) agrees
well with the exact cone results (say, from Kopal [17]) when t is small and
M1 is large; however, better agreement for larger values of t is obtained
when t � uc is replaced by sinuc. These results are shown in Fig. 4.9, where
Cp/sin2uc is plotted vs M1 sinuc. The open symbols are exact results from
Kopal, and the solid line is from Eq. (4.126), with uc replaced by sinuc.
Excellent agreement is obtained, even for a reasonably large cone semi-angle
of 30 deg.
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Doty and Rasmussen [32] extended this work to include angle-of-attack
effects. Defining the normal-force coefficient as

CN ¼
N

1
2
r1V2

1A

where A ¼ base area, a closed-form expression for the slope of the moment co-
efficient curve dCN/da was obtained in the following form:

1

cos2u

dCN

da

� �
¼

1

10(1� 10)

8

gþ 1
þ (1þ g) 10 �

gþ 5

gþ 1

� �

�
1� g

2

� �
(1� 10)2 1þ

1þ 1

1
1=2
0

ln
1þ 1

1=2
0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 10

p

 !" #
(4:127)

where

10 ¼
2þ (g� 1)M2

1 sin2u

2þ (gþ 1)M2
1 sin2u

Fig. 4.9 Cone surface pressure: comparison of Rasmussen’s formula [31] with exact

results [17].
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and

g ¼
gN

gD

gN ¼ (5� 10)(1� 10)� 2(2� 10)
10 � (g� 3)

(gþ 1)
� ln

1þ 1
1=2
0

(1� 10)1=2

(1� 10)3

1
1=2
0

gD ¼ 5(1� 10)2 þ 2(2� 10)
10 � (gþ 5)

(gþ 1)
� ln

1þ 1
1=2
0

(1� 10)1=2

(1� 10)3

1
1=2
0

The results for dCN/da are shown in Fig. 4.10, where Eq. (4.127) is compared
with the results of Sims [33].

A further extension to elliptic cones at angle of attack is made in [34], which
should be consulted for details.

4.7 Comment on Hypersonic Small-Disturbance Theory

Small-disturbance (small-perturbation) theories abound in aerodynamics. In
the areas of subsonic and supersonic aerodynamics, the small-perturbation

Fig. 4.10 Slope of the normal-force coefficient for slender cones. Comparison

between Rasmussen’s formula and exact results.
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approach leads to linear theories, with correspondingly simple results
(for example, see [4] and [5]). In contrast, hypersonic flow is inherently
nonlinear—even the small-perturbation theory for hypersonic flow is nonlinear.
As a consequence, the hypersonic small-disturbance theory is more elaborate
and leads to more complex results. For proof, just compare the lengthy discus-
sions we have presented in this chapter with the analogous simple discussions
for subsonic and supersonic flow that you can find in standard textbooks, such
as [4] and [5]. However, in spite of its nonlinearity, hypersonic small-disturbance
theory does provide useful results for the analysis of hypersonic flow over slender
bodies—witness the principle of hypersonic similarity (Sec. 4.5), the self-similar
solutions obtained in Sec. 4.6, as well as the closed-form analytical expressions
presented at the end of Sec. 4.6. For these reasons, hypersonic small-disturbance
theory occupies a relatively high status within the general class of approximate
flowfield solutions for hypersonic flow.

Referring to our road map in Fig. 1.24, we now leave this subject, and for the
remainder of this chapter we move on to two other approximate hypersonic flowfield
methods, namely, blast-wave theory and thin shock-layer theory. Also, in regard
to our chapter road map in Fig. 4.1, we continue to travel down the center section.

4.8 Hypersonic Equivalence Principle and Blast-Wave Theory

Return to the Euler equations given in Sec. 4.2, namely, Eqs. (4.1–4.5) and (4.6).
Let us write these equations for an unsteady, two-dimensional flow in the y-z plane.
(Note that in our previous work, the x axis is in the freestream direction; hence, the
y-z plane is perpendicular to the freestream direction.) Because we are dealing with
flow in the y-z plane only, u ¼ 0 in Eqs. (4.1–4.4) and (4.6), yielding

@r

@t
þ
@(rv)

@y
þ
@(rw)

@z
¼ 0 (4:128)

r
@v

@t
þ rv

@v

@y
þ rw

@v

@z
¼ �

@p

@y
(4:129)

r
@w

@t
þ rv

@w

@y
þ rw

@w

@z
¼ �

@p

@z
(4:130)
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p
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@
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p
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� �
þ w

@

@z

p

rg

� �
¼ 0 (4:131)

Let us nondimensionalize these equations as follows. Let

~r ¼
r

r1

~v ¼
v

V1

~w ¼
w

V1

~p ¼
p

r1V 2
1

~t ¼
t

(l=V1)
~y ¼

y

l
~z ¼

z

l

In the preceding, r1 and V1 can be treated as reference quantities. You might ask
what physical meaning they have in terms of an unsteady two-dimensional flow in
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the y-z plane. Indeed, there is no physical meaning necessary here; both r1 and V1

are just reference quantities. However, we will use r1 and V1 as we have before,
namely, r1 is some freestream density and V1 is some freestream velocity in the
x direction, and their physical connection with the unsteady two-dimensional flow
in the y-z plane will be made later. Then Eqs. (4.128–4.131) become

@~r

@~t
þ
@(~r~v)

@~y
þ
@(~r ~w)

@~z
¼ 0 (4:132)

~r
@~v

@~t
þ ~r~v

@~v

@~y
þ ~r ~w

@~v

@~z
¼ �

@~p

@~y
(4:133)

~r
@ ~w

@~t
þ ~r~v

@ ~w

@~y
þ ~r ~w

@ ~w

@~z
¼ �

@~r

@~z
(4:134)
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~p
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� �
þ ~v

@

@~y

~p

~rg

� �
þ ~w

@

@~z

~p

~rg

� �
¼ 0 (4:135)

Now, with Eqs. (4.132–4.135) in sight, turn back to Eqs. (4.41–4.45), and compare
these two sets of equations; note that, other than slightly different symbols, they
are identical sets of partial differential equations. On one hand, Eqs. (4.41–4.45)
are the hypersonic small-disturbance equations, which govern the steady,
three-dimensional flow over a hypersonic slender body. On the other hand, Eqs.
(4.132–4.135) govern an unsteady, two-dimensional flow. However, because the
sets of equations for these two cases are identical, there obviously is an equivalence
between these two types of flow. This is the mathematical justification for the
hypersonic equivalence principle, which can be traced back to Hayes in [29].
Simply stated, we have: the hypersonic equivalence principle: the steady hypersonic
flow over a slender body is equivalent to an unsteady flow in one less space dimen-
sion. Furthermore, examining these two sets of equations further, note that the
symbols x̄ in Eqs. (4.41–4.45) and ~t in Eqs. (4.132–4.135) are equivalent, that is,

�x ¼
x

l
¼ ~t ¼

tV1

l
(4:136)

Thus, from Eq. (4.136), we have

x ¼ V1t (4:137)

Equation (4.137) is useful in the physical interpretation of the hypersonic equiv-
alence principle, to be discussed next.

The preceding equivalence was established mathematically. It can be estab-
lished on a physical basis, as well. To see this, consider the sketch shown in
Fig. 4.11. Visualize a fixed (y-z) plane perpendicular to the page, as illustrated
by the vertical lines at the left. A hypersonic body moving at velocity V1 pene-
trates this plane. (In Fig. 4.11, the body is shown as a body of revolution, but, in
general, the body can have an arbitrary cross section.) The trace of the body and
its shock wave on the y-z plane at three separate times is shown at the right of

HYPERSONIC INVISCID FLOWFIELDS 147



Fig. 4.11. In the y-z plane, the changing body shape looks like an expanding
cylindrical piston moving at velocity wb, driving a cylindrical shock outward
at velocity ws. Because of the hypersonic equivalence principle, the unsteady
flow in the y-z plane at the right of Fig. 4.11 shown at various times t ¼ t1, t2,
etc., gives the corresponding steady flow results in the y-z planes located at
various corresponding values of x ¼ x1, x2, etc., shown at the left, where
x ¼ V1t. Therefore, we see how the steady hypersonic flow over a body (the left-
hand side of Fig. 4.11) can be constructed from an unsteady flow in one less
space dimension (the right-hand side of Fig. 4.11).

Question: What is the practical advantage of this equivalence?

Fig. 4.11 Illustration of the hypersonic equivalence principle; three-dimensional

steady flow and an equivalent two-dimensional unsteady flow.
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The answer lies in the fact that solutions of the unsteady one-dimensional flow
driven by a moving flat-faced piston and the unsteady two-dimensional flow
driven by a radially expanding circular piston (the case shown at the right in
Fig. 4.11) exist in the classical literature. An excellent source for these classical
solutions is the book by Sedov [35]. These solutions are carried out by self-
similar methods, wherein Eqs. (4.132–4.135) are reduced to a simpler set of
ordinary differential equations. We will not go into the lengthy details here;
see [35] for a discussion of these self-similar solutions. The important point
here is that a solution to the unsteady flow shown at the right of Fig. 4.11 does
indeed exist in the literature, and because of the hypersonic equivalence principle
this solution can be carried over directly to the hypersonic steady flow shown at
the left of Fig. 4.11. Moreover, solutions to the classical unsteady flow problem
existed before the advent of major interest in hypersonic aerodynamics in the
1950s and therefore were waiting there, in the literature, to be of help to hyper-
sonic aerodynamicists when the time came.

To further illustrate the hypersonic equivalence principle, consider a simpler
case, for example, the flow over a two-dimensional airfoil with chord length c, as
shown at the left of Fig. 4.12 (obtained from [8]). As the airfoil penetrates the
fixed vertical plane (fixed vertical slit), the body motion acts like a one-
dimensional piston moving in the z direction. This piston motion is shown in
the z–t wave diagram at the right of Fig. 4.12. Note that, as the airfoil passes
through the vertical plane, the equivalent piston motion is first toward increasing
z, reaching a maximum z (corresponding to the maximum airfoil thickness), and
then retreating toward decreasing z. The resulting unsteady shock and Mach
waves are shown in the z–t wave diagram on the right of Fig. 4.12. These
waves are directly equivalent to the steady shock and Mach waves over
the airfoil, on the left side of Fig. 4.12, where again x ¼ V1t. As before, the
known, classical solution of the unsteady one-dimensional flow shown on the

Fig. 4.12 Illustration of the hypersonic equivalence principle; two-dimensional

steady flow and an equivalent one-dimensional unsteady flow [8].
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right can be carried over directly to construct the steady two-dimensional flow on
the left. Note that if the airfoil shape is given by

z ¼ zmax f
x

c

� 	

then the equivalent piston motion is

z ¼ zmax f
t

t0

� �

where t is measured from the instant the leading edge of the airfoil contacts the
vertical plane and t0 is the duration of piston motion, t0 ¼ c/V1. Also, in the
steady flow picture shown at the left, let wb be the value of the vertical component
of the flow velocity on the body surface where the slope of the body is dz/dx:

wb ¼ V1

dz

dx
(4:138)

Through the equivalence principle, this is exactly the same as the flow velocity in
the z direction adjacent to the face of the piston in the unsteady flow picture wp,
where

wp ¼
dz

dt
(4:139)

Because x ¼ V1t, we have from Eqs. (4.138) and (4.139),

wb ¼ V1

dz

dx
¼

V1

V1

dz

dt
¼ wp

which is consistent with the equivalence principle, namely, the piston velocity is
the same as the vertical velocity of the body surface as seen from the fixed ver-
tical plane penetrated by the body. If we divide Eq. (4.138) by the freestream
speed of sound a1, we obtain

wb

a1

¼
V1

a1

dz

dx

� �
¼ M1 tan u (4:140)

where u is the local inclination angle of the surface. For small u, tan u ¼ u. More-
over, the order of umax is on the order of zmax/c. From Eq. (4.140), we obtain

wb

a1

� �
max

¼
wp

a1

� �
max

¼ M1umax ¼ O M1

zmax

c

� 	
(4:141)

If we consider zmax/c as a measure of the slenderness ratio of the airfoil, that is,
zmax/c ¼ t, then, from Eq. (4.141),

wb

a1

� �
max

¼
wp

a1

� �
max

¼ O½K� (4:142)

150 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



where K ¼ M1t is the familiar hypersonic similarity parameter. Equation (4.142)
indicates two points:

1) The conditions for the hypersonic equivalence principle are the same as
those for hypersonic similarity, which makes absolute sense considering that
the hypersonic small-disturbance equations are the basis for both lines of
thought.

2) The hypersonic similarity parameter K can be given some physical
significance on its own, namely, that it is on the same order as the maximum-
disturbance Mach number in the shock layer. (This has already been demon-
strated for all practical purposes in our previous discussions involving K; the
present development is simply a reinforcement.)

An important variation on the hypersonic equivalence principle is the appli-
cation of blast-wave theory. Returning to the right side of Fig. 4.11, note that
the unsteady shock-wave motion and ensuing flowfield are driven mechanically
by an expanding piston. A similar unsteady flow can also be driven by the instan-
taneous release of energy at the origin, as sketched on the right of Fig. 4.13. Here,
at time t ¼ 0, a large amount of energy is released at a point in the y-z plane. A
strong cylindrical shock wave propagates from the point of energy release. It can
be argued that the unsteady two-dimensional flow shown at the right of Fig. 4.13
is equivalent to the steady three-dimensional flow over a blunt-nosed slender

Fig. 4.13 Blast-wave analogy for a blunt-nosed cylinder.
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body, where the blunt nose, in “blasting through” the fixed vertical plane, pro-
vides the equivalent instantaneous energy release shown on the right. Results
obtained from this equivalency are called blast-wave results. Such results have
been used to estimate the pressure distribution on axisymmetric blunt-nosed
cylinders at hypersonic speeds, with the cylindrical axis aligned in the direction
of the flow as sketched on the left in Fig. 4.13. Blast-wave results have also been
used to estimate the pressure distribution on two-dimensional slabs with blunt
leading edges in hypersonic flow; such a body is sketched on the left of
Fig. 4.14. Here, the blunt nose, in blasting through the vertical y-z plane, rep-
resents a concentrated line of energy release, which drives planar shock waves
in both the upward and downward directions, as sketched on the right of
Fig. 4.14. The shock waves shown on the right of both Figs. 4.13 and 4.14 are
called blast waves because they are created in both cases by the instantaneous
release of large amounts of energy, as would be the case of a concentrated
explosion, or blast. In these applications, the blast-wave results provide pressure
distributions on the flat surface downstream of the blunt nose as well as shock-
wave shapes in the same region; the pressure distribution and flowfield in the
nose region itself is quite another problem and is not provided by blast-wave
theory. (The detailed blunt-body flowfield is discussed in Chapter 5.)

Fig. 4.14 Blast-wave analogy for a blunt-nosed slab.
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In the blast-wave analogy, the energy that is released (the right side of Figs.
4.13 and 4.14) is related to the wave drag of the nose, as follows. Consider the
blunt-nosed flat plate shown in Fig. 4.15. Let D be the wave drag of the nose
per unit span. The plate moves through a slab of air, which has thickness dx in
the direction of flight and has unit length in the spanwise direction. Drag is the
force exerted on the body by the air; in turn, because of Newton’s third law,
the body exerts a force on the air in the equal and opposite direction, namely,
D. Hence, the body does work on the air equal to D dx. Because work is
energy, then the amount of energy per unit span deposited in the air is dE, where

dE ¼ D dx (4:143)

If we let the body move a unit distance in the x direction, then from Eq. (4.143)
the energy released to the air is

E ¼ D(1) ¼ D (4:143a)

From Eq. (4.143), we see that the nose drag is equal to E. In turn, from Fig. 4.15
considering a unit span and a unit length in the x direction, we see that E is the
energy released over a horizontal plane of unit area; that is, E is the energy
release per unit area. In the one-dimensional unsteady blast-wave problem
sketched on the right of Fig. 4.14, we visualize that the line of energy release
shown is in reality an infinite sheet of energy release, where the sheet is

Fig. 4.15 Equivalence between nose drag and blast-wave energy; blunt-nosed slab.
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perpendicular to the page. In turn, the blast waves in this picture are planar waves
perpendicular to the page, of infinite extent, and propagating both upward and
downward. Hence, in this picture, from Eq. (4.143), E represents the energy
released per unit area of this sheet, and in turn E ¼ D, where D is the nose
drag of the body per unit span. For the case of the blunt-nosed cylinder shown
in Fig. 4.13, the nose drag and the energy release are also related, as follows. Con-
sider the axisymmetric cylinder moving in the x direction, as shown in Fig. 4.16.
The body moves through a cylindrical slab of air of thickness dx. From the same
argument as just shown, the nose drag D of the body adds energy to this cylind-
rical slab, equal to

dE ¼ D dx

Thus, when the body moves a unit length in the x direction, the energy released to
the air is

E ¼ D(1) ¼ D (4:143b)

So once again we see that the energy release is equal to the nose drag; however,
here E represents the energy release per unit length along the x axis (in contrast to
the energy release per unit area in the case of the two-dimensional slab). Return-
ing to the blunt-nosed cylinder shown in Fig. 4.13, we visualize that the blast at
the origin shown at the right is in reality a blast concentrated along an infinite line
perpendicular to the page and that E is the energy release per unit length along
this line. The shock wave generated by this energy release is a cylindrical blast
wave, propagating outward in the radial direction, and extending to an infinite
extent perpendicular to the page. From the preceding arguments, we have
shown that the nose drag D is equal to the energy release per unit length E.

Return to Figs. 4.13 and 4.14. The advantage of the blast-wave analogy is that
solutions to the unsteady blast-wave problem (the right sides of Figs. 4.13 and
4.14) can be found in the classical literature and hence can be immediately

Fig. 4.16 Sketch for the blunt-nosed cylinder.
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transferred to the steady hypersonic flows shown at the left of Figs. 4.13 and 4.14.
As in our earlier discussion involving the unsteady piston problem, such
blast-wave solutions can be obtained from self-similar solutions involving ordin-
ary differential equations. A detailed presentation of these solutions is given in
Chapter 4 of Sedov [35], which the reader is encouraged to examine. In [35] treat-
ments are given for spherical, cylindrical, and planer blast waves; only the latter
two are germane to Figs. 4.13 and 4.14, respectively. It is beyond the scope of the
present book to go into the lengthy details of these unsteady blast-wave solutions.
However, in the case of very intense explosions, where the pressure ahead of the
blast wave can be neglected in comparison with the pressure behind the wave,
analytic, asymptotic formulas for velocity, density, and pressure near the
center of the explosion can be obtained. Of most interest to us is the pressure,
given in [35] for the cylindrical blast wave (Fig. 4.13) as

p ¼ k1r1

E

r1

� �1=2

t�1 (4:144a)

where

k1 ¼
g ½2(g�1)=(2�g)�

2½(4�g)=(2�g)�
(4:144b)

and for the planar blast wave (Fig. 4.14) as

p ¼ k2r1

E

r1

� �2=3

t�2=3 (4:145a)

where

k2 ¼
27=3(2g� 1)½(5g�4)=3(2�g)�

9(gþ 1)½2(gþ1)=3(2�g)�
(4:145b)

Equations (4.144a) and (4.145a) give the pressure near the center of the blast as a
function of time t, with the energy release E as a parameter. In addition, let the
coordinate of the shock wave be denoted by r; for the cylindrical blast wave r
is the radial coordinate of the wave, whereas for the planer blast wave r is the
vertical coordinate of the wave. From [35] we find that, for the cylindrical
blast wave,

r ¼
E

r1

� �1=4

t1=2 (4:146)
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and for the planar blast wave,

r ¼
E

r1

� �1=3

t2=3 (4:147)

Therefore, we can look upon Eqs. (4.144–4.147) as solutions to the flows shown
at the right of Figs. 4.13 and 4.14. Let us now obtain the equivalent results for the
steady hypersonic flows shown on the left of Figs. 4.13 and 4.14.

First, consider the cylindrical case shown in Fig. 4.13. In Eq. (4.144a), E is the
energy release per unit length along the axis of the cylindrical shock wave; as
shown by Eq. (4.143b), E ¼ D. Because D is the nose drag, let us define a nose-
drag coefficient CD as CD ¼ D/q1S, where q1 ¼

1
2
r1V 2

1 and S ¼ pd2/4. Here,
r1 and V1 are the freestream density and velocity, respectively, for the body
shown at the left of Fig. 4.12, and d is the base diameter of the body. Thus,
from Eq. (4.143b) we have

E ¼ D ¼
1

2
r1V 2

1CD

pd 2

4
(4:148)

Also, from the equivalence principle as embodied in Eq. (4.137), we have

t ¼
x

V1

(4:149)

Substituting Eqs. (4.148) and (4.149) into (4.144a), we obtain

p ¼ kr1

ffiffiffiffi
p

8

r
V1d

ffiffiffiffiffiffi
CD

p V1

x

Recalling the perfect-gas equation of state, namely, p1 ¼ r1RT1, the preceding
equation can be written as

p ¼ k
gp1

gRT1

ffiffiffiffi
p

8

r
V 2

1

ffiffiffiffiffiffi
CD

p x

d

� 	�1

Recognizing gRT1 ¼ a1
2 , where a1 is the freestream speed of sound, and noting

that V1/a1 ¼ M1, the preceding equation becomes, for g ¼ 1.4,

p

p1

¼ 0:8773kM2
1

ffiffiffiffiffiffi
CD

p x

d

� 	�1

(4:150)
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From Eq. (4.144b), for g ¼ 1.4, k ¼ 0.07768. Thus, Eq. (4.150) becomes the
blunt cylinder:

p

p1

¼ 0:0681M2
1

ffiffiffiffiffiffi
CD

p

(x=d )
(4:151)

Inserting Eqs. (4.148) and (4.149) into Eq. (4.146), we have

r ¼
1

2
V 2

1CD

pd 2

4

� �1=4
x

V1

� �1=2

or

r

d
¼

p

8

� 	1=4
C

1=4
D

ffiffiffi
x

d

r

or blunt cylinder:

r

d
¼ 0:792C

1=4
D

ffiffiffi
x

d

r
(4:152)

Again examining the left side of Fig. 4.13, we note that the pressure distribution
downstream of the nose of the blunt-nosed cylinder is given by Eq. (4.151) as a
function of x. Moreover, the shape of the shock wave is given by Eq. (4.152) as a
function of x. Equations (4.151) and (4.152) are blast-wave results, applied to the
steady flow over the blunt-nosed cylinder via the hypersonic equivalence principle.

Next, consider the planar case shown in Fig. 4.14. In Eq. (4.145a), E is the
energy release per unit area of the plane perpendicular to the page; as shown
by Eq. (4.143a), E ¼ D. For the blunt-nosed slab shown on the left of
Fig. 4.14, let us define a nose-drag coefficient as CD ¼ D/q1S, where, as
before q1 ¼

1
2
r1V 2

1, but now S ¼ d(1) ¼ d, namely, the base area per unit
span. Thus, from Eq. (4.143a),

E ¼ D ¼ 1
2
r1V 2

1dCD (4:153)

Using Eqs. (4.153) and (4.149) along with Eqs. (4.145a), (4.145b), and (4.147),
we obtain, for g ¼ 1.4 (the details are left as a homework problem), the following.

Blunt slab:

p

p1

¼ 0:127M2
1C

2=3
D

x

d

� 	�2=3

(4:154)
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and blunt slab:

r

d
¼ 0:794C

1=3
D

x

d

� 	2=3
(4:155)

Examining the preceding results further, we note the following, for the blunt-
nosed cylinder:

1) From Eq. (4.151), the pressure distribution varies inversely with x.
2) From Eq. (4.152), the shock-wave shape varies as x1/2, that is, it is a para-

bolic shape.
Also, for the blunt-nosed slab, we note the following:
1) From Eq. (4.154), the pressure distribution varies inversely as x2/3.
2) From Eq. (4.155), the shock-wave shape varies as x2/3.
Also observe that p/p1 for both cases varies with the square of the freestream

Mach number and that all of the results depend on CD to some power. Recall
again that CD is the nose-drag coefficient. We can estimate the values of CD

from Newtonian theory as given in Sec. 3.2. Specifically, as noted in Sec. 3.2
for a hemicylindrical nose (the blunt slab case) CD ¼

4
3
, and for a hemispherical

nose (the blunt-nosed cylinder case) CD ¼ 1. Also, recall again that the preceding
blast-wave results are to be applied downstream of the nose of the body, although
x in the preceding equations is measured from the tip of the body. Blast-wave
theory cannot be applied to obtain detailed results on the nose itself; this
region must be analyzed by detailed numerical solutions, such as to be discussed
in Chapter 5.

Question: How accurate is blast-wave theory as applied to hypersonic bodies?

One of the most definitive answers to this is given by Lukasiewicz [36]. Uti-
lizing the blast-wave results of Sakuri [37] and [38], Lukasiewicz compared
theory with wind-tunnel data for blunt-nosed flat plates and cylinders. Sakurai
[37] and [38] obtained two sets of blast-wave results, identified as first and
second approximations. The first approximation, which ignores the freestream
pressure ahead of the blast wave, gives the results described by Eqs. (4.151),
(4.152), (4.154), and (4.155). The second approximation takes into account a
finite pressure ahead of the blast wave. These results, as applied by Lukasiewicz
[36], are listed next, note that the first approximation results are the same as
obtained earlier, with only negligible differences in the leading coefficients.
From [36], we have the following.

Blunt-nosed f lat plate (first approximation):

p

p1

¼ 0:121M2
1

CD

x=d

� �2=3

(4:156)

r

d
¼ 0:774C

1=3
D

x

d

� 	2=3

(4:157)
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Blunt-nosed flat plate (second approximation):

p

p1

¼ 0:121M2
1

CD

x=d

� �2=3

þ 0:56 (4:158)

r

d

� 	
=(M2

1CD) ¼
0:774

M2
1½CD=(x=d)�2=3

� 1:09
(4:159)

Blunt-nosed cylinder (first approximation):

p

p1

¼ 0:067M2
1

ffiffiffiffiffiffi
CD

p

(x=d)
(4:160)

r

d
¼ 0:795C

1=4
D

x

d

� 	1=2

(4:161)

Blunt-nosed cylinder (second approximation):

p

p1

¼ 0:067M2
1

ffiffiffiffiffiffi
CD

p

(x=d)
þ 0:44 (4:162)

r=d

M1C
1=2
D

¼ 0:795

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x=d )

M2
1C

1=2
D

1þ 3:15
(x=d )

(M2
1C

1=2
D )

" #vuut (4:163)

where

x ¼ distance measured from the nose, in the flow direction
CD ¼ wave drag coefficient of the nose

d ¼ plate thickness or cylinder diameter
r ¼ value of z at the shock wave

Lukasiewicz [36] compared the preceding equations (4.156–4.163) with
experimental data obtained at the Arnold Engineering Development Center
(AEDC) and with more exact theoretical results based on the method of charac-
teristics. Some of his comparisons are shown in Figs. 4.17–4.24. In Fig. 4.17,
results are given for the pressure distribution over a fiat plate with a cylindrical
leading edge. Note that the first approximation, Eq. (4.156), compares more
favorably with the wind-tunnel data than the second approximation,
Eq. (4.158). However, as shown by the solid curve in Fig. 4.17, the second
approximation can be brought into close agreement with the data if the origin
of the x axis, namely, the point at which x ¼ 0, is taken not at the nose of the
body, but rather at a location 2

3
d upstream of the nose. In Fig. 4.18, the data in

Fig. 4.17 are plotted vs the blast analogy parameter (x/d)2/3/M1
2 CD

2/3, along
with additional results obtained from the method of characteristics as described
in [39] and [40]. Also shown as the dashed line is a simple correlation of the
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Fig. 4.17 Pressure distribution on a blunt-nosed flat plate (from Lukasiewicz [36]).

Fig. 4.18 Correlation of pressure distribution for a blunt-nosed flat plate (from [36]).
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Fig. 4.19 Shock-wave shape calculated by the method of characteristics and by

blast-wave theory; blunt-nosed flat plate (from [36]).

Fig. 4.20 Correlation of shock-wave shapes; blunt-nosed flat plate (from [36]).
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Fig. 4.21 Pressure distributions on a hemisphere cylinder (from [36]).

Fig. 4.22 Correlation of pressure distributions for a blunt-nosed cylinder (from [36]).
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Fig. 4.23 Shock-wave shape around a blunt-nosed cylinder (from [36]).

Fig. 4.24 Correlation of shock-wave shapes for a blunt-nosed cylinder (from [36]).
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method of characteristic results from [39] and [40], given as

p

p1

¼ 0:117M2
1C

2=3
D

x

d

� 	�2=3

þ 0:732 (4:164)

For the theoretical results shown in Fig. 4.18, the origin is again shifted by the
amount D x ¼ 2

3
d; with this shift, the second approximation [Eq. (4.158)] is

seen to give good agreement with both wind-tunnel data and the method of
characteristics. Moreover, the results in Fig. 4.18 clearly show that the trends
which are predicted by blast-wave theory are confirmed by experiment,
namely, that, for a blunt-nosed flat plate, the pressure distribution p/p1 varies

1) directly as M1
2 ,

2) directly as CD
2/3, and

3) inversely as (x/d )2/3.
Results for shock-wave shapes are shown in Fig. 4.19, where blast-wave

theory is compared with the exact method of characteristics, from [40].
Clearly, the first approximation, Eq. (4.147), gives poorer agreement than the
second approximation, Eq. (4.159), and neither of the blast-wave results is par-
ticularly good. However, Eq. (4.159) appears to predict the proper shape, but it
is simply shifted from the exact results. If the results for both the first and
second approximations are shifted upward by the amount Dr ¼ d, much better
agreement is obtained, as shown in Fig. 4.20. Here, comparison is also made
with the shock-tunnel data of Cheng et al. [41]. The results of Fig. 4.20 tend to
confirm that, for a blunt-nosed flat plate, the shock-wave shape varies

1) directly as CD
1/3, and

2) directly as (x/d)2/3.
Results for the pressure distribution over a hemisphere cylinder are shown in

Fig. 4.21. The first and second approximation blast-wave results are obtained
from Eqs. (4.160) and (4.162), respectively. Note that the best agreement with
wind-tunnel data at Mach 8 is obtained with the second approximation, with the
origin shifted upstream of the nose by D x ¼ 1

2
d. Other data for higher M1 from

[42] are plotted in Fig. 4.22 vs the blast analogy parameter (x/d)/(M1
2 CD

1/2).
Here, the origin is shifted by Dx ¼ d. Once again we see the general confirmation
of the trends established in blast-wave theory, namely that, for a blunt-nosed cylin-
der, the pressure distribution p/p1 varies

1) directly as M1
2 ,

2) directly as CD
1/2, and

3) inversely as (x/d).
The shock-wave shape for a hemisphere cylinder is given in Fig. 4.23; the

blast-wave results are compared with experimental data from Lees and Kubota
[43]. Once again we see that the shock-wave location predicted by blast-wave
theory is not accurate. However, if the predicted shock wave is shifted by an
amount Dr, as indicated in Fig. 4.24, then good agreement is obtained. Moreover,
Fig. 4.24 demonstrates that blast-wave theory predicts properly the following
(noting that the slope of the curve on the logarithmic plot is 1

2
): for the blunt-nosed

cylinder, the shock-wave shape varies
1) directly as CD

1/4 and
2) directly as (x/d)1/2.
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A comment is in order here. The analogy between unsteady blast-wave flow-
fields and the steady hypersonic flowfields over slender, blunt-nosed bodies is
somewhat tenuous on physical grounds, mainly because of the assumption in
the classical blast-wave solutions of instantaneous energy release at a point or
line in space. A hypersonic body does not add energy to the flow instantly, nor
is this energy addition precisely at a point or along a line. This is why better
agreement is obtained in some of the previous plots by shifting the virtual
origin of x. However, there is good physical reasoning behind the analogy
between the steady flow over a hypersonic slender body and the unsteady flow
in one less space dimension (the hypersonic equivalence principle) because in
the steady flowfield the disturbance velocities v0 and w0 perpendicular to the
body axis are truly much larger than the disturbance velocity in the flow direction
u0. [Review, for example, Eqs. (4.34) and (4.35).] In the final analysis, for what-
ever reason, blast-wave theory does provide some relatively accurate predictions
of the pressure distributions and shock-wave shapes on blunt-nosed slender
bodies where the Reynolds number is high enough such that viscous interaction
effects are negligible. Moreover, these blast-wave results are in the form of ana-
lytic formulas, which are extremely handy for quick, approximate estimates—an
advantage not to be ignored.

As a final note, the preceding results from blast-wave theory can readily be
expressed in terms of the pressure coefficient Cp.

Cp ;
p� p1

1
2
r1V2

1

¼
2

gM2
1

p

p1

� 1

� �
(4:165)

At very high values of M1, p/p1� 1; hence, Eq. (4.165) can be approximated by

Cp ¼
2

gM2
1

p

p1

� �
(4:166)

Combining Eq. (4.166) with Eqs. (4.156) and (4.160), we have, for g ¼ 1.4, the
following.

Blunt-nosed plate:

Cp ¼
0:173C

2=3
D

(x=d )2=3
(4:167)

Blunt-nosed cylinder:

Cp ¼
0:096C

1=2
D

(x=d )
(4:168)

Note that Cp is independent of M1; blast-wave theory is another example of
Mach-number independence at hypersonic speeds.

In [3], a combination of blast-wave theory and straight Newtonian was used to
predict the pressure distribution along the windward centerline of the space
shuttle. Let l denote the length of the shuttle and d the thickness of the fuselage
near the canopy. For the shuttle, the fineness ratio is l/d ¼ 7. Moreover, the drag
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coefficient of a hemisphere from straight Newtonian theory is CD ¼ 1. Substitut-
ing these values into Eq. (4.168), written as

Cp ¼ 0:096C
1=2
D

�
x

l

��1�
l

d

��1

we obtain

Cp ¼
0:0137

x=l
(4:169)

Equation (4.169) holds for zero-degree angle of attack. To take angle of attack, a
into effect, let us simply add the Newtonian contribution 2 sin2a to Eq. (4.169),
obtaining

Cp ¼
0:0137

x=l
þ 2 sin2a (4:170)

Fig. 4.25 Comparison of pressure coefficients obtained with combined blast-wave/
Newtonian theory [Eq. (4.171)] with flight data for the space shuttle: windward

centerline, M¥ 5 21.6, and a 5 40 deg.
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Let us choose a point, on the shuttle trajectory corresponding to a ¼ 40 deg and
M1 ¼ 21.6. For a ¼ 40 deg, Eq. (4.170) becomes

Cp ¼
0:0137

x=l
þ 0:826 (4:171)

Results from Eq. (4.171) are plotted as the solid curve in Fig. 4.25, obtained from
[3]. These results are compared with actual flight data from the STS-3 (open
circles) and STS-5 (solid circles) shuttle missions; these flight data are obtained
from [44]. The agreement between theory and flight data in Fig. 4.25 is quite
remarkable, especially when considering that the theoretical curve can be calcu-
lated in a few minutes by hand. This clearly demonstrates the value of both
blast-wave theory and Newtonian results.

This ends our discussion of blast-wave theory and the general idea of the
hypersonic equivalence principle. Our purpose has been to describe these
ideas, to make them plausible on a physical and mathematical basis, and to
show some practical results. Keep in mind that all of these results are limited
to slender bodies at hypersonic speeds. In the next section, we will discuss a
class of approximate inviscid flow theory that can be applied to blunt as well
as to slender bodies.

4.9 Thin Shock-Layer Theory

We have already discussed that shock layers over hypersonic bodies are thin
(refer again to Fig. 1.13 and the related discussion in Chapter 1). In the limit as
M1! 1 and g! 1, we have shown that b! u, and the shock layer becomes
infinitely thin and infinitely dense. In such a limit, we can consider the shock
shape, the body shape, and the streamline shapes in between to be all of the
same. Such approximations, or variations of them, are the basis of thin shock-
layer theory. An interesting discussion of thin shock-layer theory can be found
in [45]; additional discussion is given in [46].

In this section, the analysis developed by Maslen [47] will be outlined as an
example of a theory based on the assumption of a thin shock layer. Maslen’s
method is chosen here because of its simplicity and because of its frequent appli-
cation—even today—for the approximate analysis of hypersonic inviscid shock
layers. Moreover, Maslen’s method gives results for the flowfield over blunt as
well as slender bodies, and therefore it makes a nice intellectual as well as
chronological bridge between the recently discussed classical material in this
chapter and the more modern, computationally based blunt-body solutions to
be discussed in Chapter 5.

Consider the curvilinear coordinate system shown in Fig. 4.26, where x and y,
respectively, are parallel and perpendicular to the shock, and u and v are the
corresponding components of velocity. For simplicity we will assume a two-
dimensional flow; however, Maslen’s method also applies to axisymmetric
flow (see [47] for details). Now assume that the shock layer is thin, and hence
the streamlines are essentially parallel to the shock wave. In a streamline-based
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coordinate system, the momentum equation normal to a streamline is

r
u2

R
¼
@p

@n
(4:172)

where R is the local streamline radius of curvature. For the preceding assump-
tions, Eq. (4.172) becomes

ru2

Rs

¼
@p

@y
(4:173)

where Rs is the shock radius of curvature. Define a stream function c such that

ru ¼
dc

dy
(4:174)

and replace y in Eq. (4.173) with c [i.e., introduce a von Mises transformation
such that the independent variables are (x, c) rather than (x, y)]:

r
u2

Rs

¼
@p

@c
(ru)

Fig. 4.26 Shock-layer model for thin shock-layer analysis by Maslen.
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or

@p

@c
¼

u

Rs

(4:175)

Again, consistent with a thin shock layer where all of the streamlines are essen-
tially parallel to the shock, u � us, the velocity just behind the shock. Thus,
Eq. (4.175) becomes

@p

@c
¼

us

Rs

(4:176)

Integrating Eq. (4.176) between a point in the shock layer where the value of the
stream function is c and just behind the shock wave where c ¼ cs, we have

p(x, c) ¼ ps(x)þ
us(x)

Rs(x)
½c� cs(x)� (4:177)

Equation (4.177) is the crux of Maslen’s method. The flowfield solution pro-
gresses as follows:

1) Assume a shock-wave shape, as shown in Fig. 4.27. In this sense,
Maslen’s method is an inverse method, where a shock wave is assumed and
the body that supports this shock is calculated.

Fig. 4.27 Details for the analysis by Maslen.
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2) Hence, all flow quantities are known at point 1 (Fig. 4.27) just behind the
shock, from the oblique shock relations. The value of c ¼ c1 at point 1 is known
from

c1 ¼ r1V1h1

3) Choose a value of c2, where 0 , c2 , c1. This identifies a point 2 inside
the flowfield along the y axis, as shown in Fig. 4.27, where c ¼ c2. (The precise
value of the physical coordinate y2 will be found in a subsequent step.)

4) Calculate the pressure at point 2 from Eq. (4.177)

p2 ¼ p1 þ
u1

(Rs)
(c2 � c1)

5) The entropy at point 2, s2 is known because the streamline at point 2,
corresponding to c ¼ c2, has come through that point on the shock wave,
point 20, where c20 ¼ c2, and where

c20 ¼ c2 ¼ r1V1h2

or

h2 ¼
c2

r1V1

(4:178)

Therefore, h2 is obtained from Eq. (4.178), which locates point 20 on the shock. In
turn, s20 is known from the oblique shock relations, and because the flow is isen-
tropic along any given streamline s2 ¼ s20.

6) Calculate the enthalpy h2 and density r2 from the thermodynamic
equations of state

h2 ¼ h(s2, p2)

r2 ¼ r(s2, p2)

7) Calculate the velocity at point 2 from the adiabatic energy equation (total
enthalpy is constant). That is,

h0 ¼ h1 þ
V 2

1

2

where h0 is the total enthalpy, which is constant throughout the adiabatic flow-
field. In turn,

h0 ¼ h2 þ
u2

2

2
(ignoring v2)
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or

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(h0 � h2)

p

8) All of the flow quantities are now known at point 2. Referring to
Figs. 4.26 and 4.27 repeat the preceding steps for all points along the y axis
between the shock (point 1) and the body (point 3). The body surface is
defined by c ¼ 0.

9) The physical coordinate y, which corresponds to a particular value of c,
can now be found by integrating the definition of the stream function (which is
really the continuity equation). Because

dc

dy
¼ ru

then

y ¼

ðcs

c

dc

ru
(4:179)

where r and u are known as a function of c from the preceding steps. This also
locates the body coordinate, where

yb ¼

ðcs

0

dc

ru

10) This procedure is repeated for any desired number of points along the
specified shock wave, hence generating the flowfield and body shape which sup-
ports that shock.

Again, remember that the preceding assumed a two-dimensional flow. Exten-
sion to an axisymmetric body is straightforward (see [47]).

Some results calculated by Maslen, taken from [47], are shown in Figs. 4.28–
4.30. In Fig. 4.28, a paraboloidal shock is assumed, and the calculated body shape
is shown. (Note that Maslen’s method is an inverse method, where the shock-
wave shape is assumed, and the body shape that supports the assumed shock,
as well as the flowfield between the shock and body, are calculated.) Maslen’s
calculations of the body shape are shown as the triangles and are compared
with more exact calculations. For example, the left side of Fig. 4.28 shows
results in the nose region, which are compared with the exact numerical calcu-
lations by Van Dyke [14]. Excellent agreement is achieved. On the right side
of Fig. 4.28, results extending far downstream of the nose are shown. Here,
Maslen’s results are compared with the theories of Yakura [48] and Sychev
[49], based on hypersonic small-disturbance theory and blast-wave analysis.
The corresponding surface-pressure distributions (in terms of p/p0, where p0 is
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the stagnation point pressure), are shown in Fig. 4.29. Note that only a few points
representing Maslen’s results are shown. There is good reason for this; all of the
results given by Maslen in [47] were calculated by him over the space of a few
days using a hand calculator, which naturally limited the number of calculated
points. (However, this illustrates the practicality of Maslen’s method, namely,
that it is indeed simple enough to be carried out using a hand calculator.)

The inverse method can be used, in an iterative sense, to calculate the flow
over a given body, that is, the shock is assumed, and the supporting body
shape is calculated. This body shape is compared with the given body, and a
new shock is assumed that will produce results closer to the given body. This iter-
ation is repeated until the calculated body matches the given body closely
enough. Using this approach, Maslen calculated the pressure distribution and
shock shape for a hemisphere cylinder, shown in Fig. 4.30. Good agreement is
obtained with the experimental data of Kubota [50]. Also shown are the numeri-
cal results of Inouye and Lomax [51], based on an inverse blunt-body solution
(iterated) and the method of characteristics. Again, Maslen’s method gives

Fig. 4.28 Body associated with paraboloidal shock wave (from Maslen [47]):

M¥ 5 ¥, and g 5 1.4.

Fig. 4.29 Surface pressure on body supporting a paraboloidal shock (from Maslen

[47]): M¥ 5 ¥, and g 5 1.4.
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reasonable results. Therefore, in light of Figs. 4.28–4.30. Maslen’s method,
which is relatively straightforward to apply, can be considered an excellent
example of the general class of thin shock-layer methods. Also, note that
Maslen’s method applies to blunt as well as to slender bodies. Because of its
accuracy and simplicity, Maslen’s method has found frequent applications in
inviscid hypersonic flow analysis, including up to the present day.

4.10 Summary and Comments

Hypersonic aerodynamics is highly nonlinear; even the assumption of small
perturbations, which in subsonic and supersonic flows leads to simple linear theo-
ries, does not yield a system of linear equations for hypersonic flow. In spite of
this, various approximate methods have been successfully developed for the
analysis of inviscid hypersonic flows. We have discussed several of these

Fig. 4.30 Shock-wave shape and surface pressure for a hemisphere cylinder (from

Maslen [47]): M¥ 5 ¥, and g 5 1.4.
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methods in the present chapter, some of them predicated upon the hypersonic
small-disturbance equations, given by Eqs. (4.41–4.45). In particular, the follow-
ing is noted:

1) The mathematical basis of hypersonic similarity rests upon these
equations; from them, we have shown that flows over affinely related bodies
with the same values of g, M1t, and a/t will have the same values of Cp/t

2,
cl/t

2, cd/t
3 (where cl and cd are referenced to planform area). Here,

M1t ¼ hypersonic similarity parameter

For a three-dimensional body where base area is used as the reference for CL and
CD, hypersonic similarity states that affinely related bodies with the same values
of g, M1t, and a/t will have the same values of CL/t and CD/t2. Because hyper-
sonic similarity stems from the hypersonic small-disturbance equations, this
concept applies only to slender bodies at small angles of attack.

2) The hypersonic small-disturbance equations themselves can be directly
solved for the flowfield between the shock wave and body; a particular appli-
cation to cones was used here to illustrate such a solution based on hypersonic
small-disturbance theory. Although such solutions usually require a numerical
treatment at some stage, the results can sometimes lead to closed-form analytical
formulas, such as are repeated next for the pressure coefficient on a slender cone
at hypersonic speeds,

Cp

u2
c

¼ 1þ
(gþ 1)K2 þ 2

(g� 1)K2 þ 2
ln

gþ 1

2
þ

1

K2

� �
(4:126)

as well as for the cone shock-wave angle b,

Kb ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

2
þ

1

K2

r
(4:125)

where, in the preceding, K ¼ M1uc and Kb ¼ M1b. The hypersonic small-
disturbance equations also lead to the hypersonic equivalence principle, which
states that the steady hypersonic flow over a slender body is equivalent to an
unsteady flow in one less space dimension. A corollary to this principle is
blast-wave theory, which allows the self-similar solutions to the unsteady flow-
field generated by an instantaneous release of energy along a line or plane to
be carried over to the steady flow downstream of the nose of hypersonic blunt-
nosed slender bodies. The results, as documented in [36], are as follows.

Blunt-nosed flat plate (first approximation).

p

p1

¼ 0:121M2
1

�
CD

x=d

�2=3

(4:156)

r

d
¼ 0:774C

1=3
D

�
x

d

�2=3

(4:157)
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Blunt-nosed flat plate (second approximation):

p

p1

¼ 0:121M2
1

�
CD

x=d

�2=3

þ 0:56 (4:158)

�
r

d

�
(M2

1CD) ¼
0:774

M2
1½CD=(x=d)�2=3 � 1:09

(4:159)

Blunt-nosed cylinder (first approximation):

p

p1

¼ 0:067M2
1

ffiffiffiffiffiffi
CD

p

x=d
(4:160)

r

d
¼ 0:795C

1=4
D

�
x

d

�1=2

(4:161)

Blunt-nosed cylinder (second approximation):

p

p1

¼ 0:067M2
1

ffiffiffiffiffiffi
CD

p

x=d
þ 0:44 (4:162)

r=d

M1C
1=2
D

¼ 0:795

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x=d )

M2
1C

1=2
D

1þ 3:15
(x=d )

(M2
1C

1=2
D )

" #vuut (4:163)

Note that, for a blunt-nosed flat plate, the pressure distribution p/p1 down-
stream of the nose varies directly as M1

2 and CD
2/3, and inversely as (x/d )2/3;

the shock-wave shape varies directly as CD
1/3 and (x/d)2/3. For a blunt-nosed

cylinder, the pressure distribution p/p1 downstream of the nose varies directly
as M1

2 and CD
1/2 and inversely as x/d; the shock-wave shape varies directly

as CD
1/4 and (x/d)1/2, that is, it is parabolic.

Methods discussed in this chapter that are not predicated on the hypersonic
small-disturbance equations and that therefore are not restricted to slender
bodies at small angle of attack are as follows.

1) Concept of Mach-number independence: Here, we observe both exper-
imentally and from the governing Euler equations (4.1–4.5) with the appropriate
boundary conditions that certain nondimensional aerodynamic quantities such as
CL, CD, and Cp become relatively independent of Mach number above a suffi-
ciently higher value of M1, which for blunt bodies can be as low as M1 ¼ 5.

2) Thin shock-layer methods: These methods make use of approximations
based on the thinness of hypersonic shock layers. As an example, Maslen’s
method is a straightforward application of the thin-shock-layer assumption,
leading to a closed-form equation for the variation of pressure across the shock
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layer as

p(x, c) ¼ ps(x)þ
us(x)

Rs(x)
½c� cs(x)� (4:177)

which in turn allows the solution for all other flow variables within the shock
layer.

Problems

4.1 Referring to Sec. 4.3, prove that the Mach-number independence principle
applies to the pressure coefficient Cp, the lift coefficient CL, and the wave-
drag coefficient CDw

.

4.2 Derive Eqs. (4.48) for the transformed direction cosines.

4.3 The condition that two or more different flows over different affinely related
bodies satisfy hypersonic similarity is that g, M1t, and a/t be the same
between these flows. Show how the derivation of the principle of hyper-
sonic similarity, carried out in Sec. 4.5 for zero angle of attack, is modified
to include small angle of attack.

4.4 The purpose of this problem is to demonstrate the degree of validity of
hypersonic similarity by plotting data for wedges. Proceed as follows:
(a) From exact oblique shock theory, tabulate Cp vs M1 for wedges of

u ¼ 5-, 10-, 15-, 20-, and 30-deg half-angles.
(b) Plot these data for all five wedges on the same piece of graph paper in

the form of Cp/tan2u vs M1 tan u. (Note that, within the framework of
hypersonic small-disturbance theory, Cp/tan2u ¼ Cp/t

2
� Cp/u

2 and
M1 tan u ¼ M1t ¼ K � M1u).

(c) On the same graph, plot Eq. (2.29). Finally, after observing the results
shown on the graph, make some statements about: the accuracy and
range of validity of hypersonic similarity.

4.5 The purpose of this problem is to demonstrate the degree of validity of
hypersonic similarity by plotting data for cones. Proceed as follows:
(a) From exact cone results (such as from [17] or [18]), tabulate Cp vs M1

for cones of uc ¼ 5-, 10-, 15-, 20-, and 30-deg half-angle.
(b) Plot these data for all five cones on the same piece of graph paper in the

form of Cp/tan2 uc ¼ Cp/t
2 and M1 tan uc ¼ M1t.

(c) On the same graph, plot Eq. (4.126). After observing the results, make
some statements about the accuracy and range of validity of hypersonic
similarity. Are these conclusions any different than those made in
problem 4.4 for wedges?
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4.6 Derive Eq. (4.89).

4.7 For the solution of hypersonic flow over a slender cone, this problem
demonstrates how the flowfield variables can be obtained after a solution
of Eq. (4.106) is carried out. For example, Eq. (4.123) gives an equation
from which p̄ can be obtained in terms of f 0. Derive the analogous equations
for �v0 and r̄ as function of f and f 0. Finally, show how ū0 can be obtained.

4.8 Derive Eqs. (4.154) and (4.155).
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5
Hypersonic Inviscid Flowfields:

Exact Methods

Regarding computing as a straightforward routine, some
theoreticians still tend to underestimate its intellectual
value and challenge, while practitioners often ignore its
accuracy and overrate its validity.

C. K. Chu, Columbia University, 1978

Chapter Preview

Aeronautical history was made on 27 March 2004 when the X-43 Hyper-X

test vehicle, shown in Fig. 5.1, achieved sustained flight for 11 s at Mach

6.9 powered by a supersonic combustion ramjet engine (scramjet). This

was the first time that an airbreathing scramjet engine had successfully

powered a vehicle for sustained light in the atmosphere. On 16 November,

another scramjet-powered X-43 achieved sustained flight at nearly Mach

10, making it the fastest airplane in history to date. A three view of this

unmanned vehicle is shown in Fig. 5.2; the vehicle is about 12 ft in length. A

photograph of the X-43 resting on supports in the laboratory is given in Fig. 5.3.

Imagine that you are given the job of calculating the flow field and

aerodynamic characteristics of the X-43 in hypersonic flight. The approximate

methods discussed in the preceding chapters would be good for back-

of-the-envelope calculations and for gaining insight helpful during the

preliminary conceptual stages of design. But the X-43 is designed right on the

margin of its required performance, and absolutely the best accuracy is required

when calculating its detailed aerodynamics. The approximate techniques dis-

cussed earlier are simply not good enough for this purpose. Part of obtaining

the best accuracy is to use the full continuity, momentum, and energy equations

for fluid flow, with no geometric simplifications. If you are satisfied at

first with the assumption of an inviscid nonchemically reacting flow, then Eqs.

(4.1–4.5) are the ones you want to use. But the only way to solve these

“exact” equations, especially for the geometry of the X-43, is numerically.
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That is what this chapter is all about—exact methods for calculating

hypersonic inviscid flowfields. Exact means that the full conservation

equations (4.1–4.5) are being used with no geometric simplification. In

turn, all of the exact methods are numerical methods—they have to be. So

this chapter deals with a sequence of numerical methods for calculating invis-

cid hypersonic flow. In many respects for the calculation of hypersonic flows,

this is where the rubber hits the road. When you finish this chapter, you will be

much closer to the calculation of the hypersonic flow over a vehicle such as

the X-43 in Figs. 5.1–5.3. That is what is exciting about this chapter. So

read on—with excitement.

Fig. 5.1 X-43 side view (NASA).
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Fig. 5.3 X-43 rear view (NASA).

Fig. 5.2 X-43 three view (NASA).
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5.1 General Thoughts

Chapter 4 covered material that is in the realm of “classical” hypersonic aero-
dynamics, that is, theoretical analyses developed in the 1950s and 1960s before
the widespread use of high-speed digital computers. Indeed, before the age of the
computer there was no other recourse; for the analysis of inviscid hypersonic
flows, the exact nonlinear Euler equations (4.1–4.5) do not yield closed-form
theoretical results of a general nature; hence, various physical approximations
had to be applied to these exact equations in order to obtain a system of approxi-
mate equations more tractable to theoretical analyses. For hypersonic flows, even
these approximate governing equations are still nonlinear, but, as we have seen in
Chapter 4, various approximate methods have been successfully developed to
obtain useful solutions. The point here is that such solutions are indeed approxi-
mate, either because the governing equations themselves are reduced to simpler
form as a result of approximations about the physics of the flow (e.g., small per-
turbations), or during the course of solution of the exact equations various limit-
ing cases are taken (for example, M1! 1). This is why Chapter 4 was subtitled
“Approximate Methods.” However, even though such methods are classical,
keep in mind that the results are frequently very practical and useful, and
indeed many of these classical methods are used extensively today in the
engineering analysis of hypersonic flows.

In contrast, the present chapter is subtitled “Exact Methods.” This requires some
definition. Here, we will deal with the exact, governing Euler equations for inviscid
flow without any subsequent reduction of these equations based on physical approxi-
mations. Because we are using the full equations (4.1–4.5) without any approxi-
mations, and because these are the exact equations for inviscid flow (over all
parts of the flight spectrum, from subsonic to hypersonic), we will label the sub-
sequent solutions of these equations as “exact.” This is a slight misnomer,
however, because all of the exact solutions are numerical, and any numerical sol-
ution is subject to numerical error. For example, we will see that the exact, governing
partial differential equations can be replaced by finite difference equations; these
difference equations are numerically and theoretically different than the original
partial differential equations because of the truncation error that is always
present in the finite difference formulation. Moreover, during the course of the
numerical solution of these difference equations computer round-off errors are
incurred. Finally, there is sometimes a lack of preciseness brought about by the
numerical treatment of boundary conditions. So, strictly speaking, even numerical
solutions are not truly exact solutions of the governing equations. However, with
this slight proviso in mind, we will proceed to label such numerical solutions as
exact solutions because they begin with the exact governing equations. Stated
slightly differently, once we choose to work with the full Euler equations, then
the only type of solution with any generality must be numerical; hence, the terms
exact solutions and numerical solutions are used here synonymously.

In more modern terms, this chapter deals with the application of computational
fluid dynamics (CFD) to inviscid hypersonic flows. This chapter could not have
been written 40 years ago; indeed, CFD is a newly emerging dimension in fluid
dynamics, which now complements the more classical dimensions of pure exper-
iment and pure theory. Applications of CFD are impacting aerodynamic research
and development across the entire flight spectrum, from subsonic to hypersonic
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speeds. The impact of CFD is particularly strong on hypersonic aerodynamics
because the availability of hypersonic wind tunnels and other hypersonic
ground-test facilities is severely limited, both in regard to number of facilities as
well as the practical flight range of Mach number, Reynolds number, and tempera-
ture levels attainable in such facilities. Thus, in the modern world of hypersonics
CFD serves as a powerful tool for research, development, and design.

In this chapter, there is no intent to give a detailed presentation of the funda-
mentals of CFD; such an endeavor justifies a book on that subject alone. There
are many such books. The interested reader is encouraged to study [52], which
is an introduction to CFD at the advanced senior/first-year graduate level. On
the other hand, to understand and appreciate some of the inviscid-flow calcu-
lations discussed here some of the general ideas and methodology of CFD
must be understood. The assumption is made here that the reader has not had
formal education or experience in CFD, and therefore, as the case demands,
we will present various details of the computational techniques in a fashion
that will be reasonably self-contained.

As a final introductory note, advances in CFD now make possible the inviscid,
three-dimensional, unsteady flowfield solution over complete flight-vehicle con-
figurations. Moreover, there are a variety of different computational techniques,
ranging from the method of characteristics (which is in reality an older classical
technique now made very practical by high-speed digital computers), to finite
difference, finite volume, and finite element methods. In the present chapter,
only a representative selection of solutions and solution procedures will be
given. The choice is based on the author’s experience and bias—10 different
authors would most likely make 10 different choices, all justified in their own
way. The result, however, would be the same, that is, the absolute appreciation
that the Euler equations are now made solvable by a seemingly endless variety
of numerical techniques. The purpose of this chapter is to give the reader the
flavor of such solutions as applied to hypersonic inviscid flows.

The road map for this chapter is given in Fig. 5.4. Two different numerical
methods for the solution of the exact Euler equations for inviscid hypersonic

Fig. 5.4 Road map for Chapter 5.
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flows are discussed: the method of characteristics and the finite difference
method. In reality there is no one “method of characteristics” and no one
“finite difference method”; rather, the two primary boxes at the top of the road
map represent two separate and different generic methods for each of which
there are numerous different detailed numerical approaches. See [4] for more
details on the method of characteristics and [52] for an extensive presentation
of various finite difference methods. As stated earlier, our purpose here is just
to give you the flavor of these methods as applied to hypersonic inviscid flow.
Along the way, following down the left column in Fig. 5.4, we will look at
some method-of-characteristics solutions for the flow over sharp-nosed two-
dimensional and axisymmetric bodies at zero angle of attack and the flow
around an axisymmetric body at angle of attack. The latter application involves
the three-dimensional method of characteristics—a rigorous challenge. Then
we move to the right-hand column in Fig. 5.4 and consider two different
finite difference approaches: time marching and downstream marching. The
time-marching approach will be applied to the flow over a blunt body and to
the interaction of an external shock wave impinging on the curved blow shock
ahead of a blunt body. The downstream-marching approach will be applied to
sharp-nosed bodies and to the locally supersonic and hypersonic flow regions
over the space shuttle. I suggest that you make frequent references to this road
map as you progress through this chapter.

5.2 Method of Characteristics

In 1929 in Germany, Ludwig Prandtl and Adolf Busemann were the first to apply
the method of characteristics to a problem in supersonic flow; they utilized a graphi-
cal approach to construct the contour of a supersonic nozzle. Since then, the method
of characteristics has become a classical technique for the solution of inviscid
supersonic and hypersonic flows, both internal and external. Because it is classical
and widely known, and because it is usually part of a basic course in compressible
flow, the assumption is made that the reader has some familiarity with the method of
characteristics; hence, the method will not be developed in detail here. Rather, some
of the general considerations will be reviewed, and some applications to hypersonic
flows will be shown. For the interested reader, an excellent and detailed presen-
tation of the method of characteristics applied to various aerodynamic problems
is given in [53]. See also [4] for an introductory presentation.

The method of characteristics is useful when the system of governing partial
differential equations is hyperbolic. For this case, the problem is mathematically
well posed by starting from an initial data surface and calculating the flow along
the characteristic directions. Steady, inviscid, supersonic (and hypersonic) flow is
one such case; the governing Euler equations are hyperbolic, and hence, starting
with an initial data surface situated downstream of the limiting characteristics,
the supersonic flow can be calculated by marching downstream along the
characteristic lines (if the flow is two dimensional) or characteristic surface (if
the flow is three dimensional). The governing Euler equations for two- or three-
dimensional steady flow [Eqs. (4.1–4.5) with @=@t ¼ 0] exactly reduce to simpler
differential equations in one less space dimension, called the compatibility
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equations, along the characteristics. For two-dimensional flow, these compatibi-
lity equations become ordinary differential equations, which are more readily
solved than the original partial differential equations. The solution of the compat-
ibility equations and the evolution of the characteristic directions are in general
computed simultaneously as the solution procedure marches downstream from
the initial data surface. In this manner, the entire supersonic and hypersonic invis-
cid flowfield can be calculated in an exact fashion.

There is a hierarchy of solutions involving the method of characteristics. The
simplest application of the method involves a steady, two-dimensional, irrota-
tional flow. This is frequently the first application encountered by the student
when first studying the method. For this application, there are two characteristics
at each point in the flow—the left- and right-running Mach waves. Moreover, the
compatibility equations that hold along these characteristics are algebraic
relations; this leads to a particularly straightforward solution of the flow. For a
steady, axisymmetric, irrotational flow, the characteristics at each point are
still the left- and right-running Mach waves, but the compatibility equations
are now ordinary differential equations, which are readily solved numerically
along the characteristics. On the other hand, for a steady two-dimensional or
axisymmetric rotational flow, there are three characteristics lines through
each point—the left- and right-running Mach waves and the streamline. The com-
patibility equations are appropriate ordinary differential equations that hold
along these characteristics. Finally, the most complex application of the
method of characteristics is to three-dimensional flows, where the characteristics
are Mach surfaces and stream surfaces, and the compatibility equations are, in
general, partial differential equations in two space dimensions.

For the application of the method of characteristics to external hypersonic
flow, the aspect of rotationality is of primary concern. To understand this
better, recall that, for a given shaped body, as the supersonic or hypersonic free-
stream Mach number increases the strength of the shock wave increases. If these
strong shock waves have curvature, as sketched in Fig. 5.5 for both slender and
blunt bodies, then the entropy increase across the shock wave will be different
from one streamline to the next. For example, in both Figs. 5.5a and 5.5b, stream-
line 1 has a higher entropy than streamline 2 because it has come through a stron-
ger portion of the shock wave. This is particularly acute for the blunt body in
Fig. 5.5b, where the bow shock wave is highly curved, and an intense region
of large entropy gradients is produced in the nose region. This is the source of
the entropy layer discussed in Sec. 1.3.2, and sketched in Fig. 1.14, which
should be reviewed at this stage. Such entropy gradients occur behind curved
shock waves at any supersonic Mach number, but because the shocks are stronger
and usually more highly curved at hypersonic Mach numbers then the entropy
gradients become more severe. In turn, this introduces a large amount of rotation-
ality into inviscid flows over hypersonic bodies, as can be quantitatively obtained
from Crocco’s theorem (see [4]), written as follows:

T�S ¼ �h0 � V� (�� V) (5:1)

Here, �h0 is the gradient in total enthalpy at a point in the flow; for the steady,
adiabatic flows considered here, h0 is constant, and hence �h0 ¼ 0. Also
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in Eq. (5.1), � � V is the vorticity; if the vorticity is finite, then by definition the
flow is rotational. From Eq. (5.1), with �h0 ¼ 0 we see that an entropy gradient,
�s directly produces vorticity in the flow, hence making such flows rotational. For
hypersonic applications, these flows can be highly rotational. This is illustrated in
Fig. 5.6 (obtained from [13]), which gives the variation of vorticity behind a para-
bolic bow shock wave as a function of the local wave angle b. The different curves
correspond to different values of M1. Note that 1) the vorticity peaks at a large
value in the vicinity of the sonic point on the shock and 2) the magnitude of
the vorticity increases with Mach number. The point here is that any application
of the method of characteristics to calculate the inviscid flow over a hypersonic
body should definitely utilize the rotational method of characteristics.

Historically, the first major application of the rotational method of character-
istics was made by Antonio Ferri in 1946, as described in [54]. (Ferri was an ebul-
lient Italian aerodynamicist who developed a pioneering supersonic aerodynamic
laboratory in Guidonia near Rome during the 1930s and who was brought to the
United States toward the end of World War II to help foster research in superso-
nic flows at the NACA Langley Memorial Laboratory in Virginia.) For example,
Ferri’s work was the basis of the characteristic calculations shown in Figs. 3.13,

Fig. 5.5 Bodies with curved shock waves.
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3.14, 3.20, 3.22, 3.23, and 4.5. For technical details in a more modern setting,
make certain to read the sections on the rotational method of characteristics in
Zucrow and Hoffman [53].

To this point in the present section, we have been reviewing some general con-
siderations about the method of characteristics, relying somewhat upon prior
familiarity with the method on the part of the reader. In the interest of being slightly
more precise, the following is a brief outline of the application of the rotational
method of characteristics to a two-dimensional or axisymmetric external flow:

1) The method must be started from an initial data line that lies totally within
the supersonic portion of the flow and in particular should be downstream of the
limiting characteristics (for example, see [4]). The flow properties on this initial
data line must be obtained from another, independent calculation. The usual
methods of obtaining such initial data are as follows:

a) If the body has a pointed nose with an attached shock wave, such as shown
in Fig. 5.5a, then the flow in the immediate vicinity of the nose is totally
supersonic, and it can be closely approximated by wedge flow (in the two-
dimensional case) or conical flow (in the axisymmetric case). Then, as indi-
cated in Fig. 5.7a, all flow properties are known along the initial data line
from the exact oblique shock solution, or from the Taylor–Maccoll
conical solution.

b) If the body has a blunt nose with a detached bow shock wave, an appro-
priate blunt-body solution must be carried out (blunt-body solutions are
discussed in Sec. 5.3). The initial data line must be taken along or down-
stream of the limiting characteristic, as shown in Fig. 5.7b.

Fig. 5.6 Vorticity behind a parabolic shock wave: y=d 5 ðx0=dÞ1=2, and g 5 1.4

(from [13]).
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In both of the preceding cases, the flow must be totally supersonic along the
initial data line; moreover, care should be taken not to use a characteristic line
as the initial data line.

2) Starting from the initial data line, the solution progresses by marching
downstream along the characteristic lines. A single element of this process,
called a unit process, is illustrated in Fig. 5.8. Here, points 1 and 2 are two
points on the initial data line; all flow properties, including the streamline
angles u1 and u2, are known at these points. From the known Mach numbers,
hence the known Mach angles m1 and m2 at these points, construct the left-
and right-running Mach waves (designated by Cþ and C2, respectively) at

Fig. 5.7 Initial data lines for slender and blunt-body flows.
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both points, as shown in Fig. 5.8. (Because the unit process involves only small
distances in the flow, all constructed Mach lines and streamlines are drawn as
straight lines between adjacent points.) The Mach waves are characteristic
lines, hence Cþ and C2 are appropriate designations for these lines. Note that
the C2 characteristic from point 1 and the Cþ characteristic from point 2 intersect
at point 3, thus locating point 3 in space. We wish to calculate the flow properties
at point 3.

3) Assume that the streamline through point 3 is at an angle u3, where u3 is an
average between the known u1 and u2. (This assumption is made more accurate
by iterating the unit process, as will be noted later.) Trace the streamline at point
3 backward until it intersects the initial data line at point 4, as shown in Fig. 5.8.
Recall that, for rotational flow, this streamline is also a characteristic line.

4) Calculate the flow properties at point 3 by solving the compatibility
equations along the characteristic lines. These equations are obtained from the
governing Euler equations (4.1–4.5) after considerable manipulation (see [4]
and [53]) and are as follows.

Along Mach lines:

dp

rV2 tanm
+ duþ

j sin u sinm

sin(u+ m)

dy

y
¼ 0 (5:2)

Along streamlines:

ds ¼ 0 (5:3)

In Eq. (5.2), the plus and minus signs correspond to the Cþ and C� character-
istics, respectively, and j ¼ 0 or 1 for two-dimensional and axisymmetric flow,

Fig. 5.8 Unit process.
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respectively. Equation (5.3) is simply a statement that the entropy is constant
along a streamline in an inviscid, adiabatic flow—a statement already contained
in Eq. (4.5). Equation (5.3) can be replaced by two relations that depend on con-
stant entropy along a streamline, namely,

Along streamlines:

dp ¼ �rV dV (5:4)

Along streamlines:

dp ¼ a2 dr (5:5)

Equation (5.4) is the familiar Euler equation that holds along a streamline in a
rotational flow; it can be readily obtained by a suitable manipulation of Eqs.
(4.2–4.4) along with the definition of a streamline, as shown in [5]. Equation
(5.5) is simply based on the definition of the speed of sound, a2 ¼ (@p/@r)s;
because s is constant along the streamline, then any change in pressure along
the streamline dp is related to a corresponding change in density along the
streamline dr, through the relation a2 ¼ (dp/dr). Please note that whereas dp
in Eqs. (5.4) and (5.5) denotes a change in pressure along a streamline, dp in
Eq. (5.2) denotes a change in pressure along the Mach lines. Returning to
Fig. 5.8, we now have a system of compatibility equations, namely, Eqs. (5.2),
(5.4), and (5.5), which hold along the characteristic lines. The integration of
these equations along the characteristics can be carried out in a variety of
ways. For simplicity, let us replace the differentials in Eqs. (5.2), (5.4), and
(5.5) with forward differences. For example, Eq. (5.2) written along the C2

characteristic through point 1 in Fig. 5.8 is

p3 � p1

r1V2
1 tanm1

� (u3 � u1)þ
j sin u1 sinm1

sin(u1 � m1)

( y3 � y1)

y1

¼ 0 (5:6)

Equation (5.2) written along the Cþ characteristic through point 2 is

p3 � p2

r2V2
2 tanm2

þ (u3 � u2)þ
j sin u2 sinm2

sin(u2 þ m2)

( y3 � y2)

y2

¼ 0 (5:7)

Equation (5.4) written along the streamline is

p3 � p4 ¼ �r4V4(V3 � V4) (5:8)

Equation (5.5) written along the streamline is

p3 � p4 ¼ a2
4(r3 � r4) (5:9)

In Eqs. (5.6–5.9), all conditions at points 1, 2, and 4 are known. (Conditions at
point 4 are interpolated between points 1 and 2.) The locations of points 3 and 4
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are known, from steps 2 and 3; hence, y3 is known. Thus, Eqs. (5.6–5.9) are four
algebraic equations that can be solved for the four unknowns p3, u3, V3, and r3.

5) Repeat steps 2–4, where now the slopes of the C2 and Cþ characteristics
are based on an average of u1, m1, u3, and m3, and the streamline at point 3 is
traced back using the value of u3 obtained in step 4. Iterate until convergence
is obtained. At the completion of this iteration, point 3 is now accurately
located in space, and the flow properties at point 3 are accurately obtained.

The preceding unit process is carried out from point to point in a sequential
fashion, marching downstream from the initial data line. Slight modifications to
the unit process are made to satisfy the boundary conditions at the shock wave
and the body: see [53] for details. In this fashion, the complete inviscid flow-
field between the body and the shock wave can be numerically constructed.
Again, emphasis is made that this is an exact solution; the compatibility
equations (5.2) and (5.3) are obtained directly from the exact Euler equations
without any mathematical approximations or further physical simplifications,
and any errors introduced in the solution are numerical errors involved with
the finite difference representation of the compatibility equations. In this
vein, the method of characteristics becomes truly exact in the limit of an infi-
nitely fine characteristics mesh.

An example of a characteristics mesh for the calculation of the rotational flow
over a two-dimensional body is shown in Fig. 5.9, obtained from [53]. For clarity,
only the Mach lines are shown here, although keep in mind that the streamlines are
also characteristics. This calculation is made for a supersonic freestream with

Fig. 5.9 Typical characteristics mesh (from Zucrow and Hoffman [53]).
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M1 ¼ 3; at hypersonic Mach numbers, the shock wave would be much closer to
the surface, and because the Mach angles would be smaller the characteristics
mesh would be more highly skewed. The pressure distributions behind the shock
wave and along the body corresponding to the case in Fig. 5.9 are shown in
Fig. 5.10. (Note that the pressure behind the shock is higher than that along the
body. This is another example of the normal pressure gradient necessary to
balance the centrifugal force along curved streamlines; for the convex streamlines
over the body in Figs. 5.9 and 5.10, the pressure quite naturally is going to decrease
from the shock to the body, as originally discussed in conjunction with Fig. 3.9.)
The results shown in Figs. 5.9 and 5.10 are included here only to illustrate the
use of the rotational method of characteristics for a two-dimensional body and
to emphasize again that the method is a reasonable approach for the calculation
of two-dimensional and axisymmetric inviscid hypersonic flows.

The vast majority of practical aerodynamic problems involve three-
dimensional flows. The method of characteristics can also be applied to such
flows (for example, see [55–59]); however, the three-dimensional method of
characteristics requires considerably more effort than its two-dimensional
counterpart. In steady, three-dimensional rotational flow, the characteristics are
surfaces, namely, Mach cones and stream surfaces. In general, the compatibility
equations that hold along these characteristic surfaces are partial differential

Fig. 5.10 Pressure distributions behind the shock and on the body for the case

shown in Fig. 5.9 (from [53]).
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equations in two space dimensions. To examine this in more detail, consider
Fig. 5.11, which illustrates a general supersonic or hypersonic three-dimensional
flowfield. Point b is an arbitrary point in the flow. Through this point, the charac-
teristic directions generate two sets of three-dimensional surfaces—a Mach cone
with its vertex at point b and with a half-angle equal to the local Mach angle m
and a stream surface through point b. The intersections of these surfaces
establish a complex three-dimensional network of grid points. Moreover, as if
this were not complicated enough, the compatibility equations along arbitrary
rays of the Mach cone (called bicharacteristics) are partial differential equations
that contain cross derivatives which have to be evaluated in directions not
along the characteristics. Nevertheless, such solutions can be obtained; see
[53] for a detailed discussion of these matters.

Although a detailed presentation of the three-dimensional method of charac-
teristics is beyond the scope of this book, it is important to note some results
obtained with this method. In particular, we will examine the calculations of
Rakich [58] and [59]; in this work, Rakich utilized a modification to the
general philosophy of the three-dimensional method of characteristics, which
somewhat simplifies the calculations. In this approach, which is sometimes
labeled “semicharacteristics,” or the “reference plane method,” the three-
dimensional flowfield is divided into an arbitrary number of reference planes
containing the centerline of the body. This is sketched in Fig. 5.12 for the case
of an axisymmetric body at angle of attack; Fig. 5.12 shows a front view of
the body and shock wave. Each reference plane is identified by its angular
location F1, F2, etc. One of these planes, say, F ¼ F2, is projected on
Fig. 5.13. In this particular reference plane, a series of grid points are established
along arbitrarily spaced straight lines locally perpendicular to the body surface.
These grid points are not the intersections in a systematic characteristic mesh
(such as shown in Fig. 5.9 for the two-dimensional case); rather, they are
placed along arbitrary straight lines in much the same way that a finite difference
grid is established (to be discussed in subsequent sections). This represents a

Fig. 5.11 Three-dimensional characteristic surfaces.
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major simplification over the general three-dimensional method of character-
istics. In Fig. 5.13, assume that the flowfield properties are known at the grid
points denoted by solid circles along the straight line ab. Furthermore, arbitrarily
choose point 1 on the next downstream line cd. Let Cþ, C2, and S denote the pro-
jection in the reference plane of the Mach cone and streamline through point
1. Extend these characteristics upstream until they intersect the data line ab at
the cross marks. Data at these cross marks are obtained by interpolating

Fig. 5.12 Grid network in a cross-sectional plane for an axisymmetric body at angle

of attack: three-dimensional method of characteristics.

Fig. 5.13 Gird network in the meridional plane for an axisymmetric body at angle

of attack; three-dimensional method of characteristics.
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between the known data at the solid circles. Then, the flowfield properties at point
1 are obtained by solving the following compatibility equations along Cþ, C2,
and S (see [58] for a derivation of these equations):

b

rV2

@r

@Cþ
þ cosf

@u

@Cþ
¼ ( f1 þ b f2) sinm� (5:10)

b

rV2

@r

@C�
� cosf

@u

@C�
¼ ( f1 � bf2) sinm� (5:11)

@f

@S
¼ f3 (5:12)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

, m� is the angle between S and Cþ or C2 (i.e., the projection
of the Mach angle m onto the reference plane), u is the flow angle from the x axis
in the meridional plane (that is, u ¼ tan21 v/u, where u and v are the velocity
components in the x and r directions, respectively), f is the crossflow angle
(that is, f ¼ sin21 w/v, where w is the velocity component in the F direction),
and f1 and f2 are expressions containing the cross derivatives (see [58]).

The preceding limited description is intended only to give the flavor of
Rakich’s method and to set the stage for the presentation of some results illustrat-
ing the use of the three-dimensional method of characteristics. Such results are
given in Figs. 5.14–5.18, obtained from [59]. In these figures, results are given
for the hypersonic flow over a blunt-nosed, 15-deg cone at angle of attack;
theoretical results for the inviscid flow obtained by Rakich using the three-
dimensional method of characteristics are directly compared with experimental
wind-tunnel results. For example, Fig. 5.14 shows the calculated and measured

Fig. 5.14 Variation of shock-wave shape: comparison between theory and experi-

ment, where uc 5 15 deg, a 5 10 deg, M¥ 5 10, and g 5 1.4 (from Rakich and

Cleary [59]).
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Fig. 5.15 Variation of shock-wave angle; calculations from the three-dimensional

method of characteristics: uc 5 15 deg, a 5 10 deg, M¥ 5 10, and g 5 1.4

(from [59]).

Fig. 5.16 Pressure distribution over a blunt-nosed cone; comparison between theory

and experiment: uc 5 15 deg, a 5 10 deg, Re 5 0.6 3 106, M¥ 5 10, and g 5 1.4

(from [59]).
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shock-wave shape in air (g ¼ 1.4) at three meridional planes, F ¼ 0, 90, and 180
deg, for an angle of attack of 10 deg at Mach 10. For the wind-tunnel data, the
Reynolds number referenced to the cone base radius was 0.6 � 106. Agreement
between the three-dimensional method of characteristics and experiment is excel-
lent for this case. This figure also illustrates the effect of nose bluntness on the
shock shape. The shock location for a sharp-nosed cone at 15-deg angle of
attack is shown as the dashed lines at the right of Fig. 5.14; note that nose blunt-
ness displaces the leeward portion of the shock (F ¼ 0 deg) outward, whereas the
windward portion of the shock (F ¼ 180 deg) is not noticeably displaced. The
calculated variation of the shock-wave angle b with axial distance x is shown
in Fig. 5.15. It is well known that shock waves around blunted cones at zero
angle of attack exhibit a local minimum in the wave angle, that is, as the
strong bow shock wave progresses from the normal shock at the nose to the
weaker shock downstream, b first decreases, reaches a local minimum, and
then increases, finally approaching the sharp cone result far downstream. For
the conditions shown in Fig. 5.15, this zero-angle-of-attack case results in the
local minimum b occurring at about x/Rn ¼ 10, as shown in Fig. 5.15 by
the dashed line labeled a ¼ 0. For the angle-of-attack case, the method-
of-characteristics results indicate a similar trend, except with the minimum b
occurring at different axial locations, as shown by the solid lines in Fig. 5.15.
Note that the wave angles for the blunted cone eventually approach the sharp-
cone results at large distances downstream of the nose, as seen at the right of
Fig. 5.15. Surface-pressure distributions are shown in Fig. 5.16. Again, excellent
agreement is obtained between the three-dimensional method of characteristics
and experiment. In analogy with the shock angle, note that the pressure goes

Fig. 5.17 Pitot-pressure variations from the body to the shock: uc 5 15 deg,

a 5 10 deg, M¥ 5 10, g 5 1.4, and Re 5 0.6 3 106 deg (from [59]).
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through a local minimum as illustrated in Fig. 5.16. In expanding over the blunt
nose, the pressure overexpands downstream of the shoulder, falling below the
sharp cone result, and then recompresses to the sharp cone result far downstream.
(We note here a weakness of the blast-wave theory discussed in Sec. 4.8;
blast-wave theory is incapable of predicting the type of overexpansion and
recompression shown in Fig. 5.16.) Figure 5.17 shows the variation of pitot
pressure in the flowfield, namely, along lines locally perpendicular to the body,
and extending from the body to the shock wave. A comparison with experiment
of detailed flowfield information throughout the shock layer (as opposed
to just along the body surface) is always a good test of any flowfield theory;
in Fig. 5.17, the comparison between the wind-tunnel data and the method-
of-characteristics calculation is quite good. For the leeward section of the
flowfield (F ¼ 0 deg), some lack of agreement between theory and experiment
occurs near the body surface; this is because of the thick viscous boundary
layer on the leeward side, which is not taken into account by the inviscid
theory. On the windward section (F ¼ 180 deg), the strong variation of pitot
pressure within the entropy layer (see Sec. 1.3) is very apparent. Pitot pressure
reaches a peak just outside the entropy layer and then decreases towards the
shock wave. This is because, outside the entropy layer and boundary layer on
the surface, the local supersonic Mach number increases toward the shock
wave, hence resulting in a progressively lower pitot pressure. Finally, to empha-
size the three-dimensional nature of this flowfield, Fig. 5.18 illustrates the cir-
cumferential surface-pressure distribution around the blunt cone at angle
of attack. Unlike the previous data, Fig. 5.18 pertains to hypersonic flow of

Fig. 5.18 Circumferential surface-pressure distribution at x/Rn 5 8; comparison

between theory and experiment in helium: uc 5 15 deg, a 5 20 deg, M¥ 5 14.9,

g 5 1.667, and Re 5 0.86 3 106 (from [59]).
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helium (g ¼ 1.67) at M1 ¼ 14.9. Once again, excellent agreement between
experiment and the three-dimensional method of characteristics is obtained.

On this note, we end this discussion on the method of characteristics and its
application to hypersonic inviscid flows. We have seen that the method of charac-
teristics is a viable approach toward exact solutions of such flow and indeed has
been used extensively for such cases, especially in the time period before 1970.
However, the method of characteristics is sometimes tedious to set up and
program (in the days before high-speed digital computers, the method of charac-
teristics was carried out by hand calculations—the ultimate in tediousness), with
particular complexity in the three-dimensional case. For this reason, in more
recent times simpler finite difference solutions have supplanted the method of
characteristics in many applications. Modern finite difference methods are
treated in the remainder of the chapter.

5.3 Time-Marching Finite Difference Method: Application

to the Hypersonic Blunt-Body Problem

Let us return to the road map in Fig. 1.24 and scan over the items discussed so
far in this book. Starting with the basic hypersonic shock relations in Chapter 2,
we have covered all of the left branch of Fig. 1.24 and most of the second
branch, down to and including the method of characteristics. These sections
of the road map, and hence all of the preceding discussion in this book,
pertain to the state of the art in hypersonic aerodynamics prior to 1966.
In fact, if this book were being written in 1966, our discussion of inviscid
hypersonic flow would be essentially finished at this point, except for some
mention of the calculation of the flow over a blunt hypersonic body.
However, this discussion would have been inhibited by the then-existing
severe difficulties in obtaining blunt-body solutions. This is emphasized in a
statement made in 1966 by Hayes and Probstein [60], to the effect that “in
spite of the amount of effort that has gone into this problem in recent years,
at present no single method has been agreed on as being the best for calculating
the hypersonic flow past general blunt shapes.” This situation changed rapidly in
1966 when the first practical blunt-body solution was published by Moretti and
Abbett [61]. This solution was obtained by means of a time-marching finite
difference technique that greatly simplified the calculation of flows over blunt
hypersonic bodies. Indeed, the general idea of using time-marching methods
to calculate steady flowfields for a whole host of different problems is now a
major endeavor in computational fluid dynamics. The situation has changed
so rapidly that the hypersonic blunt-body problem, which in the 1950s and
early 1960s was one of the major research problems of the day—with millions
of dollars and the efforts of scores of researchers spent on its solution, is today an
extended homework problem in several university courses in computational fluid
dynamics. Because of the importance of the blunt body in hypersonic aerody-
namic applications and because of the efficiency and power of the time-
marching technique used to solve such blunt-body flows, both will be discussed
at length in this section. Also with this section we move to the right-hand column
of our chapter road map in Fig. 5.4.
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On a practical basis, the blunt body is a particularly important shape in
hypersonic aerodynamics because all hypersonic vehicles have blunt noses to
reduce aerodynamic heating. Such heating is a driving design factor for most
types of hypersonic vehicles (as we will soon see in Part 2 of this book).
Indeed, in Chapter 6 we will demonstrate that stagnation-point aerodynamic
heating varies inversely as the square root of nose radius; hence, the larger
the nose radius, the lower the aerodynamic heating. This fact was not always
recognized. In the 1940s and early 1950s, hypersonic aerodynamic practice
was viewed as a high-speed extension of supersonic aerodynamic practice,
where slender bodies with sharp leading edges were employed to produce the
weakest possible shock waves with an attendent low wave drag. However, as
M1 increases, aerodynamic heating becomes a major factor, and the heat trans-
fer to a sharp-nosed vehicle becomes severe. (If a hypersonic vehicle in flight
does employ a sharp leading edge, nature will soon blunt it by melting away the
surface via intense aerodynamic heating.) The desirability of a blunt nose to
reduce aerodynamic heating was first advanced by H. Julian Allen in the
mid-1950s. Some simple reasons for this, and some of the historical back-
ground, are given in Chapter 1 of [5] and Chapter 8 of [1], which should be
consulted for more details. However, on a heuristic basis, we can demonstrate
the viability of a blunt body in reducing aerodynamic heating as follows. Con-
sider a hypersonic vehicle at high altitude and high velocity, hence with large
values of potential and kinetic energy. Imagine the vehicle returns to the ground
at zero velocity; hence, the potential and kinetic energies are now both zero.
Where has all of the energy gone? The answer is into the air and into the
body. The mechanism for heating the air is in part the temperature increase
across the shock wave. On one hand, if the body were slender with a sharp
nose the shock wave would be weak; hence, less energy would go into
heating the air and more into heating the body. On the other hand, if the
body had a blunt nose, then the bow shock wave would be strong; hence,
more energy would go into heating the air and less would be available to
heat the body. On this physical argument alone, we can see why a blunt nose
reduces the aerodynamic heating to a body. The point here is that blunt-body
flowfields are an important part of the study of hypersonic aerodynamics.
Clearly, a detailed knowledge of the flow in the blunt-nose region is essential
to the accurate prediction of the heat-transfer distribution around the nose, as
well as to the detailed structure of the entropy layer created in the nose
region. In turn, the properties of the blunt-body shock layer, as well as the shape
of the shock wave in the nose region, can have a strong impact on the body
surface conditions far downstream of the nose; recall, for example, the blunt-
nosed cone results discussed in Sec. 5.2. Furthermore, recall that the
method-of-characteristics solutions over the blunt cone as seen in Sec. 5.2
must be started from an initial data line obtained from a blunt-body solution;
thus, the accuracy of such blunt-body solutions is critical to the accuracy of
the method-of-characteristics solutions downstream. For all these reasons, and
more, the blunt-body problem discussed in the present section is an essential
aspect of hypersonic flow. Here, we will treat the inviscid blunt-body flow,
which is particularly important for the prediction of surface-pressure distri-
bution, shock-wave shape, entropy-layer structure, and for the calculation of
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properties at the edge of the boundary layer. Finally viscous blunt-body flows
will be treated in Part 2 of this book.

What made the hypersonic blunt-body problem originally so hard to solve, and
why is it an almost routine calculation today? To answer this question, let us
examine some physical aspects of the blunt-body shock layer. Consider the
steady flow over a blunt body moving at supersonic or hypersonic speeds, as
shown in Fig. 5.19. The shock wave in front of this body is detached and
curved, ranging from a normal shock wave right at the nose, and becoming a
weak Mach wave at large distances from the body. Hence, this single shock
wave represents all possible oblique shock solutions for the given upstream
Mach number M1 with the wave angle ranging from b ¼ p/2 to b ¼ m,
where m is the Mach angle. Behind the normal, and nearly normal, portions of
the shock wave, the flow is subsonic, whereas behind the more oblique portion
of the shock wave the flow is supersonic. (See [4] for a general description
of shock-wave phenomena.) Hence, the blunt-body shock layer is a mixed
subsonic–supersonic flow, where the subsonic and supersonic regions are
divided by sonic lines, shown as the dashed lines in Fig. 5.19. In the steady,
subsonic regions the governing Euler equations (4.1–4.5) with @/@t ¼ 0 are

Fig. 5.19 Schematic of the flowfield over a blunt body moving at supersonic or

hypersonic speeds.
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mathematically elliptic, whereas in the supersonic regions these same equations
are mathematically hyperbolic. (For a description of these mathematical classi-
fications, and their impact on the fluid-dynamic equations, see [4].) The same
Euler equations obviously apply in all regions of the flowfield. However, their
elliptic nature in the subsonic region means that the flow at any given point
depends simultaneously on the properties at all other points in the subsonic
region and in particular on the conditions along the total boundary of the sub-
sonic region. In contrast, their hyperbolic nature in the supersonic region means
that the flow at any given point depends only on the properties at other points
that are contained within the domain of dependence, bounded by Mach lines
reaching up-stream from the given point. This situation is a partial answer to
the question posed at the beginning of this paragraph. Any theoretical or
numerical technique suitable for the exact solution of the subsonic region is
improperly posed and hence falls apart in the supersonic region, and vice
versa. As just described, in the early days of hypersonics, this mixed nature
of the blunt-body flowfield made a consistent exact analysis, valid for both
the subsonic and supersonic regions exceptionally difficult to obtain. This
state of affairs was nicely reviewed by Van Dyke in 1958 (see [62]). Indeed,
it can be said that until 1966 no practical blunt-body solution existed for
routine operation, which carried the flow far enough downstream of the sonic
line (at least downstream of the limiting characteristics) to provide valid
initial conditions for a method of characteristics solution in the supersonic
region.

This situation changed dramatically in 1966 when Moretti and Abbett [61]
published the first truly practical supersonic blunt-body solution. This approach
utilizes a time-marching (sometimes called time-dependent) finite difference
solution of the governing unsteady Euler equations, starting from arbitrarily
assumed initial conditions, and calculating the steady flowfield as an asympto-
tic limit at large times. The unsteady Euler equations (4.1–4.5) are hyperbolic
with respect to time, no matter whether the flow is locally subsonic or super-
sonic. Hence, a time-marching approach starting from assumed initial con-
ditions is a properly posed mathematical problem in all regions of the flow
and allows the solution of both the subsonic and supersonic regions simul-
taneously with the same numerical technique. Today, the time-marching
approach is always used for the exact solution of blunt-body flowfields; the cal-
culations are considered “routine,” and every major aeronautical company and
laboratory has one or more versions of their “standard” blunt-body computer
program for this purpose. Because of the importance of these time-marching
solutions to modern hypersonic aerodynamics, the general procedure is
outlined next.

Here, we will follow the philosophy as originally set forth by Moretti and
Abbett [61]. However, in [61] the Lax–Wendroff finite difference technique
was employed, which later was superseded by a simpler version developed by
MacCormack [63]. MacCormack’s explicit, predictor-corrector finite difference
method was widely used throughout the 1970s and 1980s. Today it remains
the most “graduate-student friendly time-marching method available because
of its simplicity,” and hence it will be utilized here for our solution to the blunt-
body problem.
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For simplicity, assume a two-dimensional flow. The governing unsteady Euler
equations are, from Eqs. (4.1–4.3) and (4.6),
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To solve these equations for the blunt-body flowfield, the following steps can
be followed:

1) We are considering a given body shape. Hence, this is a direct solution, that
is, we are calculating the flowfield and shock-wave shape for a given body.

2) Assume the shock-wave shape and shock-detachment distance. Cover the
flowfield between the shock and body with a series of discrete grid points, as
shown in Fig. 5.20a. In this figure, the body shape is specified as b ¼ b(y), inde-
pendent of time. The shock-wave shape, which is initially assumed at time t ¼ 0,
will change with time, and is given by s ¼ s(y, t). Here, b and s are the x coor-
dinates of the body and shock, respectively.

3) Assume the flowfield variables r, u, v, p at each of the grid points shown in
Fig. 5.20a. This assumed flowfield will be considered as initial conditions at
time t ¼ 0.

4) Calculate the flowfield at the next step in time by means of an appropriate
finite difference solution of Eqs. (5.13–5.16). As mentioned earlier, during the
1970s and 1980s, the most popular finite difference technique for this purpose
had been the explicit predictor-corrector approach of MacCormack, first
described in [63], and discussed in an introductory sense in [4] and [5]. This tech-
nique will be followed here. (You should be aware, however, that today a number
of more sophisticed CFD algorithms are available for the time-marching solution
of blunt-body flow fields, one of which is discussed in Sec. 5.5.) Because the
finite difference quotients should be formed in a rectangular grid, the curvilinear
physical space shown in Fig. 5.20a can be transformed into a rectangular space
shown in Fig. 5.20b via

z ¼
x� b

d
(5:17)

where d is the local shock-detachment distance, d ¼ s 2 b. In this transformed
space, the body (x ¼ b) is obtained from Eq. (5.17) as z ¼ 0. The shock
(x ¼ s) is also obtained from Eq. (5.17) as z ¼ 1. Hence in Fig. 5.20b, the left
side of the rectangular space, z ¼ 0, represents all of the grid points along the
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body, and the right side, z ¼ 1, represents all of the grid points along the shock.
Because the y coordinate remains the same in both the physical and the trans-
formed space, then the top and bottom of the rectangular space represent the
downstream boundary and centerline, respectively. In this fashion, the curvilinear
grid in the physical space (Fig. 5.20a) is transformed to the rectangular grid in
the transformed space (Fig. 5.20b). Because the finite difference calculations
are performed on this rectangular grid, Fig. 5.20b is also called the computational
space.

Fig. 5.20 Finite difference grid in a) physical space and b) transformed space for the

blunt-body problem.
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5) For convenience, Moretti and Abbett also transformed the dependent
variables as

P ¼ ln p

R ¼ ln r

c ¼ ln p� g ln r ¼ P� gR

Also define

C ; (z� 1)
db

dy
� z cot u

W ¼
ds

dt
¼ x component of the shock-wave velocity

B ¼
u�Wzþ vC

d

In terms of the just transformed dependent and independent variables, Eqs.
(5.13–5.16) become the following.
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x Momentum:
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y Momentum:
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Energy:
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(The derivation of these transformed equations is left as a homework problem.)
Note that these equations have been written with the time derivatives on the left
side and all of the spatial derivatives on the right side, for reasons that will be
clear shortly. Also note that the transformed equations (5.18–5.21) are to be eval-
uated in the computational space, Fig. 5.20b. Once the flowfield variables are
obtained at the grid points in this computational space, then the results can be
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directly carried to the corresponding grid points in the physical space, Fig. 5.20a.
Note that, whereas the computational space is fixed, independent of time [by
virtue of the transformation, Eq. (5.17)], the shock-layer thickness in the physical
space is varying with time because the shock wave is moving, constantly changing
the local shock-detachment distance d. This means that the grid points in the phys-
ical space are moving. Only in the steady state, obtained at large times, do the shock
wave and grid network in the physical space become stationary. The movement of
the shock wave, that is, the varying shock-layer thickness with time, is accounted
for in Eqs. (5.18–5.21) via the term B, which contains the local shock-wave
velocity W. In the steady state, W becomes zero.

6) For illustration of the calculation of the flowfield, let us pick the x com-
ponent of velocity u. All of the other flow variables are calculated in an analogous
fashion. Consider a given grid point in the computational space, denoted by (i, j),
where i is the point index in the z direction and j is the point index in the y direc-
tion; i ¼ 1, 2, . . . , N, and j ¼ 1, 2, . . . , M, where N and M are the number of grid
points along a given z and y coordinate line, respectively. In Fig. 5.20b, N ¼ 4,
and M ¼ 5, for purposes of illustration. At this grid point, u(t) is the known vel-
ocity from the earlier time step; we wish to calculate u(tþ Dt) at the next step in
time, where Dt is the time interval between steps. Calculate u(tþ Dt) at grid point
(i, j) denoted by utþDt

i, j , from u(t), denoted by ut
i, j, using

utþDt
i, j ¼ ut
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� �
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where (@u/@t)ave is an average time derivative of u between t and tþ Dt. This
average time derivative is evaluated by means of a predictor-corrector philosophy
as follows.

7) Calculate a value of (@u=@t)t
i, j from Eq. (5.19), using forward differences

for the spatial derivatives. These spatial derivatives are known at times t.
(Remember that we are trying to calculate the value of u at time tþ Dt from a
known flow at time t.) So, from Eq. (5.19),
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8) Calculate a predicted value of velocity from the first two terms in a
Taylor’s series

utþDt
i, j ¼ ut

i, j þ
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Dt (5:24)

where the bar denotes predicted values. Carry out the same process itemized in
steps 6–8 to obtain predicted values of the other dependent-flow variables,
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namely, vtþDt
i, j ;R

tþDt

i, j , and c
tþDt

i, j , but now using Eqs. (5.20), (5.18), and (5.21),
respectively.

9) As a corrector step, calculate a value of the time derivative by inserting the
predicted quantities obtained in step 8 into Eqs. (5.18–5.21), but using rearward
spatial derivatives. For Example, from Eq. (5.19),
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10) Calculate the average time derivative that appears in Eq. (5.22) by
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11) Calculate the final corrected value of utþtDt
i, j from Eq. (5.22) repeated here:
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12) Repeat steps 7–11 for a large number of time steps. The variation of u
(and the other flow variables) from one time step to the next will initially be
large. However, after a sufficient number of steps are taken, utþDt � ut, that is,
a steady state will be approached in the limit of large times. This steady
state is the desired result; the time-dependent approach is simply a means to
that end.

Before proceeding further, examine steps 6–12 once again; these steps are
the essence of MacCormack’s predictor-corrector method. In this manner you
will begin to appreciate how straightforward and strikingly simple the method
is. Furthermore, we will have use for this method in subsequent applications in
this book, so make certain that you feel comfortable with the approach. In
regard to the numerical accuracy of this method (something that workers in
computational fluid dynamics are always sensitive to—for example, see,
[52]), although first-order forward and rearward differences are used on the
predictor and corrector steps respectively, the combination of the two steps
via Eq. (5.25) results in a second-order-accurate technique. Second-order
accuracy is usually sufficient for most applications in computational fluid
dynamics and is certainly sufficient for the inviscid blunt-body problem
being discussed here.
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In terms of the blunt-body problems steps 1–12 outline a solution procedure
for the interior points in the flow, that is, for the points in Fig. 5.20 that are not on
any of the four boundaries. The calculation of the flowfield variables at the
boundary points is especially important and requires some special attention.
Indeed, in the general theoretical context of the solution of the Euler equations
the only way that the governing equations, can recognize one type of application
from another is through the different boundary conditions imposed by each appli-
cation. Hence, the boundary conditions are a powerful influence in determining
the solution for a given problem, and any numerical solution must have an appro-
priate method for properly treating these boundary conditions. Thus, in the
following paragraphs we will sequentially examine the shock, body, and down-
stream and centerline boundary conditions.

In the present discussion, we are treating the shock wave as a discontinuity,
across which the usual shock-wave relations (sometimes called the Rankine–
Hugoniot relations) hold. Because the shock wave is moving, the flow velocities
in front of and behind the shock that appear in the shock relations must be inter-
preted as velocities relative to the shock wave itself. (For a discussion of the
governing relations for a moving shock wave, see Chapter 7 of [4].) For
example, in the basic normal shock case Eq. (2.1) holds for a moving shock
wave as long as M1 is interpreted as the Mach number of the flow ahead of the
wave relative to the wave. Also, in the present hypersonic blunt-body solution
the exact oblique shock relations are used, such as Eqs. (2.1), (2.3), and (2.16);
because we are working with an exact solution of the blunt-body problem, it is
neither necessary nor appropriate to utilize the limiting, approximate, hypersonic
shock expressions developed in Chapter 2. In [61], the flow properties at each of
the grid points along the shock (along z ¼ 1 in Fig. 5.20b) are obtained as
follows. Consider a given grid point on the shock wave. The flow properties
and wave velocity W(t) at this point are known at time t from the previous
time step. To obtain the flow properties and wave velocity at this grid point at
time tþ Dt, first assume a value for W(tþ Dt). Also, set up a localized, one-
dimensional, unsteady method of characteristics calculation written in a direction
locally perpendicular to the shock wave at the given grid point, reaching back
into the internal part of the shock layer (see [61] for details). For the assumed
W(tþ Dr), the Rankine–Hugoniot shock relations predict the flow properties
immediately behind the shock at the given grid point. Alternatively, the localized
one-dimensional method of characteristics method, via the solution of the appro-
priate compatibility equation along the normal direction, propagates information
from the neighboring internal flow at time t to the shock grid point at time tþ Dt.
Do these two sets of flowfield results at the given shock grid point agree? If not,
assume another value of W(tþ Dt), and try again. In this manner, an iterative
process results, which, after a number of iterations, will finally match the
Rankine–Hugoniot shock properties with the properties predicted from the
unsteady one-dimensional method of characteristics from the internal flowfield.
When the iteration is complete, then W(tþ Dt) is known, as well as the flow prop-
erties at the given shock grid point at time tþ Dt. To better understand this
approach, see [61] for an extended discussion of the idea, a well as for a presen-
tation of the appropriate compatibility equation. We will not elaborate any further
here because there is a simpler method of handling the shock points that, in the
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author’s experience, works just as well as the preceding approach. This simpler
method is as follows. Return to Fig. 5.20b and again consider a given point on the
shock boundary. Calculate the flow properties at this grid point at time tþ Dt by
employing the internal flow algorithm outlined earlier in steps 6–11, with one
modification. We cannot employ a forward difference as called for in the predic-
tor step (step 7) because there are no points to the right of the shock in Fig. 5.20b.
Hence, at the shock grid points a rearward difference must be used on both the
predictor and corrector steps, that is, the forward differences in equations such
as Eq. (5.23) must be replaced with rearward differences. This is called a
“one-sided” difference approach. When step 11 is finished, the flow properties
at the shock grid point are now obtained at time tþ Dt. In particular, the pressure
at time tþ Dt, p(tþ Dt), is now obtained. In turn, from this pressure (the pressure
immediately behind the shock), and the known freestream conditions, the value
of W(tþ Dt) is immediately fixed by the exact oblique shock relations (the
Rankine–Hugoniot relations), as long as, for this part of the calculation only,
we assume the wave angle at the grid point at time tþ Dt to be the same as
the known value at time t. To understand this more clearly, recall that, from
exact oblique shock theory, only two quantities are needed to fix the strength
of a shock wave. Here, we are using the calculated static-pressure ratio p2/p1

[where p2 ¼ p(tþ Dt) and p1 ¼ p1], and the wave angle b to define the specific
shock wave: from this, the Mach number of the flow upstream of the shock rela-
tive to the shock M1 is directly obtained from the shock relations. Because the
shock wave is moving, M1 is not the same as the freestream Mach number M1

in Fig. 5.20a. However, knowing M1 and M1, as well as the speed of sound in
the freestream, W is immediately obtained as W ¼ a1(M1 2 M1). [Here, keep
in mind that W is the shock velocity relative to the laboratory, treated positive
when the shock is moving to the right in Fig. 5.20a, and hence the velocity of
the flow ahead of the wave relative to wave is V1 2 W, as sketched in
Fig. 5.21. Thus, the Mach number of the flow ahead of the wave relative to the
wave is M1 ¼ (V1 2 W)/a1, which in turn yields the wave velocity
W ¼ a1(M1 2 M1).] From the value of W(tþ Dt) just obtained, the shock

Fig. 5.21 Schematic of a moving shock wave.
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wave at the given grid point is moved a distance Ds in the x direction, where Ds is
based on an average velocity between times t and tþ Dt, that is, Ds ¼ 1

2
[W(tþ Dt)þW(t)] Dt. This can be taken as the new location in physical space
(Fig. 5.20a) of the shock wave at time tþ Dt at the given grid point, and
the value just calculated for W(tþ Dt) is the appropriate shock velocity at time tþ
Dt. Finally, given this value of W(tþ Dt), the other flow properties at the shock
grid point, such as r(tþ Dt), T(tþ Dt), etc., are obtained from the Rankine–
Hugoniot shock relations. In short, what we have done here is to use the internal
flow algorithm (the MacCormack predictor-corrector method) with one-sided
differences to obtain the pressure behind the shock and then using this calculated
pressure in conjunction with the freestream properties to uniquely define
W(tþ Dt) from the shock relations. Once W(tþ Dt) is known, the other flow vari-
ables at the shock grid point are obtained from the exact oblique shock relations.
Because, in applying these shock relations, we assumed that the wave angle b
was the value at time t, the accuracy of this approach can be improved slightly
by repeating the shock calculation, now using an improved b based on the pre-
dicted new location of the shock at time tþ Dt. This now concludes our discus-
sion of the numerical treatment of the shock boundary condition.

The boundary condition along the body (z ¼ 0 in Fig. 5.20b) is the usual invis-
cid flow condition that the velocity must be tangent to the surface, that is,
V . n ¼ 0, where n is a unit vector normal to the surface. To implement this
boundary condition within the context of the blunt-body problem, Moretti and
Abbett [61] used a local, unsteady, one-dimensional method-of-characteristics
approach written in the local normal direction at the body much along the
lines of their treatment of the shock boundary condition as described earlier
(except now the boundary is stationary—the body is fixed). See [61] for more
details. Here, we will describe an alternate and simpler treatment at the body
surface, which, in the author’s experience, works just as well. Consider a given
grid point on the body. Calculate the velocity at this point using the internal
flow algorithm, that is, using MacCormack’s technique as outlined in steps
6–11. Once again, we will have to use one-sided differences, in this case
forward differences on both the predictor and corrector steps. For example, in
Eq. (5.25) the rearward differences have to be replaced with forward differences.
At the end of step 11, both the x and y components of velocity u and v will be
obtained at time tþ Dt at the given grid point on the body (labeled as point 1
in Fig. 5.22). These components add vectorally to yield the vector velocity V
at point 1 on the surface, as sketched in Fig. 5.22. In general, V will not be
tangent to the surface, that is, the boundary condition will be violated, and we
have to modify the boundary calculation to force V to be tangent to the
surface. Another way to state this is to consider the component of V normal to
the surface, namely, Vn in Fig. 5.22; in general, Vn will be some finite value
obtained by the process in steps 6–11, and we need to make Vn ¼ 0 in order
to satisfy the body boundary conditions. To accomplish this, let us send a
local, finite, one-dimensional, isentropic expansion or compression wave away
from the surface at point 1 of sufficient strength to cancel Vn. (See Chapter 7
of [4] for a discussion of general, unsteady, finite wave motion.) Note that at
the end of step 11, in addition to the velocity, values of pressure, density, etc.
at point 1 will also be obtained at time tþ Dt. For example, let us designate
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the resulting pressure at grid point 1 at time tþ Dt by pold, as obtained from steps
6–11. However, by sending a traveling, finite wave along n to cancel Vn, all of
the other flow properties at point 1 will be slightly changed by the traveling wave,
that is, the pressure at point 1 after the wave interaction will be denoted by pnew.
Similar definitions hold for Told, Tnew, rold, rnew, etc. at point 1. Return now to our
imaginary finite wave traveling away from the surface in Fig. 5.22. In the case
shown in Fig. 5.22a where Vn is directed away from the surface, the finite
wave should be an expansion wave because the mass motion induced by an
unsteady expansion wave is in the opposite direction to the propagation of the
wave, hence canceling Vn. After the expansion wave does its job, the new
pressure at point 1, denoted by pnew, is less than pold because the pressure
decreases through an expansion wave. Examining Fig. 5.22b, if V were directed
into the surface as shown, and hence Vn were into the surface, the finite wave
should be a compression wave because the mass motion induced by an unsteady
compression wave is in the same direction as the propagation of the wave, thus
canceling Vn. After the compression wave does its job, the new pressure at
point 1 pnew is greater than pold because the pressure increases through a com-
pression wave. To quantify these arguments, recall the relations for pressure
ratio and temperature ratio through an unsteady, isentropic, one-dimensional,
finite wave for example, see Chapter 7 of [4]. Written in terms of the standard
nomenclature for unsteady waves, we have

p

p4

¼ 1 +
g� 1

2

u0

a4

� �� �2g=(g�1)

(5:27)

and

T

T4

¼ 1 +
g� 1

2

u0

a4

� �� �2

(5:28)

Fig. 5.22 Illustration of boundary condition at the wall.
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where p4, a4, and T4 are the pressure, speed of sound, and temperature in front of
the propagating wave; u0 is the induced mass motion at an arbitrary point inside
the wave; and p and T are the corresponding pressure and temperature at that
point. The plus and minus signs correspond to a compression wave and an expan-
sion wave, respectively; with the plus and minus nomenclature, the velocity u0 is
taken as positive in both cases. Applied to our discussion here, Eqs. (5.27) and
(5.28) are written as

pnew

rold

¼ 1 +
g� 1

2

Vn

aold

� �� �2g=(g�t)

(5:29)

Tnew

Told

¼ 1 +
g� 1

2

Vn

aold

� �� �2

(5:30)

where Vn is taken as a positive number in both the cases shown in Fig. 5.22,
the plus sign corresponds to Fig. 5.22b, and the minus sign corresponds to
Fig. 5.22a. In summary, the flow properties at the body can be calculated
from the internal flow algorithm using one-sided differences, giving pold, Told,
etc.; then the precise flow-tangency condition at the body is enforced by
expanding or compressing the flow through a finite unsteady wave of strength
just sufficient to cancel any finite component of velocity perpendicular to the
wall. This yields slightly modified flow values at the wall, namely, pnew, Tnew,
etc. In turn, these are the final values of the flowfield variables at the wall at
time tþ Dt, that is, p(tþ Dt) ¼ pnew, T(tþ Dt) ¼ Tnew, etc. This approach to
the wall boundary condition is an unsteady analog to the familiar “Abbett’s”
boundary treatment (see [64]) used for steady flows, to be discussed in Sec.
5.5. This completes our discussion of the numerical treatment of the wall bound-
ary condition.

Returning to Fig. 5.20b, the downstream and centerline grid points (the top
and bottom of the rectangle in Fig. 5.20b) are easily treated, as follows. At
the downstream boundary, the flow properties at the boundary grid points are
simply obtained from linear extrapolation from the values at the adjacent
internal grid points. This is sufficient as long as the downstream boundary is
taken far enough downstream to be supersonic all along the boundary; this is
an important consideration because extrapolation (of any order) is a properly
posed supersonic boundary condition but an improperly posed subsonic bound-
ary condition. Hence, if any of the grid points along the downstream boundary
are subsonic, and extrapolation is used to obtain the flow properties at these
points, numerical instabilities are usually encountered. In regard to the center-
line boundary condition, for a two-dimensional or axisymmetric flow at zero
angle of attack, the centerline is a line of symmetry. In such a case, the usual
symmetry conditions are employed, namely, @p/@y ¼ @T/@y ¼ @u/@y ¼ 0. In
terms of our numerical calculations, these conditions are writtens as (referring
to the nomenclature in Fig. 5.23)

p jþ1 ¼ p j�1; T jþ1 ¼ T j�1; u jþ1 ¼ u j�1
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Because the y component of velocity v changes sign as the centerline is crossed,
the symmetry boundary condition on v is

v jþ1 ¼ �v j�1

These symmetry conditions are sufficient to form the forward and rearward
differences at grid points along the centerline, thus allowing the use of the
usual internal flow algorithm to calculate properties along the centerline, that
is, to allow the calculation of pj, Tj, uj, etc.

A final aspect of the time-marching approach is the value of Dt, which appears
in Eqs. (5.22) and (5.24). The finite difference technique discussed in this section
is an explicit method, and therefore Dt is subject to a stability criterion. (See [52]
for an in-depth discussion of both explicit and implicit finite difference methods
and the governing stability considerations; an introductory discussion of such
matters is given in Chapters 11 and 12 of [4].) In the present method, Dt
cannot exceed a certain value in order to maintain a numerically stable solution.
The stability criterion on Dt is

Dt � min(Dtx, Dty) (5:31)

where

Dtx ¼
Dx

uþ a
(5:32)

Dty ¼
Dy

vþ a
(5:33)

Equations (5.31–5.33) constitute a version of the Courant–Friedrichs–Lewy (or
CFL) criterion, which governs the stability of explicit methods dealing with
hyperbolic equations [65]. On a physical basis, Dtx is the time it takes a sound
wave to travel between two adjacent grid points in the x direction, and Dty is
the similar time in the y direction. Equation (5.31) states that the allowable
time step in the explicit method is less than, or at best equal to, the minimum
of these two times. The CFL criterion was first derived on the basis of linear

Fig. 5.23 Grid points above and below a centerline.
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partial differential equations; therefore, for the nonlinear Euler equations
Eqs. (5.31–5.33) are to be interpreted as a guideline only and not as precise
condition. Hence, in practice, Dt is chosen such that

Dt ¼ K½min(Dtx, Dty)� (5:34)

where K is less than unity, typically on the order of 0.5 to 0.8. A particular value
of K suited to a particular application is usually determined by trial and error.

Let us examine some typical results for hypersonic blunt-body flows obtained
by means of the time-marching procedure. Such results are given in Figs. 5.24–
5.28 for the flow over a parabolic cylinder at zero angle of attack from [4] (with
the exception of Fig. 5.27, which is for an axisymmetric paraboloid). In particular
Figs. 5.24 and 5.25 illustrate the time-marching mechanism. In Fig. 5.24, the
unsteady bow shock-wave motion is shown for the case where M1 ¼ 4.0; the
fixed, parabolic cylinder is shown at the right, and four different shock shapes
and locations are shown, corresponding with four different times during the cal-
culation. The shock labeled 0Dt is the assumed shock-wave shape and location at
time t ¼ 0 (part of the assumed initial conditions). The shock labeled 100Dt is the
shock shape and location after executing the preceding time-marching technique
for 100 time steps. The shock waves for 200, 300, and 500Dt are also shown. Note
that, at early times, the shock wave moves rapidly, but after 300 time steps the
wave motion has decreased considerably, and the shock is essentially steady;
the shock waves for 300, 400, and 500 time steps are virtually the same, as
shown in Fig. 5.24. The result shown at 500Dt is essentially the final, steady-state
shock-wave shape and location—that is, the desired result. The time-marching
behavior is further illustrated in Fig. 5.25, which gives the time variation of
the pressure at the stagnation point. Note that the pressure changes very
rapidly at early times during the time-marching procedure, but at large times it
asymptotically approaches the steady-state value. Again, emphasis is made that

Fig. 5.24 Time-marching shock-wave motion, parabolic cylinder, where M¥ 5 4.
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we desire a solution to the steady-state flowfield, and the time-marching pro-
cedure is simply a means to that end. (In carrying out such time-marching sol-
utions, my students used to generate large amounts of computer printout for a
given case; I sometimes jokingly told them to tear off the last sheet, keep it,
and throw out the rest because the last sheet contains the solution to the
problem. Today the output appears graphically on a computer screen.) Some
steady-state results are shown in Figs. 5.26–5.28. In Fig. 5.26, the steady-state
surface-pressure distributions are shown for M1 ¼ 4 and 8. The exact time-
marching finite difference results are shown as the solid curves; also, for the
sake of comparison, the symbols give the modified Newtonian prediction
[from Eq. (3.15)]. Note that, as already discussed in Chapter 3, the Newtonian
results are not very accurate for a blunt, two-dimensional body; we see in
Fig. 5.26 that Newtonian results underpredict the exact numerical results down-
stream of the immediate nose region. This is not the case for an axisymmetric
body, as shown in Fig. 5.27. Here, the surface-pressure distribution is given for

Fig. 5.25 Time variation of stagnation-point pressure, parabolic cylinder, where

M¥ 5 4.

Fig. 5.26 Surface-pressure distribution, parabolic cylinder.

HYPERSONIC INVISCID FLOWFIELDS: EXACT METHODS 215



an axisymmetric paraboloid (with the same meridional shape as the parabolic
cylinder shown in Fig. 5.24). The solid curve gives the exact numerical results,
and the open squares are from modified Newtonian. Here, agreement between
the exact results and Newtonian is quite good, again emphasizing that Newtonian
theory appears to be more applicable to three-dimensional rather than two-
dimensional bodies. Figure 5.27 is similar to Fig. 3.9, used in Chapter 3 to
demonstrate the viability of Newtonian theory. However, in Fig. 5.27, some
additional data are shown, namely, the results of Lomax and Inouye [66],
which were obtained from a numerical, steady-flow inverse blunt-body solution.
These data are shown here to emphasize a particular advantage of the time-
marching method. To see this, recall that for g ¼ 1.4 sonic flow on the surface
occurs when p/p0 ¼ 0.528; examining Fig. 5.27, we note that the inverse blunt-
body solution is discontinued in the vicinity of the sonic point—a problem
encountered by all steady-flow blunt-body techniques prior to 1966. In contrast,
the time-marching procedure gives results far downstream of the body sonic

Fig. 5.27 Surface-pressure distribution, paraboloid, where M¥ 5 4.

Fig. 5.28 Shock shapes and sonic lines, parabolic cylinder.

216 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



point—indeed, as far as one wants to go downstream. As a final example of the
present technique, Fig. 5.28 shows the steady-state shock shapes and sonic lines
for a parabolic cylinder at Mach 4 and 8, obtained by means of the time-marching
procedure. Note that, as M1 increases, the shock wave moves closer to the body,
and the sonic points on both the shock and the body move closer to the center-
line—all standard physical behavior for blunt-body flows. Furthermore,
observe that, as M1 increases, the sonic point on the shock moves down faster
than the sonic point on the body, and thus the sonic line actually rotates in a coun-
terclockwise fashion as the Mach number increases.

Some interesting details on the physical aspects of the sonic line behavior are
given by Hayes and Probstein [46] and [60] and are summarized in Fig. 5.29,
taken from those references. In Fig. 5.29, qualitative results are sketched for
two cases, namely, the flow over a two-dimensional circular cylinder and the
flow over an axisymmetirc sphere; although the shapes are the same, the behavior
of the sonic lines is not. For example, in Fig. 5.29a, the sonic line is shown for
both the cylinder and the sphere at low supersonic Mach number. The sonic
point on the shock is much higher than on the body, and the angle made by
the sonic line at the body (vb in Fig. 5.29) is acute. For the cylinder, as the
Mach number increases, the sonic points on both the shock and the body move
closer to the centerline, and the sonic line becomes more curved, as shown in
Fig. 5.29b. The sketch shown in Fig. 5.29b pertains to a Mach number of approxi-
mately 2 and greater. For the cylinder, the angle vb always remains acute, no
matter how high the Mach number. (Note that the sonic lines at the body in
Fig. 5.28 for a two-dimensional parabolic cylinder are consistent with this
fact.) Figure 5.29b also pertains to the case of a sphere, but only for the
limited Mach-number range approximately between 2 and 3. At higher Mach
numbers, as shown in Fig. 5.29c for the sphere, vb becomes obtuse. Note that
Fig. 5.29 also illustrates the limiting characteristics and how they change with
Mach number. By definition, the limiting characteristic is the locus of points,
each of which has only one point of the sonic line in its zone of action. For

Fig. 5.29 General sonic line and limiting characteristic behavior as Mach number

increases (from [46] and [61]).
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example, in Fig. 5.29, the flow is locally supersonic at each point downstream of
the sonic line. However, in Fig. 5.29a, imagine a left-running characteristic line
(Mach wave) initiated at some point on the body that lies between the sonic line
and the limiting characteristic. This left-running characteristic will propagate
upward and to the left and will intersect that sonic line somewhere between
the body and the shock. When we move downstream to the limiting characteristic
itself, the left-running characteristic will only intersect the sonic line at the shock
point; only when we move downstream of the limiting characteristic will the
left-running characteristics no longer intersect the sonic line. The physical impli-
cation of this is that, although the flow region between the sonic line and the
limiting characteristic is totally supersonic, disturbances produced in this
region will propagate to the sonic line and can affect the entire subsonic
portion of the flow. Similar arguments hold for the cases shown in Figs. 5.29b
and 5.29c. This is why, in Sec. 5.2, repeated warnings were given that the
initial data line for a method of characteristics solution over a blunt-nosed
body must be taken downstream of the limiting characteristic, not just down-
stream of the sonic line. An extended, but introductory discussion of limiting
characteristics can be found in Chapter 12 of [4].

Another interesting physical aspect of hypersonic blunt-body flows is the
location of the stagnation point and the point of maximum entropy. For a sym-
metric body at zero angle of attack, the stagnation streamline and the stagnation
point are along the centerline, as sketched in Fig. 5.30a. This streamline crosses
the bow shock at precisely the point where b ¼ p/2, that is, it crosses a normal
shock, and hence the entropy of the stagnation streamline in the shock layer is the
maximum value. In contrast, consider the asymmetric cases shown in Figs. 5.30b
and 5.30c, an asymmetric flow can be produced by a nonsymmetric body, an
angle of attack, or both. In these cases, the shape and location of the stagnation
streamline, and hence of the stagnation point, are not known in advance; they
must be obtained as part of the solution. Moreover, the stagnation streamline
does not pass through the normal portion of the shock wave, and hence it is
not the maximum entropy streamline. The relative locations of the stagnation
streamline and the maximum entropy streamline for two nose shapes are shown
in Figs. 5.30b and 5.30c. Note that the stagnation streamline is always attracted to
that portion of the body with maximum curvature, whereas the maximum entropy
streamline will turn in the direction of decreasing body curvature. More details on
this matter can be found in [60].

A further interesting point concerning entropy, and one with particular conse-
quence to the time-marching procedure, is as follows. Consider the entropy
equation (4.5) repeated here:

@s

@t
þ u

@s

@x
þ v

@s

@y
þ w

@s

@z
¼ 0 (4:5)

When applied at a stagnation point, where u ¼ v ¼ w ¼ 0, Eq. (4.5) yields

@s

@t
¼ 0 ð5:35Þ
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that is, at a stagnation point in an unsteady, inviscid flow, the entropy remains
constant, independent of time. Return to Fig. 5.20a, which shows the physical
plane for a symmetric blunt body at zero angle of attack. Consider the stagnation
point, which occurs on the centerline. Equation (5.35) dictates that, at the stagna-
tion point, the initial conditions at time t ¼ 0 for a time-marching solution cannot
be chosen arbitrarily. Indeed, the proper steady-state value of entropy must be
used because it will remain constant at the stagnation point throughout the time-
marching procedure. However, this is no problem for the symmetric case; we
know in advance that the steady-state conditions at the stagnation point are iden-
tical to the stagnation conditions behind a normal shock wave, which are easily
calculated from the normal shock relations. Therefore, the proper initial con-
ditions at time t ¼ 0 at the stagnation point on the blunt body in Fig. 5.20a are
simply the stagnation conditions behind a normal shock wave. This is demon-
strated in Fig. 5.25, where the initial value of p0 at time t ¼ 0 was indeed
chosen as the proper steady-state value. After going through the massive vari-
ations shown in Fig. 5.25, p0 finally approaches, in the limit of large times, the
value it started with at t ¼ 0. For the asymmetric case, where the location of
the stagnation point is not known in advance, chances are that none of the

Fig. 5.30 Stagnation and maximum entropy streamlines.
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chosen grid points will correspond to the stagnation point, and thus the problem is
not encountered.

The example chosen in this section to describe and illustrate the time-
marching solution of hypersonic blunt-body flow was a two-dimensional body
at zero angle of attack. This was done for simplicity, as well as to underscore
the basic ideas and philosophy of the method without cluttering our discussion
with tedious details. The extension to three-dimensional flows is straightforward,
although the amount of detail and tedious computation increases by almost an
order of magnitude. Among the first extension of the time-marching idea to
blunt bodies at angle of attack was the work of Moretti and Bleich [67]. An
example of a three-dimensional, inviscid, blunt-body calculation is the work of
Weilmuenster [68], who solved the flowfield over a space-shuttle-like vehicle
at large angle of attack. Weilmuenster utilized the explicit MacCormack
predictor-corrector scheme, just as we have described here, except extended to
three-dimensional flow. The governing three-dimensional Euler equations
(4.1–4.5) were solved in a time-marching fashion, just as outlined earlier in
this section. The three-dimensional shock wave was treated as a discontinuity
and moved in space during the time-marching procedure. In the physical space,
a spherical coordinate system was used in the blunt-nose region of the body,
matched to a cylindrical coordinate system for the remainder of the flowfield.
The physical grid is presented in Fig. 5.31, which shows both the symmetry
plane and the crossflow plane. This physical plane was transformed to a three-
dimensional rectangular box, analogous to the transformation shown in Fig. 5.20,

Fig. 5.31 Coordinate system for space shuttle calculations (from [68]).
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Fig. 5.32 Calculated three-dimensional shock-wave shape on a shuttle-like con-

figuration (from Weilmuenster [68]).

Fig. 5.33 Calculated pressure distribution on the space shuttle windward

centerline; M¥ 5 16.25, and a 5 39.8 deg; comparison with flight data (from [68]).
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for the finite difference calculations, along with the appropriate transformed
equations. A total of 84,825 grid points were used in the calculation, which
was carried out on a CDC Cyber 203 supercomputer. As a sample of the
results, Fig. 5.32 illustrates the final, steady-state shock wave at M1 ¼ 16.25
at an angle of attack of 39.8 deg. Figure 5.33 gives the centerline pressure distri-
bution over the bottom surface for the same flight conditions. In Fig. 5.33, the
solid and dashed lines are calculations for g ¼ 1.4 and 1.2, respectively; the
symbols are flight-test data from the space shuttle itself. Excellent agreement
is obtained. (Note that the pressure distribution is relatively insensitive to
changes in g.) These results are presented here as the epitome of time-marching
solutions to inviscid, hypersonic blunt-body flows.

On this note, we conclude our discussion of exact solutions to hypersonic
blunt-body flows. The time-marching solutions discussed here represent a sub-
stantial milestone in the progress of aerodynamic theory, not only for hyper-
sonics, but for the whole spectrum of aerodynamics.

5.4 Correlations for Hypersonic Shock-Wave Shapes

As a corollary to our discussion on exact solutions of the hypersonic blunt-
body problem in Sec. 5.3, in the present section we provide some simple engin-
eering correlations of blunt-body shock-wave shapes. Such correlations are quite
useful for rapid engineering analysis of blunt-body aerodynamic properties. Here,
we present the results of Billig [69], which are based on experimental data. The
correlations hold for sphere-cone and circular cylinder-wedge bodies and assume
a hyperbolic shock shape give by the equation:

x ¼ Rþ d� Rc cot2 b 1þ
y2 tan2 b

R2
c

� �1=2

�1

" #
(5:36)

The nomenclature in Eq. (5.36) is illustrated in Fig. 5.34; R is the radius of the
nose, Rc is the radius of curvature of the shock wave at the vertex of the hyperbola,
d is the shock detachment distance, x and y are Cartesian coordinates, and b is the
angle of the shock wave in the limit of an infinite distance away from the nose. If
the body downstream of the blunt nose is a cone of angle u c, then b is the wave
angle for an attached shock wave on a sharp cone of angle uc. Similarly, if the
body downstream of the nose is a wedge of angle u, then b is the wave angle
for an attached shock wave on a sharp wedge of angle u. If, in the axisymmetric
case, the downstream body is a cylinder (aligned with the flow) or if, in the two-
dimensional case, the downstream body is a flat slab (where in both cases the
downstream body surface is parallel to the freestream), then b is a Mach wave.
In Eq. (5.36), the values of d and Rc are correlated from experimental data as

d

R
¼

0:143 exp½3:24=M2
1� sphere-cone

0:386 exp½4:67=M2
1� cylinder-wedge

�
(5:37)
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and

Rc

R
¼

1:143 exp½0:54=(M1 � 1)1:2� sphere-cone

1:386 exp½1:8=(M1 � 1)0:75� cylinder-wedge

�
(5:38)

In Eqs. (5.37) and (5.38), M1 is the freestream Mach number.
In [70], Billig’s correlations are compared with numerical results obtained by

means of the exact, time-marching method described in Sec. 5.3. The comparison
is shown in Figs. 5.35 and 5.36, obtained from [70]. (The details of the numerical
calculations are given in [71].) Figure 5.35 gives steady-state shock-wave shapes
at Mach 4 and 8 for a sphere cone. The solid lines are the exact time-marching
results, and the open symbols are from Billig’s correlation; excellent agreement
is obtained. Figure 5.36 gives the shock-wave shape for a cylinder-wedge at
Mach 8; the solid curves are shock shapes obtained at various time steps by
means of the time-marching method, with the steady-state shock wave identified
by 300–500Dt. Billig’s correlation is given by the open circles; again, excellent
agreement is obtained for the steady-state shock shape. From the comparisons
shown in Figs. 5.35 and 5.36, we conclude that the shock correlations given by
Eqs. (5.36–5.38) are quite accurate.

Fig. 5.34 Nomenclature for shock-wave shape correlations.
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Fig. 5.35 Steady-state shock-wave shapes for a sphere-cone.

Fig. 5.36 Transient and steady-state shock-wave shapes for a cylinder-wedge

(from [70]).
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As a parenthetical comment, Eqs. (5.36–5.38) are very useful for constructing
initial conditions for a time-marching numerical blunt-body solution. Sugges-
tions for constructing the initial conditions are as follows:

1) Assume a shock-wave shape and location as given by Eqs. (5.36–5.38),
and assume that the wave velocity W at all grid points is initially zero.

2) The initial flow conditions at the shock grid points (see Fig. 5.16) are then
obtained from the exact oblique shock equations.

3) Assume a Newtonian pressure distribution along the body.
4) Interpolate between the body and the shock wave to obtain pressures at the

internal grid points.
5) Assume a linear velocity variation along the body surface, starting with

zero at the stagnation point and assigning a sharp cone value, wedge value, or
freestream value (whichever makes the most sense for the given body) at the
last downstream body point.

6) Interpolate between the body and the shock wave to obtain velocities at the
internal grid points.

7) Obtain the temperature at each point from the adiabatic relation

CpT þ
V2

2
¼ CpT1 þ

V2
1

2
(5:39)

where T1 and V1 are known freestream values. [Note that Eq. (5.39), which
states that the total enthalpy is constant throughout the flowfield, is only valid
for a steady flow. It cannot be used as part of the unsteady, time-marching pro-
cedure. However, here we are discussing the construction of initial conditions,
which are somewhat arbitrary in the first place.]

8) Obtain the density at each grid point from the equation of state, p ¼ rRT.
Although in theory the initial conditions can be purely arbitrary, in practice it

is helpful that they be somewhat near the proper steady-state solution because in
such a case 1) the number of time steps required to obtain the steady state is less,
hence reducing the required computer time; and 2) the stability behavior of the
numerical solution will be enhanced.

5.5 Shock–Shock Interactions

In some supersonic and hypersonic flowfields, shock waves impinge on other
shock waves—shock–shock interactions. Some of these interactions are straight-
forward, such as those involving straight oblique shock waves that can be calcu-
lated by algebraic methods from classical compressible flow as described in [4].
Others are more complex, involving a mixture of straight and curved shock waves
producing mixed subsonic-supersonic flows that must be calculated using time-
marching numerical methods. In all cases, the interaction pattern is driven by
inviscid flow phenomena. Such shock–shock interactions, therefore, are appro-
priate for discussion in this chapter on numerical solutions of hypersonic inviscid
flows.

There is a very practical reason for this discussion. Some hypersonic flight
vehicles are plagued with shock–shock interactions that, if not properly taken
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into account, can destroy parts of the vehicle. Consider for example the hyperso-
nic flow over the X-43 shown in three view in Fig. 5.2. The oblique shock wave
created at the nose propagates downstream underneath the vehicle and can
impinge on the leading edge of the cowl of the SCRAMjet engine. A generic
illustration of this shock pattern is given in Fig. 5.37; here the shock wave
from the nose is labeled the inlet bow shock because it is designed to impinge
on the inlet cowl of the engine for efficient containment of the flow that enters
the engine. The inlet cowl has a blunt leading edge to reduce aerodynamic
heating, and therefore a detached curved shock wave exists just upstream of
the cowl leading edge similar to the blunt-body flows discussed in Secs. 5.3
and 5.4. The shock from the nose of the vehicle does not impinge directly on
the surface of the cowl, but rather on the cowl shock wave, setting up a rather
complex shock-shock interaction that can change the nature of both shocks and
the surrounding flow field. One possibility is sketched in the inset in Fig. 5.37,
which illustrates a type-IV shock-shock interaction. (The different types of
shock–shock interactions are discussed in the following paragraphs.) The
type-IV interaction is particularly interesting and important because it results
in a supersonic jet that impinges on the engine cowl as shown in Fig. 5.37, creat-
ing large peaks in pressure and heat transfer on the cowl that can do
damage. Designers of hypersonic airbreathing vehicles, therefore, are particu-
larly concerned about the type IV interaction. But there are other types of
shock–shock interactions that can occur. Indeed, Edney [219] has identified
six types of shock–shock interactions; a summary of his work can be found in
[220]. Edney’s classification for the six types has become standard in the
literature.

Fig. 5.37 Generic hypersonic vehicle showing shock interaction in the vicinity of an

engine cowling (Lind and Lewis [222]).
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The six types of shock–shock interactions are summarized in Fig. 5.38, taken
from Lind [221]. At the middle right of Fig. 5.38, there is a picture of a blunt body
with a curved bow shock labeled BS. The sonic points on the body are identified
by SP. No shock–shock interaction is illustrated in this blunt-body picture; the
flow is that calculated in Sec. 5.3. However, if an impinging shock IS, also
shown at the middle right of Fig. 5.38, intersects the bow shock wave, the flowfield
will change. The resulting shock–shock interaction pattern depends on where the
impinging shock strikes the curved bow shock wave. The bow shock is divided

Fig. 5.38 Six types of shock–shock interactions: SP denotes sonic point; IS,

impinging shock; and BS, bow shock (Lind [221]).

HYPERSONIC INVISCID FLOWFIELDS: EXACT METHODS 227



into six sectors labeled I-VI. If the impinging shock strikes the bow shock in
sector I, the resulting shock-shock interaction is called a type-I interaction. If
the impinging shock strikes the bow shock in sector IV, the resulting interaction
is called a type-IV interaction and so forth. Qualitative sketches of the six differ-
ent interaction patterns are arrayed around the periphery of Fig. 5.38 starting with
the type-I interaction at the bottom and progressing clockwise to the type-VI
interaction shown at the top.

Consider the sketch for the type-I interaction shown at the bottom of Fig. 5.38.
This is the straightforward intersection of two straight oblique shocks of opposite
families discussed in most compressible flow texts (for example, see [4]). The
left-running shock IS intersects the right-running shock BS, resulting in two
transmitted shocks and a slip line trailing downstream from the intersection
point. The strength and angles of the transmitted shocks and the direction of
the slip line can be calculated by standard algebraic methods. The flow is
locally supersonic everywhere in this pattern.

Consider the sketch for the type-II interaction shown in Fig. 5.38. Here the
shock IS impinges on the bow shock BS at a location just downstream of the
sonic point behind shock BS. The curved bow shock is stronger at this location,
the local flow Mach number is lower, and the simple type-I pattern cannot
occur because the flow deflection angles exceed the maximum allowable by
straight oblique shock theory. Instead, the two intersecting shock waves are con-
nected by a nearly normal shock, essentially a Mach reflection, and an imbedded
core of subsonic flow trails downstream from the intersection region. As a result,
the type-II shock–shock interaction pattern is a mixed subsonic supersonic flow-
field that must be calculated by a time-marching numerical technique.

Continuing clockwise around the pheriphy of Fig. 5.38, the type-III interaction
occurs when the shock IS impinges on the bow shock BS at a location just
upstream of the sonic point behind shock BS, that is, where the flow behind
shock BS is locally subsonic, albeit at a fairly high subsonic Mach number. A
slip line trails downstream from the intersection point and impinges on the
body; this slip line separates the locally subsonic flow above it from the locally
supersonic flow behind it. The locally supersonic flow below the slip line is turned
by the body surface through a rather complex wave pattern, the details of which
are not completely shown in Fig. 5.38 (see Fig. 12 of [220] for the details).

The type-IV interaction occurs when the shock IS impinges on the stronger
part of the bow shock BS, at a location usually far upstream of the sonic point
behind the shock BS, and where the turning angle of the flow by the body is
too large for the supersonic flow to be deflected downstream through an attached
shock (as is allowed in the type-III interaction). Hence, the flow pattern of the
type-IV interaction is completely different than that of the type-III interaction.
A sketch of the type-IV interaction flowfield is shown in Fig. 5.39. Behind the
impingement point of the impinging shock IS and the bow shock BS, a supersonic
jet SJ is formed, bounded on both sides by slip lines SL that separate the super-
sonic and subsonic regions. The supersonic jet penetrates the flowfield towards
the body and terminates in a normal shock NS close to the body surface. There
are huge spikes in the pressure distribution and the local aerodynamic heating
on the body surface in this region. Indeed, pressure and heating rates up to 30
times the noninteracting case have been measured and calculated [219–222].
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Computational-fluid-dynamic results for the surface-pressure distribution
obtained from a time-marching solution by Lind [221] are given in Fig. 5.40.
Here, the surface pressure nondimensionalized by the total pressure behind a
normal shock in the freestream is plotted vs angular location along the body,
with zero deg being the stagnation-point location in the noninteracting blunt-
body flow. The freestream Mach number is 8.144, and the wave angle of the
impinging shock (relative to the freestream) is 19 deg. Results are shown for
three slightly different impinging shock locations us, where us is a polar angle
measured counterclockwise from the horizontal centerline (CL in Fig. 5.38)
stretching to the right, for example, the symmetry point of the noninteraction
bow shock would be us ¼ 180 deg. For the case us ¼ 176.5 deg, the shock IS
impinges the bow shock BS slightly above the noninteracting symmetry point,
and for the cases us ¼ 181.3 and 183.5 deg the shock IS impinges the bow
shock BS slightly below the noninteracting symmetry point. Note the large
peaks in surface pressure induced by the type-IV supersonic jet impinging on
the body surface. Because local heat-transfer rates are nearly proportional to
the pressure (see Chapters 6 and 7), similar peaks in aerodynamic heating also
occur. These pressure and heat-transfer peaks make the type-IV shock interaction
a serious consideration for hypersonic vehicle design. Unfortunately, for the type
of airbreathing hypersonic vehicle shown in Figs. 5.1–5.3 and sketched in
Fig. 5.37, where the on-design condition calls for the inlet bow shock emanating
from the vehicle nose to impinge on the engine cowl, the type-IV interaction can
be a problem. Moreover, the type-IV interaction flowfield can be unsteady, with
interaction frequencies on the order of l–32 kHz (see [221] and [222]). This
unsteadiness by itself requires the calculation of the flow to be time-marching

Fig. 5.39 Schematic of the type-IV shock interaction: BS denotes bow shock; ECW,

expansion/compression waves; IS, impinging shock; NS, normal shock; SL, shear

layer; SJ, supersonic jet; and TS, transmitted shock (Lind [221]).
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solution. Not shown in Fig. 5.39 are the transient vortices that are formed in the
unsteady flowfield (see [222] for more details).

Returning to Fig. 5.38, and continuing clockwise around the periphery, the
type-V shock–shock interaction involves the impinging IS and the bow shock
BS to be of the same family; in Fig. 5.38 they are both left-running shock
waves. The impingement point is just downstream of the sonic point behind the
bow shock BS, and therefore the type-V interaction is somewhat like the type-II
interaction. In the type-V interaction, the two intersecting shock waves are con-
nected by a nearly normal shock, essentially a Mach reflection as with the
type-II interaction. An imbedded core of subsonic flow trails downstream from
the intersection region, bounded on one side by a slip line and on the other side
by a very thin supersonic jet, so thin that the jet basically serves as another slip line.

The type-VI shock-shock interaction as shown in Fig. 5.38 involves two inter-
section left-running shock waves, where the impingement point is far down-
stream of the sonic point behind the bow shock. Analogous to the type-I
interaction, the type-VI shock–shock interacting is the classic picture of two
shock waves of the same family intersecting at a point, coalescing into a single
transmitted shock and a slip line trailing downstream from the intersection
point. This interaction can be calculated algebraically using classic methods
from compressible flow, such as described in [4].

Fig. 5.40 Calculated surface-pressure distributions over a blunt nose for three

different locations of the impinging shock for a type-IV interaction (Lind [221]).
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The beginning of Sec. 7.5 dealing with shock-wave/boundary-layer inter-
action describes a serious incident on one of the X-15 hypersonic test airplane
flights wherein shock waves from a dummy ramjet nacelle mounted on a pylon
underneath the airplane impinged on the pylon, burning a hole in the pylon
surface. Moreover, the bow shock wave from the pylon itself burned a potentially
fatal hole through the bottom surface of the airplane. Although some of this
damage was caused by a shock-wave/boundary-layer interaction as described
in Sec. 7.5, the damage to the pylon itself was most likely caused by a type-IV
shock–shock interaction. This incident reinforces the importance of the
shock–shock interactions discussed in the present section. Moreover, such inter-
actions can be particularly important in hypersonic flowfields because shock
waves can become particularly strong at high Mach numbers, as discussed in
Chaper 2.

5.6 Space-Marching Finite Difference Method:

Additional Solutions of the Euler Equations

In the present chapter, we are dealing with exact solutions of hypersonic invis-
cid flows. Although not intentional, the presentation in this chapter has been
chronological, starting with the classical method of characteristics (dating from
1928 in terms of its application to supersonic flow), and then discussing the time-
marching technique, applied with much success to the hypersonic blunt-body
problem in 1966. In the present section, we continue this chronological develop-
ment by presenting a space-marching finite difference procedure for the solution
of steady hypersonic flows—a procedure that has been widely applied since
the early 1970s. This space-marching finite difference method applies only to
flowfields that are totally supersonic or hypersonic (for example, it cannot be
used for the mixed subsonic-supersonic flow in the blunt-nose region); in this
fashion, it is analogous to the method of characteristics. But the analogy ends
there, because the finite difference method is usually easier to set up and apply
than the characteristics method (this is especially true for three-dimensional
flows) and is just as accurate. For this reason, downstream-marching finite differ-
ence solutions today have all but supplanted the method of characteristics for sol-
utions of purely supersonic and hypersonic inviscid flowfields. However, please
keep in mind that all of the approaches discussed in this chapter are used today, to
some degree or more, for the solution of hypersonic inviscid flows, and therefore
represent the modern world of hypersonics.

To introduce the general idea of the downstream-marching procedure, con-
sider the two-dimensional or axisymmetric steady flow over a sharp-nosed
body, as sketched in Fig. 5.41a. The general governing Euler equations are
given by Eqs. (4.1–4.5). Writing these equations in a form suitable for
two-dimensional or axisymmetric steady flow, we have the following.

Continuity:

@(ru)

@x
þ
@(rv)

@y
þ

jrv

y
¼ 0 (5:40)
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x Momentum:

ru
@u

@x
þ rv

@u

@y
¼ �

@p

@x
(5:41)

y Momentum:

ru
@v

@x
þ rv

@v

@y
¼ �

@p

@y
(5:42)

where j ¼ 0 or 1 for two-dimensional or axisymmetric flow, respectively. Because
the flowfield is steady and adiabatic, the total enthalpy is constant; therefore, the
partial differential energy equation [in the form of Eq. (4.5) or (4.6)] can

Fig. 5.41 Physical and computational planes.
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be replaced by the algebraic relation

hþ
V2

2
¼ h1 þ

V2
1

2
¼ h0 (5:43)

where h0 is the known total enthalpy. For a calorically perfect gas,

h ¼ CpT ¼
gRT

g� 1
¼

g

g� 1

p

r

� �

Hence, Eq. (5.43) can be written as

g

g� 1

p

r

� �
þ

u2 þ v2

2
¼ h0 (5:44)

Equations (5.40–5.42) and (5.44) constitute four equations with four unknowns,
namely, p, r, u, and v. Let us write these equations in a slightly different form as
follows. Multiplying Eq. (5.40) by u, and adding the result to Eq. (5.41), we have

u
@(ru)

@x
þ ru

@u

@x
þ u

@(rv)

@y
þ rv

@u

@y
þ

jruv

y
¼ �

@p

@x

or

@(ru2)

@x
þ
@(ruv)

@y
þ

jruv

y
¼ �

@p

@x

or

@

@x
(pþ ru2)þ

@(ruv)

@y
þ

jruv

y
¼ 0 (5:45)

Similarly, multiplying Eq. (5.40) by v, and adding the result to Eq. (5.42), we
obtain

@(ruv)

@x
þ
@

@y
(pþ rv2)þ

jrv2

y
¼ 0 (5:46)

Examine Eqs. (5.40), (5.45), and (5.46) closely; they can be written in the general
form

@E

@x
þ
@F

@y
þ H ¼ 0 (5:47)
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where E, F, and H are column vectors

E ¼

ru

pþ ru2

ruv

8<
:

9=
; F ¼

rv

ruv

pþ rv2

8<
:

9=
; H ¼

j

y

rv

ruv

rv2

8<
:

Equation (5.47), with the quantities for E, F, and H as just given, is a form of the
Euler equation called the “strong-conservation form.” Various classifications of
the governing equations have grown out of the computational-fluid-dynamics lit-
erature in recent years. Depending on the manner in which the equations are
written, they can be classified as nonconservation form, weak-conservation
form, or strong-conservation form. The distinction between these forms is
described in [52] and is discussed in detail in [72]. Because the emphasis in
the present chapter is hypersonic aerodynamics and not the details of compu-
tational fluid dynamics, no further elaboration will be given here. Let us
simply state that for the application discussed here, involving the hypersonic
flow over a body with a distinct shock wave treated as a discontinuity, the particu-
lar form of the Euler equations used is not important. We have just chosen to
express the governing equations in strong conservation form [Eq. (5.47)] to illus-
trate that such a form is used in some analyses. For the purposes of this section,
we could just as well use the form of the equations expressed by Eqs. (5.40–
5.42), where Eq. (5.40) is in conservation form, but Eqs. (5.41) and (5.42) are
in nonconservation form. There are instances, however, where the form of the
equations used for a particular computation is important; this will be discussed
at the end of the present section.

Continuing with the Euler equations in the form of Eq. (5.47), we wish to cal-
culate the hypersonic flow between the body and the shock wave, as sketched in
Fig. 5.41a, where the shape and location of the shock wave are also obtained as
part of the solution. Because the grid in Fig. 5.41 is curvilinear, a transformation
to a rectangular grid in the computational plane is necessary. This can be accom-
plished by the following transformation:

j ¼ x (5:48a)

h ¼
y� b

d
(5:48b)

where d is the local shock-layer thickness d ¼ s 2 b, s is the local ordinate of the
shock s ¼ s(x), and b is the local ordinate of the body b ¼ b(x). Equations (5.48a)
and (5.48b) transform the curvilinear grid in the physical plane (Fig. 5.41a) to the
rectangular grid in the computational plane (Fig. 5.41b). Here, h ¼ 0 is the body,
and, h ¼ 1 is the shock wave. The derivative transformation can be obtained
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from the chain rule of differentiation as follows:

@

@x
¼

@

@j

� �
@j

@x

� �
þ

@

@h

� �
@h

@x

� �
(5:49a)

@

@y
¼

@

@j

� �
@j

@y

� �
þ

@

@h

� �
@h

@y

� �
(5:49b)

where, from Eqs. (5.48a) and (5.48b)

@j

@x
¼ 1

@j

@y
¼ 0

@h

@x
¼

d(�db=dx)� ( y� b) dd=dx

d2
¼

1

d
�h

dd

dx
�

db

dx

� �

@h

@y
¼

1

d

Substituting the preceding results into Eqs. (5.49a) and (5.49b), we have the fol-
lowing derivative transformation:

@

@x
¼
@

@j
þ

1

d
�h

dd

dx
�

db

dx

� �
@

@h

� �
(5:50a)

@

@y
¼

1

d

@

@h

� �
(5:50b)

Using Eqs. (5.50a) and (5.50b), the transformed version of Eq. (5.47) is

@E

@j
þ

1

d
h

dd

dx
�

db

dx

� �
@E

@h
þ

1

d

@F

@h
þ H ¼ 0

Writing the preceding equation with the j derivative on the left and the h deriva-
tives on the right, we have

@E

@j
¼ �H �

1

d
�h

dd

dx
�

db

dx

� �
@E

@h
�

1

d

@F

@h
(5:51)

Equation (5.51) is reminiscent of Eqs. (5.18–5.21) used for the time-marching
solution of the blunt-body problem; in Eqs. (5.18–5.21) the time derivatives are
on the left sides of the equations, and all of the spatial derivatives are on the right
sides. However, in the case of Eq. (5.51) the j derivative is on the left, and the
h derivatives are on the right. This suggests a marching procedure in steps of
j, that is, a spatial-marching procedure in the downstream direction. Indeed,
MacCormack’s predictor-corrector method, used for the time-marching solutions
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in Sec. 5.3, can also be used here for the spatial marching. Such a downstream-
marching approach is mathematically valid, because, for a supersonic or hyper-
sonic inviscid flow, Eq. (5.47) and, hence, the transformed version Eq. (5.51), is a
hyperbolic partial differential equation. Hence, starting with an initial data line at
some j station, the downstream-marching procedure is mathematically well
posed.

In light of the preceding, the following is an outline of the application of
MacCormack’s method to the solution of the flowfield at the internal grid
points as shown in Fig. 5.41:

1) Begin with an initial data line at some value of j, say j1. For a pointed
body, the properties along this initial data line can be obtained from exact
wedge flow (for a two-dimensional body) or from exact cone flow (for an axisym-
metric body). For a blunt-nosed body, the initial data line is obtained from a
blunt-body solution, such as described in Sec. 5.3. The preceding comments
about the generation of data for an initial data line are exactly the same as
made in conjunction with the method of characteristics, which also required an
initial data line (recall Sec. 5.2). In short, referring to Fig. 5.41b, all properties
are considered known along the initial data line, j ¼ j1.

2) Knowing properties along j ¼ j1 (or any other line of constant j), the flow
properties at the next downstream location jþ Dj can be found from

Eiþ1, j ¼ Ei, j þ
@E

@j

� �
ave

Dj (5:52)

where Eiþ1, j is the column vector of properties, ru, pþ ru2, and ruv at grid point
(iþ 1, j), and the value of (@E=@j)ave is obtained from MacCormack’s predictor-
corrector method, as described next. In other words, the notation in Eq. (5.52)
represents three individual equations, one each for the flow quantities, ru,
pþ ru2, and ruv. Note here that the unknowns are not directly p, r, u, and v
(called the “primitive variables”), but rather the “flux” quantities ru, pþ ru2,
and ruv. The process described here will produce numerical values for
ru, pþ ru2, and ruv at the given grid point; in turn, the primitive variables (p,
r, u, and v) at the grid point can be extracted from these numbers and from
Eq. (5.44) by simultaneous solution of the algebraic equations

ru ¼ c1

pþ ru2 ¼ c2

ruv ¼ c3

g

g� 1

p

r

� �
þ

u2 þ v2

2
¼ h0

where c1, c2, and c3 are the known values from the computation at the grid point
and h0 is the known total enthalpy.

3) The first step in obtaining (@E=@j)ave, which appears in Eq. (5.52), is the
predictor step of MacCormack. Therefore, calculate a predicated value of E at
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grid point (iþ l, j) denoted by �Eiþ1, j, from

�Eiþ1, j ¼ Ei, j þ
@E

@j

� �
i, j

Dj (5:53)

where Ei, j is the known value at the given j and �Eiþ1, j is the predicted value at
jþ Dj. In Eq. (5.53), (@E=@j)i, j comes from Eq. (5.51), where the right-hand
side contains only known values at j and where the derivatives are obtained
from forward differences, that is,

@E

@j

� �
i, j

¼ �Hi, j �
1

dij

�h
dd

dx
�

db

dx

� �
i, j

Ei, jþ1 � Ei, j

Dh

� �

�
1

dij

Fi, jþ1 � Fi, j

Dh

� �
(5:54)

Knowing Eiþ1, j from Eq. (5.53), predicted values of the primitive flow variables
�p, r̄ , ū, and �v can be obtained (as described in step 2), which in turn yields pre-
dicted values for F and H, namely, Fiþ1, j and Hiþ1, j.

4) On the corrector step, insert the predicted quantities into Eq. (5.51), using
rearward differences

@E

@j

� �
iþ1, j

¼ �Hiþ1, j �
1

diþ1, j

�h
dd

dx
�

dh

dx

� �
iþ1, j

Eiþ1, j � Eiþ1, j�1

Dh

� �

�
1

diþ1, j

Fiþ1, j � Fiþ1, j�1

Dh

� �
(5:55)

5) Obtain the average derivative that appears in Eq. (5.52) by

@E

@j

� �
ave

¼
1

2

@E

@j

� �
i, j

þ
@E

@j

� �
iþ1, j

" #

obtained from obtained from

Eq. (5.54) Eq. (5.55)

(5:56)

6) Calculate the final, corrected value of Eiþ1, j from Eq. (5.52), repeated here:

Eiþ1, j ¼ Ei, j þ
@E

@j

� �
ave

Dj (5:52)

Evaluation of Eq. (5.52) via steps 3–6 at each of the iþ 1 grid points for the jth
column results in the complete determination of the internal part of the flowfield
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at jþ Dj. The entire procedure (steps 2–6) is then repeated in order to progress-
ively march downstream from the initial data line.

The boundary condition at the shock wave is handled in an analogous
fashion as described in Sec. 5.3, except now the flow is steady, that is, there is
no moving shock wave. In this respect, the application of the shock boundary
condition is simpler. For the present downstream-marching procedure, the flow
properties at the shock grid points (the upper boundary in Fig. 5.41b) as well
as the shock-wave angle can be obtained as follows:

1) Consider the shock grid points labeled 1 and 2 in Fig. 5.42. We wish to
calculate the flow properties and wave angle b at point 2. The flow conditions
and wave angle at point 1 have already been obtained from the preceding
downstream-marching step. Initially calculate the flow properties at point 2
using the internal flow algorithm as outlined in the preceding steps 2–6,
except using one-sided differences, that is, use rearward differences in both
Eqs. (5.54) and (5.55).

2) Among the flow properties obtained in the preceding step is the pressure at
point 2, p2. This pressure along with the freestream pressure and Mach number
provide two known quantities about the shock at point 2, namely, p2=p1 and
M1. Recall that the strength of an oblique shock wave (for a calorically
perfect gas) is uniquely defined by two quantities, such as the preceding two.
Hence, the oblique shock wave, including the wave angle b2, is now determined
at point 2.

3) Although all of the flow properties at point 2 were originally calculated from
the internal flow algorithm as stated in step 1, our main interest was in the pressure
in order to establish the strength of the shock wave, as described in step 2. Now
reset the values of r2, T2, u2, and V2 at point 2 to be equal to the proper values
behind the calculated oblique shock wave, as determined by the exact oblique
shock relations. This now finalizes the flowfield properties at the shock grid point.

4) Construct the shock-wave shape and location at point 2 by drawing a
straight line from point 1 with the angle 1

2
(b1 þ b2).

Fig. 5.42 Shock boundary for the downstream-marching procedure.
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The boundary condition on the body is also handled in an analogous fashion as
treated in Sec. 5.3, except now, because the flow is steady, an ordinary steady
Prandtl–Meyer expansion or compression is used at the surface. For the
present downstream-marching procedure, the flow properties at the body grid
points (the lower boundary in Fig. 5.41b) can be obtained as follows:

1) Consider the body grid points labeled 1 and 2 in Fig. 5.43. All properties at
point 1 are known from the previous calculation, and in the downstream-
marching sequence we wish to calculate the properties at point 2. Initially calcu-
late these properties using the internal flow algorithm at point 2, except using
one-sided differences, that is, use forward differences in both Eqs. (5.54) and
(5.55).

2) The values of u and v at point 2 obtained from the preceding step will, in
general, result in a velocity that is not tangent to the surface. This velocity is
denoted by Vold, shown in Fig. 5.43 making an angle u with the tangent to the
surface at point 2. To satisfy the flow tangency condition, this velocity vector
must be “rotated” through the angle u, such that the resulting velocity, denoted
by Vnew in Fig. 5.43, is tangent to the surface. This rotation is accomplished by a
Prandtl–Meyer expansion through the angle u. The flowfield values at point 2
obtained from preceding step 1 are denoted as “old” values, pold, rold, uold, vold,
etc. These are assumed to represent the flowfield upstream of the local Prandtl–
Meyer expansion. After expansion through the angle u, the flowfield calculated
downstream of the Prandtl–Meyer expansion (using the Prandtl–Meyer function
and the isentropic flow relations—for example, see [4] and [5]) is denoted as pnew,
rnew, unew, vnew, etc. These “new” values are now assigned as the final flowfield
values at point 2, satisfying the flow tangency condition. The treatment of the
wall boundary condition described here was first suggested by Abbett [64] and
therefore is frequently called Abbett’s method (see also Chapter 11 of [4]).

Because the downstream-marching technique described here is an explicit,
finite difference method, it must satisfy the Courant–Friedrichs–Lewy stability
criterion applied to steady flow. This criterion is applied in the physical plane
shown in Fig. 5.41a. In essence, it states the following. Consider grid point
(i, j), (i, jþ 1), and (i, j 2 1), located at a given x station. The next neighboring

Fig. 5.43 Body boundary for the downstream-marching procedure.
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point downstream is point (iþ 1, j) as shown in Fig. 5.41a. The spacing between
points (i, j) and (iþ 1, j) is denoted by Dx. The CFL criterion states that Dx must
be small enough such that point (iþ 1, j) falls upstream of the left-running
characteristic (left-running Mach line) through point (i, j 2 1) and upstream of
the right-running characteristic through point (i, jþ 1). On a quantitative basis,
this criterion is given by

Dx �
Dy

jtan(u+ m)jmax

where u and m are the streamline direction and Mach angle respectively at either
point (i, j 2 1) or (i, jþ 1). See [4] for more details.

This completes our description of the downstream-marching finite difference
method. Some results of this method, applied to an axisymmetric three-quarter
power-law body, are shown in Figs. 5.44 and 5.45. In Fig. 5.44, the given
body shape, the calculated shock-wave shape, and grid in the physical plane
are shown for a case at Mach 5. Pressure coefficient distributions as a function
of the downstream distance x are shown in Fig. 5.45 for M1 ¼ 5, 10, and 15.
Note that little difference exists between these results—another demonstration
of the Mach-number independence principle.

The preceding description and results are for a two-dimensional or axisym-
metric body. For such applications, the method of characteristics (Sec. 5.2)
and the downstream-marching finite difference method (decribed in the present
section) are competing techniques. The choice is up to the user as to which
technique is employed. However, the choice most often made today is the
finite difference approach, caused primarily by its relative simplicity. This is
particularly true in the case of three-dimensional flow, where the method of
characteristics becomes very tedious and where the finite difference method is
still, relatively speaking, straightforward.

One of the first three-dimensional, downstream-marching, inviscid hypersonic
flow calculations was carried out by Kutler et al. [73]. Here, the flow over a

Fig. 5.44 Shock-wave and finite difference grid for a downstream-marching solution

(courtesy of Stephen Corda, University of Maryland).
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space-shuttle-like vehicle is calculated at Mach 7.4. This work used the cylind-
rical coordinate system illustrated in Fig. 5.46, where r, f, and z are the usual
cylindrical coordinates. The axis of the body is taken along the z axis, which is
at an angle of attack a to the freestream. The flowfield in the initial data plane
is obtained from an independent blunt-body calculation, which today is almost
always a time-marching calculation such as described in Sec. 5.3. Starting

Fig. 5.45 Pressure distributions obtained for the body shown in Fig. 5.44

(calculations made by Stephen Corda, University of Maryland).

Fig. 5.46 Coordinate systems for a three-dimensional body (from Kutler et al. [73]).
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from the initial data plane, the finite difference calculations are marched down-
stream in the z direction, using the same type of philosophy described earlier
in the present section. Consult [73] for details.

In Fig. 5.46, a transformed coordinate s is also displayed, which is defined in
such a manner that s ¼ 0 is the body surface and s ¼ 1 is the outer-flow bound-
ary of the computation. Note that the outer-flow boundary is taken outside the
shock wave (the outer flow boundary is in the freestream), and hence the shock
wave itself is handled differently than described earlier. (Elaboration on this
will be made in the next paragraph.) For the finite difference calculations, the
physical space shown in Fig. 5.46 is transformed to a rectangular box, much
in the same spirit as described earlier for the two-dimensional and axisymmetric
cases.

In [73], the shock wave is calculated differently than described in Sec. 5.3, or
to this point in the present section. In these sections, the shock was treated as a
discontinuity, and only the flowfield between the shock and body was calculated,
using the oblique shock equations to determine properties behind the shock. Such
a philosophy is called shock fitting.

In contrast, in Fig. 5.46, the outer boundary of the coordinate system is outside
the bow shock wave. Here, the shock comes naturally out of the finite difference
calculations, showing up as a rapid change of flow properties across several grid
points. It is not treated explicitly as a discontinuity, and the oblique shock
relations are not used. Such a philosophy is called shock capturing.

The relative merits of using a shock-fitting or a shock-capturing approach are a
matter of continued discussion within the computational-fluid-dynamics commu-
nity and are beyond the scope of the present book. For further information on
these matters, see [4] and [72].

Results from the calculations of Kutler et al. are shown in Figs. 5.47–5.51.
In Fig. 5.47, the shock locations are shown in both the planform and side views.
The solid lines are experimental results obtained from [74]. The squares and
circles pertain to the downstream-marching calculation; the squares are a
second-order-accurate calculation using the MacCormack technique described
earlier, and the circles are a related finite difference formulation but of third-order
accuracy. (Again, see [73] for details.) Note the excellent accuracy between cal-
culation and experiment shown in Fig. 5.47. Also, on a physical basis, note that a
shock wave is generated at the nose of the vehicle and that this bow shock inter-
acts with a second shock wave generated by the canopy, as seen in the side view.
A slip surface is generated by the interaction of the bow and canopy shocks and
flows downstream. The computed and experimentally measured slip surfaces
agree very well. Also, note from the plan view that another shock wave is gen-
erated by the wing leading edge and interacts with the bow shock wave.
Observe that the calculations are not carried further downstream of the inter-
action of the bow and wing shock. This is because a pocket of locally subsonic
flow was encountered in the interaction region. In a steady flow, such a subsonic
region is mathematically elliptic, and hence the downstream-marching solution
(which applies to hyperbolic and parabolic regions only) becomes invalid (it
will usually “blow up” in the subsonic region). The only way to overcome this
problem is to calculate such subsonic regions by a time-marching procedure
and resume the downstream-marching technique in the region where the flow
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Fig. 5.47 Shock locations for shuttle-like configuration obtained from second- and

third-order downstream-marching finite difference techniques: M¥ 5 7.4, and

a 5 0 deg (from [73]).

Fig. 5.48 Cross-sectional shock-wave shapes at various streamwise stations of the

shuttle-like configuration shown in Fig. 5.47, M¥ 5 7.4, and a 5 0 deg (from [73]).
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becomes supersonic again. In most modern downstream-marching computer sol-
utions, a provision is made to switch to a time-marching solution for those local
pockets of subsonic flow. (Such a provision was not available for the calculations
of [73].) To further illustrate the three-dimensional nature of these calculations.
Fig. 5.48 shows the calculated development of the shock shapes and slip surface
in the crossflow plane at various axial locations along the body. In Fig. 5.49,
pressure coefficient distributions are shown as a function axial distance z for
various azimuthal angles around the body, starting with the bottom of the
vehicle (f ¼ 0) and concluding with the top of the vehicle (f ¼ 180 deg).
Note that, for this case, the pressures are higher on the top than on the bottom
of the vehicle; this is because the angle of attack is zero, and, noting the shape
of the vehicle as shown in the side view in Fig. 5.47, the top surface at a ¼ 0
is more of a compression surface than the bottom of the vehicle. Also note the
sharp spike in pressure for f ¼ 180 deg; this is because of the canopy shock
wave on the top surface. Calculated streamline shapes on the bottom surface
are shown in Fig. 5.50; these are given here just to emphasize the many different
types of data that can be obtained in such flowfield calculations. Finally, the
calculated and measured shock-wave shapes for an angle-of-attack case
(a ¼ 15.3 deg) are given in Fig. 5.51. Again, excellent agreement is obtained.
Also, at this stage the reader is cautioned that downstream-marching calcu-
lations must be limited to low enough angle-of-attack applications so as not
to have large regions of subsonic flow over the bottom surface. For cases at
high angle of attack with large regions of subsonic flow, a time-marching three-
dimensional solution must be employed, such as described in [68] and illus-
trated in Figs. 5.32 and 5.33.

Fig. 5.49 Longitudinal surface-pressure distributions for the 0, 90, and 180

meridians of the shuttle-like configuration: M¥ 5 7.4, and a 5 0 deg (from [73]).
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A more recent example of downstream-marching, three-dimensional, hyper-
sonic flow solutions is the work of Maus et al. [75] wherein inviscid flowfields
over the space shuttle are calculated for both a calorically perfect gas and an equi-
librium chemically reacting gas. (Chemically reacting flows are the subject of
Part III of this book.) Results from [75] are given in Fig. 5.52, which shows cal-
culated pressure distributions on the windward centerline of the space shuttle for
angles of attack of 20 and 30 deg. The calculations are made at two Mach
numbers, M1 ¼ 8 and 23. Note that, at a given angle of attack, the Cp results
for both Mach 8 and 23 are almost identical—yet another demonstration of the
Mach-number independence principle.

Fig. 5.50 Surface streamline distribution on bottom of shuttle-like configuration:

M¥ 5 7.4, and a 5 0 deg (from [73]).

Fig. 5.51 Shock location for a shuttle-like configuration: M¥ 5 7.4, anda 5 15.30 deg

(from [73]).
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5.7 Comments on the State of the Art

There are no general, closed-form, analytical solutions to hypersonic inviscid
flows. There are, however, approximate theoretical solutions based on simplified
forms of the exact governing equations, as discussed in Chapter 4. On the other
hand, the exact governing equations (the Euler equations) can be solved numeri-
cally, as demonstrated in the present chapter. Indeed, the power of modern com-
putational fluid dynamics gives us the ability to obtain exact solutions of
hypersonic inviscid flows for virtually any arbitrary geometry, including
complex, three-dimensional configurations.

However, do not be lulled into a false sense of security by these statements.
Even though computational fluid dynamics gives us the ability to make such
exact calculations, the actual carrying out of such calculations is frequently
tedious, sometimes difficult, and laced with details that have to be handled prop-
erly in order to obtain accurate and stable solutions. It is not within the scope of
the present book to elaborate on computational fluid dynamics. Indeed, the
purpose of the present book is to provide an educational experience for the
reader in the areas of hypersonic and high-temperature gas dynamics, and only
enough computational fluid dynamics is discussed to give the reader a flavor of
its application to these areas. Before embarking on serious work on multidimen-
sional hypersonic flow calculations, the reader is encouraged to study the intro-
ductory discussions on computational fluid dynamics in [4] and [72] and in
particular the thorough treatment in [52].

The reader is also encouraged to examine, and keep current with, the contem-
porary literature in computational fluid dynamics, and its applications to hyper-
sonic flows. The CFD state of the art is dynamically changing, particularly at the
present time of writing. One example is the current work on upwind differencing.

Fig. 5.52 Pressure coefficient distribution along the windward centerline on

the bottom of the space shuttle; illustration of Mach-number independence.

Downstream-marching finite difference calculations by Maus et al. [75].

246 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



In the present chapter we have utilized MacCormack’s finite difference method,
which is basically a central difference method. In the presence of strong shock
waves, this method can produce spatial oscillations both upstream and down-
stream of the shock. Because hypersonic shock waves are usually strong, these
oscillations can become a very undesirable aspect of some hypersonic flow cal-
culations. Therefore, much current work is being devoted to the development of
“upwind” schemes, that is, numerical schemes that pay attention to the domain of
dependence of a given grid point in supersonic and hypersonic flow, and which
utilize data only from the upstream locations within the domain of dependence.
Such upwind schemes have captured shock waves that are crisply defined over
only one (or at most two) grid point, and with little or no oscillations. For
example, see [76–78] for more details. And to become even more general, we
have to mention that finite difference schemes do not have a monopoly on hyper-
sonic flowfield calculations; finite volume and finite element techniques have
applications in hypersonics as well. It is not feasible for us to elaborate on
such matters here. See [223] and [224] for thorough discussions on modern com-
putational fluid dynamics.

In final perspective, the present chapter makes one important statement: exact
solutions of the governing equations of hypersonic inviscid flow for general
problems can be obtained if one is willing to accept the methods of computational
fluid dynamics as supplying such solutions. This is an aspect of the modern
hypersonics; indeed, the bulk of this chapter could not have been written
before 1966. We have given examples of exact solutions for hypersonic inviscid
flows from 1) the method of characteristics (a “classical” method), 2) a time-
marching finite difference method, and 3) a space-marching finite difference
method. The methods and results presented here are intended to provide only
the flavor of such work.

5.8 Summary and Comments

This brings to an end our discussion of inviscid hypersonic flows, wherein the
purely fluid mechanical effect of high Mach number was illustrated. Part 1 of this
book has concentrated on such flows, both from classical and modern points of
view. In the modern hypersonic aerodynamics of today, it is still useful to be
aware of the classical theory and engineering approaches described in the
earlier sections of Part 1. Also, we must recognize that computational fluid
dynamics dominates the analysis of modern hypersonic problems. Before proced-
ing to Part 2 return again to the road map in Fig. 1.24, and scan over the items
listed under the general heading of inviscid flows, namely, the two left-hand
branches. Make certain that you feel comfortable with the material contained
within each of the items and that you appreciate how each item is related to
the general scheme of hypersonic inviscid flows.

Design Example 5.1

The method of characteristics (Sec. 5.2) is alive and well in modern hyper-
sonic vehicle design. Based on the method of characteristics, Fred Billig [232]
developed a method of tracing streamlines in a flowfield and along with Ajay
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Kothari applied it to the design of hypersonic vehicles. Based on this technique,
Kothari et al. [231] discuss a novel inlet design for airbreathing scramjet-powered
hypersonic vehicles that uses an inward turning geometry. An inward-turning inlet
is compared to the more common two-dimensional inlet in Fig. 5.53, from [233].
Although still in the research stage at the time of writing, the inward-turning inlet
offers some performance gains that are bringing it some attention within the hyper-
sonic design community. As noted by Dissel et al. in [233], the inward-turning inlet
offers the following advantages over a two-dimensional inlet:

1) It has less wetted area in the high heating regions at the end of the inlet,
through the combustor, and the entrance to the nozzle. This can result in about
a 35% reduction in the amount of active cooling required and an overall 50%
reduction in heat transfer.

2) It has a single combustor flowpath, which reduces the complexity and the
amount of actuators and seals compared to the six to eight combustor flowpaths of
the two-dimensional engine.

3) The reduced cooling loads and combustor provisions result in lighter
engine and thermal protection weights.

4) The reduced viscous losses and smaller cooling requirements result in a
higher engine specific impulse, enabling the inward-turning vehicle to accelerate
to a higher Mach number before scramjet turnoff.

The root source of all of these advantages is a modern application of the
method of characteristics to advanced hypersonic vehicle design.

This chapter deals in part with time-marching and downstream-marching
numerical solutions of hypersonic inviscid flows using computational-fluid-
dynamic methods. The practical output of these solutions for hypersonic
vehicle design is the surface-pressure distributions and the resulting lift and
wave drag. Also, such inviscid solutions are used to set the flow conditions at
the outer edge of the boundary layer for boundary-layer calculations of surface
shear stress and aerodynamic heating distributions (discussed in Chapter 6).

Fig. 5.53 Two conceptual single-stage-to-orbit vehicles, one with a two-dimensional

inlet (upper) and the other with an inward-turning inlet ( lower) (Dissel et al. [233]).
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This combination of CFD inviscid flow calculations combined with a boundary-
layer analysis constitutes a relatively fast engineering package for vehicle design
in comparison with the more detailed and complex CFD solutions of fully viscous
flowfield as discussed in Chapter 8. Examples of some of the first inviscid CFD
solutions over hypersonic vehicles have already been given in Secs. 5.3–5.5. An
example of more recent inviscid flow calculations in support of the European
HERMES space shuttle design is given in Figs. 5.54–5.56, from the work of
H. Rieger of Dornier in Germany [234]. The HERMES configuration is shown
in Fig. 5.54, with its surface covered by part of the mesh for a finite volume cal-
culation. The total mesh used about 300,000 points. Inviscid flow results for the
Mach-number distribution throughout the flowfield over the forward portion of

Fig. 5.54 Geometry of the HERMES space shuttle (Rieger [234]).

Fig. 5.55 Computed inviscid flow Mach-number distribution in the symmetry plane

around the HERMES space shuttle, where M¥ 5 8 and angle of attack 5 20 deg [234].
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the HERMES at Mach 8 and a 20-deg angle of attack are given in Figs. 5.55 and
5.56. The Mach-number distribution in the symmetric plane is seen in Fig. 5.55,
and that in the cross-section plane located at 11.2 m downstream of the nose is
given in Fig. 5.56. The shock-wave pattern is nicely captured in these results,
including the crossflow shocks above the wing and the upper fuselage as seen
in Fig. 5.56.

Today, CFD solutions of the completely viscous flowfield over complex
configurations are available (see Chapter 8). Such Navier–Stokes solutions,
however, are computer intensive and are used for design purposes only on selec-
tive and specialized instances. We will examine some of these instances in
Chapter 8. In contrast, CFD solutions of an inviscid flowfield are simpler and
quicker to run on the computer and therefore are more suited for design appli-
cations. We have seen several instances in the present chapter.

Design Example 5.2: Hypersonic Waveriders—Part 1

The maximum lift-to-drag ratio (L/D)max for a flight vehicle is a measure of
its aerodynamic efficiency. Unfortunately, for supersonic and hypersonic flight
vehicles, as the freestream Mach number increases, (L/D)max decreases rather
dramatically. This is just a fact of nature, brought about by the rapidly increasing
shock-wave strength as Mach number increases (see Chapter 2), with consequent

Fig. 5.56 Computed inviscid flow Mach-number distributions in the cross section

for x 5 11.2 m for the HERMES space shuttle, where M¥ 5 8 and angle of

attack 5 20 deg [234].
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large increases in wave drag. Return to Fig. 3.7, and note the variation of L/D
with angle of attack for a hypersonic flat plate as calculated from Newtonian
theory. The results in Fig. 3.7 assume an inviscid flow, and as a consequence
L/D theoretically approaches infinity as the angle of attack a approaches zero.
The Newtonian variation of L/D for a flat plate is repeated in Fig. 5.57 and is
labeled as the inviscid flat-plate result given by cot a. In reality, the viscous
shear stress acting on the plate surface causes L/D to peak at a low value of a
and to go to zero as a! 0. This is illustrated by the dashed curve in
Fig. 5.57, which shows the variation of L/D modified by skin friction as predicted
by a reference temperature method (to be discussed in Sec. 6.9). The skin-friction
calculation is for laminar flow at Mach 10 and a Reynolds number of 3 � 106.
Note that (L/D)max for the flat plate is about 6.5. By comparison, (L/D)max for
a Boeing 707 at normal cruising conditions near Mach 1 is about 20. So the
(L/D)max for a hypersonic flat plate, as shown in Fig. 5.57, is a low value, reflect-
ing the characteristically low lift-to-drag ratios generated by hypersonic vehicles.
And the infinitely thin flat plate is the most efficient lifting surface aerodynami-
cally compared to other hypersonic shapes with finite thickness. Conclusion: The
L/D value of vehicles at hypersonic Mach numbers are low.

There is a class of hypersonic vehicle shapes, however, that generates higher
value of L/D than other shapes—waveriders. A waverider is a supersonic or
hypersonic vehicle that has an attached shock wave all along its leading edge,
as sketched in Fig. 5.58a. Because of this, the vehicle appears to be riding on
top of its shock wave, hence the term “waverider.” This is in contrast to a
more conventional hypersonic vehicle, where the shock wave is usually detached
from the leading edge, as sketched in Fig. 5.58b. The aerodynamic advantage of
the waverider in Fig. 5.58a is that the high pressure behind the shock wave under

Fig. 5.57 Newtonian results for a flat plate.
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the vehicles does not “leak” around the leading edge to the top surface; the flow-
field over the bottom surface is contained, and the high pressure is preserved,
therefore generating more lift on the vehicle. In contrast, for the vehicle shown
in Fig. 5.58b, there is communication between the flows over the bottom and
top surfaces; the pressure tends to leak around the leading edge, and the
general integrated pressure level on the bottom surface is reduced, resulting in
less lift. Because of this, the generic vehicle in Fig. 5.58b must fly at a larger
angle of attack a to produce the same lift as the waverider in Fig. 5.58a. This
is illustrated in Fig. 5.59, where the lift curves (L vs a) are sketched for the
two vehicles in Fig. 5.58. Note that the lift curve for the waverider is considerably
higher because of the pressure containment as compared to that for the generic
vehicle. At the same lift, points 1a and 1b in Fig. 5.59 represent the waverider
and generic vehicles, respectively. Also shown in Fig. 5.59 are typical variations
of L/D vs a, which for slender hypersonic vehicles are not too different for the
shapes in Figs. 5.58a and 5.58b. (Although the lift of the waverider at a given
angle of attack is increased by the pressure containment on the bottom surface,

Fig. 5.58 Comparison of waverider and generic hypersonic configurations.
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so is the wave drag; hence, the L/D ratio at a given angle of attack for the wave-
rider is better, but not greatly so, than that for the generic vehicle.) However, note
that because the waverider generates the same lift at a smaller a (point 1a in
Fig. 5.59) than does the generic vehicle, which must fly at a large a (point 1b
in Fig. 5.59), the L/D for the waverider is considerably higher (point 1aa) than
that for the generic shape (point 1bb). Therefore, for sustained hypersonic cruis-
ing flight in the atmosphere the waverider configuration has a definite advantage.

Question: How do you design a vehicle shape such that the shock wave is
attached all along its leading edge, that is, how do you design a waverider?

One answer is as follows. Consider the simple flowfield generated by a wedge
in a supersonic or hypersonic freestream. Imagine that the top surface of the
wedge is parallel to the freestream, and hence the only wave in the flow is the
planar shock wave propagating below the wedge, as sketched at the top of
Fig. 5.60. Now imagine two straight lines arbitrarily traced on the surface of
the shock wave, coming to a point at the front of the shock. Consider all of the
streamlines of the flow behind the shock that emanate from these arbitrarily
traced lines. Taken together, these streamlines form a streamsurface that can
be considered the surface of a vehicle with its leading edges defined by the
two arbitrarily traced lines on the shock wave. Because the flowfield behind a
planar shock wave is uniform with parallel streamlines, these streamsurfaces
are flat surfaces that trace out a vehicle shape with a caret cross section as
shown in Fig. 5.60, named after the “caret” dictionary symbol of the same
name. If you now mentally strip away the imaginary generating flowfield
shown at the top of Fig. 5.60, you have left the caret-shaped vehicle shown at
the bottom of Fig. 5.60. Concentrating on the vehicle shape at the bottom of
Fig. 5.60, the planar surfaces on the bottom of the vehicle are streamsurfaces
that exist behind a planar oblique shock wave—streamsurfaces that are generated
by streamlines that begin on the shock surface itself. Hence, the shock wave is, by

Fig. 5.59 Comparison of lift and L/D curves between a waverider and a generic

vehicle.
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definition, attached to the leading edge of the vehicle; this planar attached shock
is shown stretching between the two straight leading edges of the vehicle
sketched at the bottom of Fig. 5.60. By definition, therefore, this vehicle is a
waverider. Caution: The waverider is in principle a point-designed vehicle.
The generating oblique shock sketched at the top of Fig. 5.60 pertains to a
given freestream Mach number M1 and a given flow deflection angle of the ima-
ginary wedge that generates the oblique shock. Nevertheless, if you construct the
vehicle shape shown at the bottom of Fig. 5.60 and put it in a freestream at
the given M1 and at an angle of attach such that the flow deflection angle of
the vehicle bottom surface is the same as that of the imaginary generating

Fig. 5.60 Nonweiler or “caret” wing.
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wedge, then nature will make certain that the shock wave is attached all along the
vehicle’s leading edge, that is, the vehicle will be a waverider. Note that in Fig.
5.60 we have oriented the imaginary generating wedge such that its top surface is
parallel to the freestream; hence, there is no wave over the top surface of the
wedge. Consequently, the top surfaces of the resulting caret waverider shown
at the bottom of Fig. 5.60 are aligned with the freestream, and there is no
wave above the waverider.

In principle any shape can be used for the imaginary body producing the flow-
field from which a waverider shape is carved. The simplest case is to use a wedge
for the imaginary body as just described. This has the advantage that a wedge pro-
duces a simple known flowfield that is easily calculated, as treated in Chapter 2.
You do not need a CFD solution for this flow. The flow over a cone at zero angle
of attack in a supersonic or hypersonic flow is similarly a known flowfield that
can be used to generate waverider shapes. Because this conical flowfield is
quasi-three-dimensional, it provides more flexibility in the generation of wave-
rider shapes. The idea is the same. Consider the supersonic or hypersonic
conical flowfield over a right-circular cone at zero angle of attack as sketched
at the top of Fig. 5.61. The solution of this flowfield using the hypersonic small-
disturbance equations was discussed in Sec. 4.6. The exact numerical solution of
this flow was first obtained by Taylor and Maccoll [235]; it can be found

Fig. 5.61 Cone flow wing.
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discussed at length in [4]. Tabulated results are given in [17] and [18]. In short,
this is a known flowfield. At the top of Fig. 5.61, we see a conical shock wave
attached at the vertex of the right-circular cone. This cone is simply the imaginary
body generating the flowfield.

Consider the dashed curve drawn on the bottom surface of the conical shock
wave as sketched at the top of Fig. 5.61. All of the streamlines flowing through
this dashed curve constitute a streamsurface. In turn, this streamsurface defines
the bottom surface of a waverider with a leading edge traced out by the dashed
curve, as sketched at the bottom of Fig. 5.61. Any curve can be traced on the
conical shock; hence, any streamsurface of this conical flowfield downstream
of the shock can be used as the surface of a waverider. In so doing, the shock
wave will be attached all along the leading edge of the waverider, as shown in
Fig. 5.61. Moreover, the attached shock wave on this resulting waverider will,
of course, be a segment of the conical shock wave shown at the top of Fig. 5.61.

The waverider concept was first introduced by Nonweiler [236] in 1959, who
generated caret-shaped waveriders from the two-dimensional flowfield behind a
planar oblique shock wave generated by a wedge, as described earlier. Nonweiler
was interested in such waveriders as lifting atmospheric entry bodies. The first
extension of Nonweiler’s concept to the use of a conical flow as a generating
flowfield was by Jones [237] in 1963, and further extensions to other axisymmetic
generating flows are discussed by Jones et al. in [238]. An excellent and author-
itative survey of waverider research up to 1979 is given by Townend in [239]. In
the early 1980s Rasmussen and his colleagues at the University of Oklahoma (for
example, see [240–242]) utilized hypersonic small-disturbance theory to design
waveriders from flowfields over right-circular cones as well as elliptic cones.
(Some of Rasmussen’s small-disturbance analyses of conical flows are discussed
in Sec. 4.6.) Consistent with his use of analytical solutions of the waverider flows,
Rasmussen was also able to use the classic calculus of variations to optimize the
waverider shapes utilizing the inviscid properties of the flow.

In the work just described, the waverider configurations were designed (and
sometimes optimized) on the basis of inviscid flowfields, not including the
effect of skin-friction drag. In turn, the drag predicted by such inviscid analyses
was simply wave drag, and the resulting values of the inviscid L/D looked prom-
ising. However, waveriders tend to have large wetted surface areas, and the
skin-friction drag, always added to the waverider aerodynamics after the fact,
tended to greatly decrease the predicted inviscid lift-to-drag ratio. This made
the waverider a less interesting prospect and led to a periodic lack of interest,
indeed outright skepticism by researchers and vehicle designers in the waverider
as a viable hypersonic configuration. Beginning in 1987, the author and his stu-
dents at the University of Maryland took a different tact. New families of wave-
riders were generated wherein the skin-friction drag was included within an
optimization routine to calculate waveriders with maximum L/D. In this fashion,
the tradeoffs between wave drag and friction drag were accounted for during the
optimization process, and the resulting family of waveriders had a shape and
wetted surface area so as to optimize L/D. This family of waveriders is called
viscous-optimized hypersonic waveriders, and subsequent CFD calculations
and wind-tunnel tests have proven their viability, thus greatly enhancing
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modern interest in the waverider concept. But this is a story to be continued in
Chapter 6 in Design Example 6.2: Hypersonic Waveriders—Part 2.

Problems

5.1 Starting with Eqs. (5.13–5.16) and using the transformation of both the
independent and dependent variables as given in Sec. 5.3, derive Eqs.
(5.18–5.21).

5.2 (a) Consider the bow shock wave over a cylinder-wedge in air, where the
wedge half-angle is 20 deg. Draw this body on a piece of graph paper.
Using the shock-wave shape correlations given in Sec. 5.4, plot on
the same graph the shock shapes on the cylinder-wedge for
M1 ¼ 2, 4, 6, 10, 15, 20, and 25. Comment on these results as an illus-
tration of the Mach-number independence principle.

(b) On another piece of graph paper, repeat part a; except for a 20-deg
sphere-cone.

(c) Comment on the Mach-number range at which Mach-number indepen-
dence for the shock-wave shape is reasonably obtained for the two dimen-
sional shape in part a as compared to the axisymmetric shape in part b.
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Part 2
Viscous Hypersonic Flow

In Part 2, we emphasize the effects of viscosity and thermal
conduction in combination with high Mach numbers, and we will
label such flows as hypersonic viscous flow. The effects of high
temperature and diffusion will be covered in Part 3. In dealing
with inviscidhypersonicflowin Part 1, weexamined thequestion:
What happens to the fluid dynamics of an inviscid flow when the
Mach number is made very large? In Part 2 we take the next
logical step and address the question: What happens in a
high-Mach-number flow when the transport phenomena of
viscosity and thermal conduction are included? The answer to
thisquestion leads to many practical results regarding the predic-
tion of skin friction and aerodynamic heating in hypersonic flow.
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6
Viscous Flow: Basic Aspects, Boundary Layer

Results, and Aerodynamic Heating

Two major problems encountered today in aeronautics are
the determination of skin friction and skin temperatures of
high-speed aircraft.

E. R. Van Driest, 1950

Chapter Preview

With this chapter we leave the ideal world of inviscid flow and enter the real

world of viscous flow. What physical phenomena determine the skin-friction

drag and aerodynamic heating of hypersonic vehicles? We will find out here.

How can we calculate the skin-friction drag and aerodynamic heating of

hypersonic vehicles? We will find out here. If you are a practical person

looking for practical methods to deal with skin-friction drag and aerodynamic

heating, then you will eventually feel at home in this chapter. To get to that

point, however, we have to wade through some rather interesting theoretical

considerations. We have to start with the governing continuity, momentum,

and energy equations for a viscous flow—the Navier–Stokes equations—

and then specialize these equations for the case of flow in a boundary

layer—the boundary-layer equations. Both of these systems of equations

are coupled nonlinear partial differential equations, the difference being

that the Navier–Stokes equations have no known analytical solutions,

whereas the boundary-layer equations, being simpler, lend themselves to a

partially analytical approach that provides practical results for skin-friction

drag and heat transfer. If you are a person who enjoys analysis and working

with equations, you will immediately feel at home with the first part of this

chapter.
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In short, this chapter is where the rubber hits the road, where some of the

most important aspects of hypersonic aerodynamics come into play. In this

chapter you are entering a different world, a world where friction and

thermal conduction reign. This is not an easy world, but if you treat it with

seriousness and respect it will reward you with brand new vistas in hypersonic

aerodynamics.

6.1 Introduction

As noted in the preceding quotation by the well-known American aerodyna-
micist, E. R. Van Driest, the practical impact of viscous flow on hypersonic
vehicles was recognized as early as 1950. The matter of aerodynamic heating
(hence skin temperature) and shear stress (hence skin-friction drag) is an extre-
mely important aspect of hypersonic vehicle design. This has never been more
true than in the modern hypersonic applications of today. For example, consider
the concept of an aerospace plane, designed to take off horizontally from an exist-
ing runway, and then literally blast its way into orbit mainly on the strength of
airbreathing propulsion. A sketch of such a concept is shown in Fig. 1.8. It
will be necessary for such a vehicle to acquire enough kinetic energy within
the sensible atmosphere to “coast” into low Earth orbit. At such speeds (approxi-
mately Mach 25) within the atmosphere, aerodynamic heating will be extremely
severe. For example, Tauber and Menees [79] have made engineering estimates
of the aerodynamic heating to an aerospace plane for both ascent and reentry and
compared these results with the space shuttle reentry. These results are summar-
ized in the bar chart shown in Fig. 6.1, which gives both the maximum heat-trans-
fer rate (in W/cm2) and the total heat transfer (in kJ/cm2) at the stagnation point.
Here we see the striking result that the aerospace plane reentry stagnation-point
heating is three times larger than the reentry heating of the space shuttle, and even
more striking the ascent heating of the aerospace plane is an order of magnitude
larger than reentry heating of the space shuttle. Hence, because of the require-
ment of the aerospace plane to achieve essentially orbital velocity within the
atmosphere, the aerodynamic heating during ascent dominates its design.
Another example, this time emphasizing the role of skin-friction drag, is given
in Fig. 6.2. Here, a hypersonic waverider designed to optimize the lift/drag
ratio is shown, as obtained from [80]. Such waveriders are promising hypersonic
cruise vehicle configurations, wherein a high value of lift/drag is necessary for
efficient, long-range cruising conditions. (Hypersonic waveriders are discussed
in Design Examples at the end of Chapters 5, 6, 7, and 15.) The hypersonic trans-
port shown in Fig. 1.11 is another example of a hypersonic vehicle designed for
relatively high lift/drag. For these types of vehicles, skin-friction drag at hyper-
sonic speeds is a dominant concern because, unlike a blunt body (where the drag
is mostly wave drag due to the high pressures behind the strong bow shock wave),
the slender configurations shown in Figs. 1.11 and 6.2 experience considerable
skin-friction drag. In [80], it was observed that the magnitudes of wave drag
and skin-friction drag for the optimized hypersonic waverider were approxi-
mately the same, never differing by more than a factor of two. The important
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Fig. 6.1 Comparison between ascent and reentry stagnation-point aerodynamic

heating for an aerospace plane and the reentry stagnation-point heating of the

space shuttle; calculations by Tauber and Menees [79].

Fig. 6.2 Viscous-optimized hypersonic wave rider, by Bowcutt et al. [80].
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point here is that skin-friction drag has a major impact on the design of slender
hypersonic vehicles.

In light of the preceding, we repeat that aerodynamic heating and skin friction
are very important aspects of practical hypersonic aerodynamics. In turn, the
understanding and accurate prediction of these aspects is a vital part of the
study of hypersonic viscous flows. In Part 2, and especially in the present
chapter, we will emphasize these aspects. The introductory discussion in the pre-
ceding paragraph is given simply to motivate our subsequent discussions. As we
progress in our study of hypersonic viscous flow, always keep in mind the preced-
ing practical reasons for our interest.

Let us continue to examine the importance of hypersonic viscous flow, but
from a slightly different point of view emphasizing a more purely fluid-dynamic
aspect. Consider Fig. 6.3, which is a velocity-altitude map showing several lifting
reentry trajectories from orbit, each with different values of the lift parameter
m/CLS (see Sec. 1.5). The shaded portion corresponds to the reentry of the
space shuttle. Superimposed on this velocity-altitude map are lines of constant
Reynolds number per meter, obtained from [81]. Note that the higher-altitude
portions of the flight trajectories experience combined conditions of high Mach
number and low Reynolds number—conditions that accentuate the effects of
hypersonic viscous flows. Indeed, for most of the reentry trajectory a hypersonic
vehicle is going to experience important Reynolds-number effects. Also note that
a purely arbitrary transition Reynolds number of 106 is assumed, so that regions
of purely laminar flow and of turbulent flow for a 10-m-long vehicle are identified
on the right of Fig. 6.3. The main thrust of Fig. 6.3 is to indicate that viscous
effects are important in hypersonic flight; such viscous effects are the subject
of Part 2. Again, emphasis is made that only the purely viscous effects of vis-
cosity and thermal conduction are highlighted in Part 2; the effects of high

Fig. 6.3 Velocity-altitude map, with superimposed lines of constant unit Reynolds

number (from Koppenwallner [81]).
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temperatures and diffusion, which so frequently accompany hypersonic viscous
flow, are treated in Part 3.

In the present chapter, some basic aspects of viscous flows will be discussed,
including the full, governing equations (the Navier–Stokes equations), the
boundary-layer equations and how they are affected by hypersonic conditions,
and important results from the boundary-layer equations. Throughout Part 2 of
this book, the assumption is made that the reader has been previously introduced
to some elementary concepts of viscous flow, at least to the extent covered in
chapter 15 of [5]. It is strongly recommended that the reader review this prelimi-
nary material before progressing further.

Return for a moment to the general road map in Fig. 1.24. We have completed
our discussions on inviscid flows listed under the left-hand column in Fig. 1.24.
We now move to the center column labeled viscous flows. This column rep-
resents the material in Part 2 of this book. Indeed, in the present chapter we
will work our way through the first five items in the center column. A more
detailed road map for this chapter is given in Fig. 6.4. The Navier–Stokes
equations are the general governing equations for viscous flow, and we start
with them. From these equations we extract the similarity parameters for com-
pressible viscous flow—one of the most fundamental of considerations. We
also examine the boundary conditions that necessarily go along with the

Fig. 6.4 Road map for Chapter 6.
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Navier–Stokes equations. Then we introduce the concept of a boundary layer—
one of the most important intellectual concepts in fluid dynamics. Conceived by
Ludwig Prandtl in 1904, the boundary layer is the region adjacent to a surface
where the effects of friction and thermal conduction are dominant. The flow
external to the boundary layer, however, is not greatly affected by such effects
and can be treated as inviscid. This division of a fluid flow into two distinct
regions, the viscous boundary layer adjacent to the surface and the inviscid
flow external to the boundary layer, is arguably the most important intellectual
advancement in fluid dynamics since the beginning of the 20th century. (See
the recent article on Prandtl and the boundary-layer concept in [243].) As
shown in Fig. 6.4, our discussion on boundary layers then divides into four head-
ings. The first is the derivation of the boundary-layer equations for a laminar
compressible flow, followed by discussions of two classes of solutions of these
equations, self-similar solutions (giving results for flow over a flat plate and
around a stagnation point) and the more general nonsimilar solutions for
general configurations. Then we move to the second heading and discuss the
phenomena of transition from a laminar to a turbulent boundary layer, followed
by the third heading, namely, turbulent boundary layers. Finally, the fourth
heading, the reference temperature method, provides a simple engineering
approach to calculating the surface skin-friction and aerodynamic heating for
compressible boundary layers using classic results from incompressible flow.
For all subject items in the road map in Fig. 6.4, the special aspects of hypersonic
flow will be highlighted and discussed.

6.2 Governing Equations for Viscous Flow: Navier–Stokes

Equations

In Sec. 4.2, we presented the governing equations for an inviscid flow, namely,
the Euler equations (4.1–4.5). These equations are, in reality, a special form of
the general governing equations of fluid dynamics wherein the viscous terms
have been deleted. Another way of stating this is that the Euler equations are
the limiting form of the general viscous flow equations in the limit of infinite
Reynolds number. Indeed, it is frequently convenient to think of inviscid flow
as a flow that results from the Reynolds number approaching infinity.

In the general equations of motion for a fluid flow, viscous effects do not influ-
ence the basic principle of mass conservation; hence, the continuity equation is
the same as we presented in Sec. 4.2 [namely, Eq. (4.1)]. However, visualizing
a moving fluid element, the shear and normal viscous stresses on the surface of
the element result in stress terms that appear in both the momentum and energy
equations. Moreover, thermal conduction across the surface of the element
provides an additional mode of energy transfer, which appears in the energy
equation. The resulting governing equations, called the Navier–Stokes equations,
are derived (for example) in chapter 15 of [5]. Therefore, no details will be given
here. These equations are given here.

Continuity equation:

@r

@t
þ � � (rV) ¼ 0 (6:1)
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y Momentum:
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z Momentum:
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Energy:

r
D(eþ V2=2)

Dt
¼ r_qþ

@

@x
k
@T

@x

� �
þ
@

@y
k
@T

@y

� �
þ
@

@z
k
@T

@z

� �
� � � pV

þ
@(utxx)

@x
þ
@(utyx)

@y
þ
@(utzx)

@z
þ
@(vtxy)

@x
þ
@(vtyy)

@y

þ
@(vtzy)

@z
þ
@(wtxz)

@x
þ
@(wtyz)

@y
þ
@(wtzz)

@z
(6:5)

where

txy ¼ tyx ¼ m
@v

@x
þ
@u

@y

� �
(6:6a)

tyz ¼ tzy ¼ m
@w

@y
þ
@v

@z

� �
(6:6b)

tzx ¼ txz ¼ m
@u

@z
þ
@w

@x

� �
(6:6c)

txx ¼ l(� � V)þ 2m
@u

@x
(6:6d)

tyy ¼ l(� � V)þ 2m
@v

@y
(6:6e)

tzz ¼ l(� � V)þ 2m
@w

@z
(6:6f)

The preceding equations are written for an unsteady, compressible, viscous,
three-dimensional flow in Cartesian coordinates. In addition to the familiar
symbols from Chapter 4, we now have the shear stresses txy, tyz, etc., and the
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normal viscous stresses txx, tyy, and tzz, which are related to velocity gradients in
the flow via Eqs. (6.6a–6.6f). Also, m is the viscosity coefficient, k is the thermal
conductivity, and l is the bulk viscosity coefficient (where the usual Stokes
hypothesis is l ¼ � 2

3
m). In the energy equation (6.5) e is the internal energy

per unit mass, q̇ represents the volumetric heating that might occur, say, by the
absorption or emission of radiation by the gas, and the temperature gradient
terms (@/@x)[k(@T/@x)], etc. represent energy transfer across a surface caused
by the thermal conduction. More details concerning the physical significance
of all of these terms can be found in [5].

A comment on nomenclature is made here. Historically, the term “Navier–
Stokes equations” identified only the momentum equations (6.2–6.4) because
these were the very equations derived by the Frenchman Claude Louis M. H.
Navier in 1827 and independently by the Englishman George Stokes in 1845.
However, in recent times, particularly with the advent of computational fluid
dynamics, most citations in the literature referring to “solutions of the Navier–
Stokes equations” denote solutions of the complete system of equations, namely,
Eqs. (6.1–6.5). We will follow this modern trend here and will label the complete
system of equations for viscous flow, Eqs. (6.1–6.5), as the Navier–Stokes
equations.

Just as in the case of the Euler equations (4.1–4.5), there is no general analytic
solution to the complete Navier–Stokes equations. However, in analogy with
the approximate solutions of the Euler equations given in Chapter 4, we can
simplify the Navier–Stokes equations via an appropriate set of assumptions
and obtain approximate viscous flow results. Such a simplification involves the
boundary-layer equations, to be discussed in Sec. 6.4. Also, in analogy with
the “exact” solutions of the Euler equations given in Chapter 5, there are
numerical solutions of the exact Navier–Stokes equations, to be discussed in
Chapter 8.

6.3 Similarity Parameters and Boundary Conditions

As a precursor to the boundary-layer equations, to be discussed in the next
section, and as a means to highlight the important similarity parameters for a
viscous flow, it is useful to have a nondimensional form of the Navier–Stokes
equations. To reduce the number of operations and terms, without loss of instruc-
tional value, we will consider a two-dimensional steady flow, and we will ignore
the normal stresses txx and tyy. Let us introduce the following dimensionless
variables:

�r ¼
r

r1

�u ¼
u

V1

�v ¼
v

V1

�p ¼
p

p1

�e ¼
e

cvT1

�m ¼
m

m1

�x ¼
x

c
�y ¼

y

c
�k ¼

k

k1

T

T1

¼ T

where r1, V1, p1, m1, k1, and T1 are reference values (for example, say free-
stream values) and c is a reference length (say, the chord of an airfoil). In terms
of these dimensionless variables, Eqs. (6.1–6.5) become (for two-dimensional,
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steady flow, and neglecting volumetric heating)
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The derivation of Eqs. (6.7–6.10) is left as homework Problem 6.1. Note that
several parameters have emerged in Eqs. (6.8–6.10).

Ratio of specific heats:

g ¼
cp

cv

Mach number:

M1 ¼
V1

a1

Reynolds number:

Re ¼
r1V1c

m1

Prandtl number:

Pr ¼
mcp

k

These four dimensionless parameters are called similarity parameters and are
very important in determining the nature of a given viscous-flow problem.
Indeed, a formal method for identifying the similarity parameters in any mechan-
ical system is to nondimensionalize the governing equations; the dimensionless
constants that appear in front of the derivative terms are the governing similarity
parameters. The significance of flow similarity, and the meaning of the similarity
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parameters, is discussed in detail in chapter 15 of [5]. We will make only a few
brief comments here, in the way of a remainder. First of all, from our experience
with inviscid flows in Part 1 it is no surprise that g and M1 carry over as similarity
parameters for viscous flows. Thermodynamic properties, as reflected through g,
are important for any high-speed flow problem. A combination of thermo-
dynamics and flow kinetic energy can be found in M1; indeed, it can readily
be shown (for example, see [4]) that

M2
1 /

flow kinetic energy

flow internal energy

For the Reynolds number, we have (for example, see [82])

Re/
inertia force

viscous force

The Prandtl number, introduced via the energy equation, is an index that is pro-
portional to the ratio of energy dissipated by friction to the energy transported by
thermal conduction, that is,

Pr /
frictional dissipation

thermal conduction

In the study of compressible, viscous flow, Pr is just as important as g, Re, or M.
For air at standard conditions, Pr¼ 0.71. Note that Pr is a property of the gas; for
different gases Pr is different. Also, like m, k, and cp, Pr for a nonreacting gas is a
function of temperature only. (For a chemically reacting gas, Pr is also dependent
on the local chemical composition, which in turn depends on the local tempera-
ture and pressure for an equilibrium flow and on the history of the upstream con-
ditions for a nonequilibrium flow; these ideas will be introduced in Part 3.)

An important difference between inviscid and viscous flows not seen expli-
citly in the Navier–Stokes equations is the wall boundary conditions. In Part 1,
we utilized the flow tangency condition at the wall—the usual boundary con-
dition for an inviscid flow (with no mass transfer through the wall). This bound-
ary condition changes drastically for a viscous flow. Because of the existence of
friction, the flow can no longer “slip along the wall” at a finite value. Rather, for a
continuum viscous flow we have the no-slip boundary condition at the wall,
namely, the velocity is zero at the wall.

Wall boundary condition:

u ¼ v ¼ 0 (6:11)

If there is mass transfer at the wall (as a result of ablation or transpiration cooling,
for example), then Eq. (6.11) is modified as follows.
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Wall boundary condition with mass transfer:

u ¼ 0

v ¼ vw

where vw is the specified velocity normal to the surface. In addition, because of
energy transport by thermal conduction, we require an additional boundary con-
dition at the wall involving internal energy (or more usually temperature). If the
wall is at constant temperature, then the boundary condition is simple.

Constant wall-temperature boundary condition:

T ¼ Tw (6:12)

where Tw denotes the specified wall temperature. As is more usually the case, the
wall will not be at constant temperature. If we know a priori the distribution of
temperature along the surface, then Eq. (6.12) is slightly modified as follows.

Variable wall-temperature boundary condition:

T ¼ Tw(s) (6:13)

where Tw(s) is the specified wall-temperature variation as a function of distance
along the surface s. Unfortunately, in a high-speed flow problem, the wall temp-
erature is usually one of the unknowns, and we cannot utilize either Eq. (6.12) or
(6.13). Instead, the more general condition on temperature at the wall is given by
Fourier’s law of heat conduction.

Heat-transfer wall boundary condition:

qw ¼ �k
@T

@n

� �
w

(6:14)

where qw is the heat transfer (energy per second per unit area) into or out of the
wall, n is the coordinate normal to the wall, and (@T/@n)w is the normal tempera-
ture gradient existing in the gas immediately at the wall. In general, the wall heat
transfer (and hence the wall-temperature gradient) are unknowns of the problem,
and, therefore, in the most general case the wall boundary condition [Eq. (6.14)]
must be matched to a separate heat-conduction analysis describing the heat
distribution within the surface material itself, and both the flow problem and
the surface material problem must be solved in a coupled fashion. A special
case of Eq. (6.14) is the adiabatic wall condition, wherein by definition the
heat transfer to the wall is zero. From Eq. (6.14), we have in this case

Adiabatic wall condition:

@T

@n

� �
w

¼ 0 (6:15)

Note that here the boundary condition is not on the wall temperature itself, but
rather on the temperature gradient, namely, a specified zero gradient at the
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wall. The resulting wall temperature (which comes out as part of the solution) is
defined as the adiabatic wall temperature Taw, sometimes called the “equili-
brium” temperature.

Although the choice of an appropriate boundary condition for temperature (or
temperature gradient) at the wall appears somewhat open ended from the preced-
ing discussion, the majority of high-speed viscous-flow calculations assume one
of the two extremes, that is, they either treat a uniform, constant-temperature wall
[Eq. (6.12)] or an adiabatic wall [Eq. (6.15)]. However, for a detailed and accu-
rate solution of many practical problems Eq. (6.14) must be employed along with
a coupled solution of the heat-conduction problem in the surface material itself.
Such detailed, coupled solutions are beyond the scope of this book.

The temperature boundary condition adds another similarity parameter to our
viscous-flow analysis. In Eq. (6.10), the dimensionless internal energy is defined
as ē ¼ e/cvT1. The value of ē at the wall is ēw, which for a constant-temperature
wall is a specified constant value. Moreover, for a calorically perfect gas e ¼ cv T.
Hence, at the wall

�ew ¼
ew

cvT1

¼
cvTw

cvT1

¼
Tw

T1

Therefore, to achieve flow similarity in the solution of Eqs. (6.7–6.10), not only
are g, M1, Re1, and Pr1 similarity parameters, but the wall-to-freestream
temperature ratio Tw/T1 is also a similarity parameter.

As a final note in this section, we observe that the nondimensional Navier–
Stokes equations (6.7–6.10), in the limit of Re! 1, reduce to the nondimen-
sional Euler equations, thus supporting our earlier statement that an inviscid
flow can be thought of as a limiting case of a viscous flow when the Reynolds
number becomes infinite.

6.4 Boundary-Layer Equations for Hypersonic Flow

Until the advent of computational fluid dynamics, exact solutions of the com-
plete Navier–Stokes equations for practical problems were virtually nonexistent.
Even today, numerical solutions of these equations (to be discussed later)
are not easy and generally require a lot of computer power, as well as human
resources to generate the computer solutions. Therefore, reasons exist for
simpler viscous-flow solutions. By a suitable order-of-magnitude reduction of
the Navier–Stokes equations, a simpler set of equations—the boundary-layer
equations—can be obtained. The compressible boundary-layer equations are
the same, whether the flow is subsonic, supersonic, or hypersonic (neglecting
high-temperature effects). However, there is one aspect of the standard boundary-
layer equations that becomes rather tenuous at hypersonic speeds and that is not
always recognized. For this reason, the following excerpts from [5] on the deri-
vation of the boundary-layer equations are given next. Please keep in mind that
it is not the purpose of this book to “rehash” basic fluid mechanics, which is
assumed to be part of the reader’s background. However, in the present case
regarding the derivation of the boundary-layer equations, the following review
material is important to our subsequent comments on hypersonic boundary layers.
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Considering two-dimensional, steady flow, the nondimensionalized form of
the x-momentum equation (one of the Navier–Stokes equations) was given by
Eq. (6.8):

�r�u
@�u

@�x
þ �r�v

@�u

@�y
¼ �

1

gM2
1

@ �p

@�x
þ

1

Re1

@

@�y
�m
@�v

@�x
þ
@�u

@�y

� �� �
(6:8)

Let us now reduce Eq. (6.8) to an approximate form that holds reasonably well
within a boundary layer.

Consider the boundary layer along a flat plate of length c. The basic assump-
tion of boundary-layer theory is that a boundary layer is very thin in comparison
with the scale of the body, that is,

d� c (6:16)

where d is the boundary-layer thickness. Consider the continuity equation for a
steady, two-dimensional flow, which in terms of the nondimensional variables
is given by Eq. (6.7):

@(�r�u)

@�x
þ
@(�r�v)

@�y
¼ 0 (6:7)

Because ū varies from 0 at the wall to 1 at the edge of the boundary layer, let us
say that ū is of the order of magnitude equal to 1, symbolized by 0(1). Similarly,
r̄ ¼ 0(1). Also, because x varies from 0 to c, x̄ ¼ 0(1). However, because y varies
from 0 to d, where d , c, then �y is of the smaller order of magnitude, denoted by
�y ¼ 0(d/c). Without loss of generality, we can assume that c is a unit length.
Therefore �y ¼ 0(d). Putting these orders of magnitude in Eq. (6.7), we have

½0(1)�½0(1)�

0(1)
þ
½0(1)�½�v�

0(d)
¼ 0 (6:17)

Hence, from Eq. (6.17) clearly �v must be of an order of magnitude equal to d, that is,
v ¼ 0(d). Now examine the order of magnitude of the terms in Eq. (6.8). We have

�r�u
@�u

@�x
¼ 0(1) �r�v

@�u

@�y
¼ 0(1)

@ �p

@�x
¼ 0(1)

@

@�y
�m
@�v

@�x

� �
¼ 0(1)

@

@�y
�m
@�u

@�y

� �
¼ 0

1

d2

� �

Hence, the order-of-magnitude equation for Eq. (6.8) can be written as

0(1)þ 0(1) ¼ �
1

gM2
1

0(1)þ
1

Re1

0(1)þ 0
1

d2

� �� �
(6:18)
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Let us now introduce another assumption of boundary-layer theory, namely, that
the Reynolds number is large, indeed large enough such that

1

Re1

¼ 0(d2) (6:19)

Then, Eq. (6.18) becomes

0(1)þ 0(1) ¼ �
1

gM2
1

0(1)þ 0(d2) 0(1)þ 0
1

d2

� �� �
(6:20)

In Eq. (6.20), there is one term with an order of magnitude that is much smaller

than the rest, namely, the product 0(d2)[0(1)] ¼ 0(d2). This term corresponds to

ð1=Re1Þ@=@�yð �m @�v=@�xÞ in Eq. (6.8). Hence, neglect this term in comparison to the

remaining terms in Eq. (6.8). We obtain

�r�u
@�u

@�x
þ �r�v

@�u

@�y
¼ �

1

gM2
1

@ �p

@�x
þ

1

Re1

@

@�y
�m
@�u

@�y

� �
(6:21)

In terms of dimensional variables, Eq. (6.21) is

ru
@u

@x
þ rv

@u

@y
¼ �

@p

@x
þ
@

@y
m
@u

@y

� �
(6:22)

Equation (6.22) is the approximate x-momentum equation, which holds for flow

in a thin boundary layer at high Reynolds number.
Consider the y-momentum equation for two-dimensional, steady flow,

obtained in terms of the nondimensional variables as Eq. (6.9)

�r�u
@�v

@�x
þ �r�v

@�v

@�y
¼ �

1

gM2
1

@ �p

@�y
þ

1

Re1

@

@�x
�m
@�v

@�x
þ
@�u

@�y

� �� �
(6:23)

The order-of-magnitude equation for Eq. (6.23) is

0(d)þ 0(d) ¼ �
1

gM2
1

@ �p

@�y
þ 0(d2) 0(d)þ 0

1

d

� �� �
(6:24)

From Eq. (6.24), we see that @p̄/@ȳ ¼ 0(d) or smaller, assuming that gM1
2 ¼ 0(1).

Because d is very small, this implies that @p̄/@�y is very small. Therefore, from the
y-momentum equation specialized to a boundary layer, we have

@p

@y
¼ 0 (6:25)
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Equation (6.25) is important; it states that at a given x station the pressure is con-
stant through the boundary layer in a direction normal to the surface. This implies
that the pressure distribution at the outer edge of the boundary layer is impressed
directly to the surface without change. Hence, throughout the boundary layer
p ¼ p(x) ¼ pe(x), where pe(x) is the pressure distribution at the outer edge of
the boundary layer (determined from inviscid-flow calculations).

This leads to a major point concerning hypersonic boundary layers and the
reason for reviewing the preceding order-of-magnitude analysis of the boundary-
layer equations. Consider again Eq. (6.24), but now in the case of large hyper-
sonic Mach numbers. In Eq. (6.24), if M1

2 is very large, then @p̄/@ȳ does
not have to be small. For example, if M1 were large enough such that
1/gM1

2 ¼ 0(d), then @p̄/@ȳ could be as large as 0(1), and Eq. (6.24) would still
be satisfied. Thus, for very large hypersonic Mach numbers, the assumption
that p is constant in the normal direction through a boundary layer is not
always valid. This aspect of hypersonic boundary layers is not frequently
discussed or widely appreciated, and hence some emphasis is being made
here. Also, it is important to properly interpret the preceding statement; it is a
fluid-dynamic result which states that the normal pressure gradient through a
hypersonic boundary layer need not be zero. However, this does not preclude
the pressure gradient from being zero or nearly zero; it is simply saying that,
within the conventional boundary-layer assumptions resulting in Eq. (6.24),
@p̄/@ȳ does not have to be zero. Since the 1950s, a large number of hypersonic
boundary-layer calculations have been made with the conventional boundary-
layer assumption that @p̄/@ȳ ¼ 0, and in many applications this is justified.
However, we should not expect this to always be the case. Indeed, the question
concerning the possible existence of a finite normal pressure gradient adds
more support to carrying out hypersonic viscous-flow calculations by going
beyond the usual boundary-layer calculations and instead dealing with the
entire shock layer as fully viscous from the body to the shock wave. In such
viscous shock-layer analyses, the normal pressure gradient is calculated as part
of the solution to the problem, thus circumventing the uncertainty as to
whether @p̄/@n̄ is zero or finite. Such viscous shock-layer calculations will be
discussed in Chapter 8.

As a corollary to the preceding discussion, return to the x-momentum equation
(6.21) and its order-of-magnitude comparison given by Eq. (6.20). If M1 is large,
then the pressure-gradient term (1/gM1

2 )(@p̄/@x̄) can be small; in such a case,
the hypersonic boundary layer will not be greatly influenced by the axial pressure
gradient @p̄/@x̄. This is vaguely analogous to the inviscid-flow result discussed in
Part 1, namely, that for hypersonic flow over slender bodies most of the flowfield
changes take place in the y direction, and only small changes take place in the
x direction.

Keeping the preceding considerations in mind, we will proceed in the present
chapter with a discussion of the conventional boundary-layer equations and
results based upon these equations. To round out our presentation of the
boundary-layer equations, we must consider the general energy equation given
in nondimensional form for two-dimensional, steady flow by Eq. (6.10). Inserting
e ¼ h 2 p/r into this equation, subtracting the momentum equation multiplied
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by velocity, and performing an order-of-magnitude analysis similar to those in
the preceding, we can obtain the boundary-layer equation as

ru
@h

@x
þ rv

@h

@y
¼
@

@y
k
@T

@y

� �
þ u

@p

@x
þ m

@u

@y

� �2

(6:26)

The details are left to you.
In summary, by making the combined assumptions of d , c and Re � 1/d2,

the complete Navier–Stokes equations given in Sec. 6.2 can be reduced to
simpler forms that apply to a boundary layer. These boundary-layer equations
are as follows.

Continuity:
@(ru)

@x
þ
@(rv)

@y
¼ 0 (6:27)

x Momentum: ru
@u

@x
þ rv

@u

@y
¼ �

dpe

dx
þ
@

@y
m
@u

@y

� �
(6:28)

y Momentum:
@p

@y
¼ 0 (6:29)

Energy: ru
@h

@x
þ rv

@h

@y
¼
@

@y
k
@T

@y

� �
þ u

dpe

dx
þ m

@u

@y

� �2

(6:30)

Note that, as in the case of the Navier–Stokes equations, the boundary-layer
equations are nonlinear. However, the boundary-layer equations are simpler
and therefore are more readily solved. Also, because p ¼ pe(x) the pressure gra-
dient expressed as @p/@x in Eq. (6.22) is reexpressed as dpe/dx in Eqs. (6.28) and
(6.30). In the preceding equations, the unknowns are u, v, r, and h; p is known
from p ¼ pe(x), and m and k are properties of the fluid that vary with temperature.
To complete the system, we have for a calorically perfect gas

p ¼ rRT (6:31)

and

h ¼ cpT (6:32)

Hence, Eqs. (6.27), (6.28), and (6.30–6.32) are five equations for the five
unknowns u, v, r, T, and h.
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The boundary conditions for the preceding equations are as follows.
At the wall:

y ¼ 0, u ¼ 0, v ¼ 0, T ¼ Tw

or adiabatic wall:

@T

@n

� �
w

¼ 0

At the boundary-layer edge:

y! 1, u! ue, T ! Te

Note that because the boundary-layer thickness is not known a priori, the bound-
ary condition at the edge of the boundary layer is given at large y, essentially y
approaching infinity.

The boundary-layer equations just given apply to compressible flow; they are
equally applicable to subsonic and supersonic flows with no distinction made for
such cases. They can be (and have been) applied to hypersonic flows. However,
when using Eqs. (6.27–6.32) for hypersonic flows, keep in mind our earlier
discussion concerning @p̄/@ȳ. Also, if M1 is high enough, viscous dissipation
within the boundary layer creates high temperatures, which in turn causes
chemical reactions within the boundary layer. In such a case, the system of
equations given by Eqs. (6.27–6.32) is not totally applicable; diffusion of
chemical species and energy changes caused by chemical reactions must be
included. The subject of hypersonic chemically reacting boundary layers will
be treated in Part 3. Nevertheless, the application of Eqs. (6.27–6.32) to rela-
tively moderate hypersonic conditions yields useful results. Also, many hyper-
sonic wind-tunnel tests are conducted in “cold flows,” flows where the total
enthalpy is low enough to ignore high-temperature effects. Hence, there are
many hypersonic applications where the governing boundary-layer equations
for a calorically perfect gas in the form of Eqs. (6.27–6.32) are appropriate.
Thus, we will pursue various aspects of these equations throughout the remainder
of this chapter.

This ends our introductory discussion of the basic aspects of hypersonic
viscous flow. It is instructive at this stage to return to the road map given in
Fig. 1.24. We are now located on the second major branch of hypersonic
flows, namely, hypersonic viscous flows. We have just finished the item
labeled “basic aspects” and are now ready to move on to discussions of hyperso-
nic boundary-layer theory. Under this category, our discussions will first cover
some aspects of self-similar boundary layers and then examine some approaches
for nonsimilar boundary layers. (What is meant by similar and nonsimilar bound-
ary layers will be explained in the next section.) Also, return to the chapter road
map in Fig. 6.4. We have progressed about halfway down the map and have just
finished the left-hand box labeled “laminar flow boundary-layer equations.” We
are ready to move to the first subitem under this box, namely, self-similar

VISCOUS FLOW 277



solutions. The material we will discuss is somewhat classical in nature. It will be,
for all practical purposes, a discussion of compressible boundary-layer theory not
limited to just hypersonic flow. However, our interest here is in the application of
the results of this classical theory to high-Mach-number problems.

6.5 Hypersonic Boundary-Layer Theory: Self-Similar Solutions

Although the title of this section involves the word “hypersonic,” in reality we
will be dealing with compressible boundary-layer theory, and the results will
apply to both subsonic and supersonic, as well as hypersonic conditions. As a
reminder, a major aspect that distinguishes hypersonic boundary-layer theory
from the subsonic and supersonic cases is the intense viscous dissipation, result-
ing in high-temperature, chemically reacting flow. This aspect will be considered
in Part 3. In contrast, in the present section as well as throughout Part 2, we are
assuming a calorically perfect gas, that is, we are highlighting only the fluid-
dynamic effect of viscosity and thermal conductivity in combination with high
Mach numbers. In this regard, the present section is classical in its scope; the
material discussed here has evolved since the 1940s, when interest in compressible
boundary layers began to emerge under the impetus of high-speed, subsonic, and
supersonic flight. Furthermore, we will assume some slight familiarity on the part
of the reader, at least to the extent of the material covered in chapters 15 and 16 in
[5]. For an excellent discussion of classical compressible boundary-layer theory,
see the book by White [83].

The concept of self-similar boundary layers is illustrated in Fig. 6.5. In
general, the variation of flow properties throughout a two-dimensional boundary
layer is a function of both x and y. This is sketched in the physical plane shown at
the left of Fig. 6.5, where two velocity profiles are shown at different x locations,
x1 and x2, along the surface. In general, the profiles are different, that is, u(x, y) =
u(x2, y). However, for certain cases under the appropriate independent variable

Fig. 6.5 Illustration of the concept of self-similarity.
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transformation from (x, y) to (j, h), the flowfield profiles become independent of
location along the surface. This is sketched at the right of Fig. 6.5, which shows a
transformed plane wherein the velocity profile is independent of the transformed
surface distance j; that is, the same velocity profiles exist at different values of j,
say, j1 and j2. Thus, in the transformed plane the velocity profile is given by
u ¼ u(h), independent of j. Boundary layers that exhibit this property are
called self-similar boundary layers, and solutions for these boundary layers are
called self-similar solutions—the subject of this section. Self-similar solutions
to boundary layers have been investigated since the original incompressible flat-
plate solution obtained by Blasius in 1908; the fact that the flow might be hyper-
sonic does not preclude the occurrence of self-similar solutions, as we will see.

Let us now transform the boundary-layer equations (6.27–6.30) from physical
(x, y) space to a transformed (j, h) space and examine the possibility of self-
similar solutions. The appropriate transformation is based on work initiated in
the 1940s by Illingworth [84], Stewartson [85], Howarth [86], and Dorodnitsyn
[87], and put in a more useful form by Levy [88] and Lees [89]. The transform-
ation is

j ¼

ðx

0

reueme dx (6:33)

h ¼
ueffiffiffiffiffi
2j
p

ðy

0

r dy (6:34)

where re, ue, and me are the density, velocity, and viscosity coefficients, respect-
ively, at the edge of the boundary layer. Because re, ue, and me are functions of x
only, then j ¼ j(x). The transformation given by Eqs. (6.33) and (6.34) has been
identified by various names in the literature, with some inconsistency caused by
the number of researchers contributing to its development (for example, see the
names associated with [84]–[89]). If for no other reason, it seems appropriate to
recognize the chronological first [87] and last [89] of the references given,
and hence the transformation given by Eqs. (6.33) and (6.34) will be called the
Lees–Dorodnitsyn transformation in this book.

Let us now apply the preceding transformation to the boundary-layer
equations (6.27–6.30). In the process, we will also transform the dependent vari-
ables as well, resulting in a system of partial differential equations describing the
boundary-layer flow that looks completely different than Eqs. (6.27–6.30), but
which are easier to analyze and solve. Although the following transformations
might at first look involved, they are in reality quite straightforward. There are
four basic steps to the transformation process, leading to the final transformed
equations; these four steps will be clearly identified next, for the convenience
of the reader.

Step 1—Transformation of the independent variables: The independent vari-
able transformation given by Eqs. (6.33) and (6.34) must be couched in terms of
derivatives because terms involving x and y in the original boundary-layer
equations (6.27–6.30) are derivative terms. From the chain rule of differential
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calculus, we have

@

@x
¼

@
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� �
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þ
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@h
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(6:35)

@

@y
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� �
@j

@y

� �
þ

@
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� �
@h

@y

� �
(6:36)

From Eqs. (6.33) and (6.34), keeping in mind that j ¼ j(x) only, we have

@j

@x
¼ reueme (6:37a)

@j

@y
¼ 0 (6:37b)

@h

@y
¼

uerffiffiffiffiffi
2j
p (6:37c)

(As we will soon see, we do not need an explicit expression for @h/@x).
Substituting Eqs. (6.37a–6.37c) into Eqs. (6.35) and (6.36), we obtain the
following derivative transformations:

@

@x
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@

@j
þ

@h

@x

� �
@

@h
(6:38)

@

@y
¼

uerffiffiffiffiffi
2j
p

@

@h
(6:39)

At this stage, it is convenient (but not necessary) to introduce the stream function
c defined, as usual, by

@c

@y
¼ ru (6:40a)

@c

@x
¼ �rv (6:40b)

In terms of c, the x-momentum boundary-layer equation (6.28) becomes
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�
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dx
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@
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(6:41)
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Introducing the derivative transformations given by Eqs. (6.38) and (6.39) into
Eq. (6.41), we have
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Multiplying Eq. (6.42) by
ffiffiffiffiffi
2j
p

=uer, we obtain
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This is the end of step 1; Eq. (6.43) represents the boundary-layer x-momentum
equation in terms of the transformed independent variables.

Step 2—Transformation of the dependent variables: Let us define a function
of j and h, f (j,h) such that

u

ue

¼
@f

@h
; f 0 (6:44)

where the prime denotes (for the time being) the partial derivative with respect
toh. Recalling that the velocity at the edge of the boundary layer is a function of x
(hence j) only, that is, ue ¼ ue(j ), the derivatives of u follow from Eq. (6.44) as

@u

@j
¼ f 0

due

dj
þ ue

@f 0

@j
(6:45)

@u

@h
¼ uef 00 (6:46)

where f 00 denotes (@2f/@h2).
Step 3—Identification of f with c: The new dependent variable f (j, h), defined

by Eq. (6.44), is essentially a stream function in its own right and is indeed related
to c as follows. From Eq. (6.40a), written in terms of the transformation given in
Eqs. (6.39) and (6.44), we have

uerffiffiffiffiffi
2j
p

@c

@h
¼ ru ¼ rf 0ue
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or

@c

@h
¼

ffiffiffiffiffi
2j

p
f 0 (6:47)

Integrating Eq. (6.47) with respect to h, we have

c ¼
ffiffiffiffiffi
2j

p
f þ F(j ) (6:48)

where F(j ) is an arbitrary function of j. However, recall from the general prop-
erties of the stream function that, with no mass injection at the wall, the value of c
at the wall is zero, that is, c (j, 0) ¼ 0. In Eq. (6.48) applied at the wall, the only
way to ensure that c ¼ 0 at each point along the wall is for each term of
Eq. (6.48) to be zero, that is, both f ¼ 0 and F(j ) ¼ 0. Hence, the arbitrary func-
tion F(j ) in Eq. (6.48) must be zero, and we have

c ¼
ffiffiffiffiffi
2j

p
f (6:49)

Clearly, from Eq. (6.49), f is a stream function related to c. Finally, from
Eq. (6.49) we have

@c
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¼

ffiffiffiffiffi
2j

p @f

@j
þ

1ffiffiffiffiffi
2j
p f (6:50)

Step 4—Obtaining the final transformed equation: Substituting Eqs. (6.45–
6.47) and (6.50) into Eq. (6.43), we obtain
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þ
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@x
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f 0
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2j

p re

r
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dpe
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þ
@
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u2
ermffiffiffiffiffi
2j
p f 00

� �
(6:51)

From Euler’s equation, which governs the inviscid flow at the boundary-layer
edge,

dpe ¼ �reue due (6:52)
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Inserting Eq. (6.52) into Eq. (6.51) and multiplying terms, we obtain
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(6:53)

Note that the third and sixth terms (involving @h/@x) in Eq. (6.53) cancel; this
is why we never bothered to find an explicit expression for @h/@x. Dividing
Eq. (6.53) by

ffiffiffiffiffi
2j
p

reu2
eme, we have
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(6:54)

Denote the “rho-mu” ratio in Eq. (6.54) by C ¼ rm/reme. Grouping terms in
Eq. (6.54), we finally obtain

(Cf 00)0 þ f f 00 ¼
2j

ue

( f 0)2 �
re

r

� �
due

dj
þ 2j f 0

@f 0

@j
�
@f

@j
f 00

� �
(6:55)

Equation (6.55) is the transformed boundary-layer x-momentum equation for a
two-dimensional, compressible flow.

The boundary-layer y-momentum equation, namely, Eq. (6.29), stating that
@p/@y ¼ 0 becomes in the transformed space

@p

@h
¼ 0 (6:56)

The boundary-layer energy equation given by Eq. (6.30) can also be trans-
formed. Defining a nondimensional static enthalpy as

g ¼ g(j, h) ¼
h

he

(6:57)

where he is the static enthalpy at the boundary-layer edge, and utilizing the same
transformation as before, Eq. (6.30) becomes

C

Pr
g0

� �0
þ fg0 ¼ 2j f 0

@g
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þ

f 0g

he

@he

@j
� g0

@f
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þ
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f 0
due

dj

� �
� C

u2
e

he

( f 00)2 (6:58)
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where Pr ¼ mcp/k and, as before, C ¼ rm/reme. (In some of the literature, C is
called the Chapman–Rubesin factor.) The derivation of Eq. (6.58) is left as
homework problem 6.2 for the reader.

Examine Eqs. (6.55), (6.56), and (6.58); they are transformed compressible
boundary-layer equations. They are still partial differential equations, where
both f and g are functions of j and h. They contain no further approximations
or assumptions beyond those associated with the original boundary-layer
equations, namely, Eqs. (6.27–6.30). However, they are certainly in a less recog-
nizable, somewhat more complicated-looking form than the original equations.
But do not be disturbed by this; in reality, Eqs. (6.55), (6.56), and (6.58) are in
a form that will prove to be practical and useful in the following discussion.
Indeed, transformed equations like Eqs. (6.55), (6.56), and (6.58) will occur fre-
quently in our presentation of hypersonic viscous flow, not only in Part 2, but also
in our discussion of high-temperature chemically reacting flows in Part 3. Thus, it
is important to understand and feel comfortable with these equations.

The preceding transformed boundary-layer equations must be solved subject
to the following boundary conditions. The physical boundary conditions were
given immediately following Eqs. (6.26–6.32); the corresponding transformed
boundary conditions are as follows.

At the wall for fixed wall temperature:

h ¼ 0, f ¼ f 0 ¼ 0, g ¼ gw

or adiabatic wall:

g0 ¼ 0

At the boundary-layer edge:

h! 1, f 0 ¼ 1, g ¼ 1

In general, solutions of Eqs. (6.55), (6.56), and (6.58) along with the appro-
priate boundary conditions yield variations of velocity and enthalpy throughout
the boundary layer, via u ¼ ue f 00(j, h) and h ¼ heg(j, h). The pressure throughout
the boundary layer is known because the known pressure distribution (or equiva-
lently the known velocity distribution) at the edge of the boundary is given by
pe ¼ pe(j), and this pressure is impressed without change through the boundary
layer in the locally normal direction via Eq. (6.56), which says that p ¼ constant
in the normal direction at any j location. (This is the usual boundary-layer result.
Keep in mind that here we are ignoring the possibility, discussed earlier, that a
finite normal pressure gradient can occur in a hypersonic boundary layer.)
Finally, knowing h and p throughout the boundary layer, equilibrium thermodyn-
amics provides the remaining variables through the appropriate equations of state,
for example, T ¼ T(h, p) r ¼ r(h, p), etc. For convenience, it is useful to visualize
solutions of Eqs. (6.55) and (6.58) displayed as profiles through the boundary layer
at various j locations, as qualitatively sketched in Fig. 6.6. At the top of Fig. 6.6,
velocity profiles (h as the ordinate and u as the abscissa) are shown at three differ-
ent stations along the surface, denoted by j1, j2, and j3. At the bottom of Fig. 6.6,
static enthalpy profiles (h as the ordinate and h as the abscissa) are sketched at
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three different stations. In general, even though these profiles are calculated in the
transformed j 2 h space, they will be different profiles at each different value of j.
Boundary layers that exhibit this behavior, which is the case in general, are called
nonsimilar boundary layers. This is in contrast to the concept of a self-similar
boundary layer illustrated earlier in Fig. 6.5, and which is a special case that
will be discussed in subsequent paragraphs.

Included in the general boundary-layer solution such as sketched in Fig. 6.6 are
the velocity and enthalpy gradients at the wall, given by f 00(j, 0) and g0(j, 0). From
the point of view of applied problems, this is the real payoff from a boundary-layer
solution because the local surface skin-friction coefficient cf is related to f 00(j, 0)
and the local heat-transfer rate at the surface is related to g0(j, 0). These relations
are obtained as follows. The local skin-friction coefficient cf is defined as

cf ¼
tw

1
2
reu2

e

(6:59)

where tw is the local shear stress at the wall, given by

tw ¼ m
@u

@y

� �� �
w

(6:60)

Fig. 6.6 Qualitative sketches of nonsimilar boundary-layer profiles.
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Combining Eqs. (6.59) and (6.60) and utilizing the transformations given by
Eqs. (6.39) and (6.44), we obtain

cf ¼
2

reu2
e

� �
mw

@u

@y

� �
w

¼
2

reu2
e

� �
mw

uerwffiffiffiffiffi
2j
p

@u

@h

� �
w

¼
2

reu2
e

� �
mw

u2
erwffiffiffiffiffi
2j
p f 00(j, 0)

or

cf ¼
2mwrw

re

ffiffiffiffiffi
2j
p f 00(j, 0) (6:61)

The local heat-transfer coefficient can be expressed by any one of several defined
parameters, such as the Nusselt number Nu, or the Stanton number CH, defined as
follows:

Nu ¼
qwx

ke(Taw � Tw)
(6:62)

CH ¼
qw

reue(haw � hw)
(6:63)

where qw is the local heat-transfer rate (energy per second per unit area) at the
wall, x is the distance along the wall measured from the leading edge, ke is the
thermal conductivity at the edge of the boundary layer, and Taw and haw are
the adiabatic wall temperature and adiabatic wall enthalpy, respectively. (By
definition, Taw and haw are the temperature and enthalpy respectively at the
wall when the heat transfer to the wall qw is zero. Sometimes Taw is referred to
as the “equilibrium” temperature or “equilibrium” enthalpy, respectively.)
From the definitions given by Eqs. (6.62) and (6.63) and noting that h ¼ cpT
for a calorically perfect gas, we write

Nu ;
qwx

ke(Taw � Tw)
¼

qw

reuecp(Taw � Tw)

� �
peuex

me

� �
mecp

ke

� �

or

Nu ¼ CHRe Pr (6:64)

Let us concentrate on the Stanton number because Nu is related to CH via
Eq. (6.64). From Eq. (6.63) and the Fourier equation for heat conduction, namely,

qw ¼ k
@T

@y

� �
w
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we have

CH ¼
qw

reue(haw � hw)
¼

1

reue(haw � hw)
k
@T

@y

� �
w

¼
1

reue(haw � hw)

k

cp

@h

@y

� �
w

Using the transformations given by Eqs. (6.39) and (6.57), this becomes

CH ¼
1

reue(haw � hw)

k

cp

uerheffiffiffiffiffi
2j
p

� �
w

g0(j, 0)

or

CH ¼
1ffiffiffiffiffi
2j
p

kw

cpw

rw

re

he

(haw � hw)
g0(j, 0) (6:65)

In summary, Eqs. (6.61) and (6.65) express the skin-friction coefficient and the
heat-transfer coefficient at the wall in terms of f 00(j, 0) and g0(j, 0). In turn,
f 00(j, 0) and g0(j, 0) are obtained from the solution of Eqs. (6.55) and (6.58)
for the complete flowfield within the boundary layer, taking into account the
proper boundary conditions. There is no way of obtaining f 00 and g0 at the wall
directly; only a complete solution of the boundary layer will provide the
results at the wall—the main practical results of any boundary-layer analysis.

The actual solution of Eqs. (6.55) and (6.58) for a general, nonsimilar bound-
ary layer requires the solution of coupled, nonlinear partial differential equations
as a two-point boundary-value problem, the two boundaries being h ¼ 0 and
h! 1 (or h at least large enough to be outside the boundary layer). These
matters will be discussed in Sec. 6.6. In the remainder of the present section, a
simpler approach will be considered. We will examine cases where the boundary
layer is self-similar, that is, where the picture shown in Fig. 6.5 holds. We will
consider two classic aerodynamic problems—flow over a flat plate and flow
around a stagnation point.

6.5.1 Flat-Plate Case

The inviscid flow over a flat plate at zero angle of attack is characterized by
constant properties, that is,

ue ¼ const Te ¼ const re ¼ const

Furthermore, let us assume either a constant-temperature wall

Tw ¼ const
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or an adiabatic wall

@T

@y

� �
w

¼ 0

Examine Eqs. (6.55) and (6.58) for this case. Here, due/dj ¼ 0, and ue, re, and he

are constant values, independent of j. Under these conditions, Eqs. (6.55) and
(6.58) become

(Cf 00)0 þ f f 00 ¼ 2j f 0
@f 0

@j
�
@f

@j
f 00

� �
(6:66)

and

C

Pr
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� �0
þ fg0 ¼ 2j f 0
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� �
� C
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e

he

( f 00)2 (6:67)

Equations (6.66) and (6.67) are still partial differential equations. Let us now go
through a thought experiment. Let us assume that f and g are functions of h only,
that is, assume that f and g are independent of j. Insert this assumption into
Eqs. (6.66) and (6.67). If in the resulting equations all dependency upon j
drops out, then the equations become ordinary differential equations, and we
have a verification that the assumption is correct. For the flat-plate case, this is
indeed true because when the assumptions of f ¼ f (h) and g ¼ g(h) are inserted
into Eqs. (6.66) and (6.67), they become

(Cf 00)0 þ f f 00 ¼ 0

C

Pr
g0

� �0
þ fg0 þ C

u2
e

he

( f 00)2 ¼ 0

(6:68)

(6:69)and

Examining Eqs. (6.68) and (6.69), we see no j dependency; indeed, these
equations are now ordinary differential equations in terms of the single indepen-
dent variable h. Equations (6.68) and (6.69) are the governing equations for a
compressible boundary layer over a flat plate with constant wall conditions,
and they demonstrate that such a boundary layer is self-similar. Along with the
boundary conditions, these equations represent a two-point boundary-value
problem for coupled, ordinary differential equations. Also note in these equations
both C ¼ rm/reme and Pr ¼ mcp/k are the local values at each point within the
boundary layer, and in general are variables, that is, C ¼ C(h) and Pr ¼ Pr(h).
Indeed, the variation of C across the boundary layer can be quite large for
hypersonic boundary layers, ranging over an order of magnitude or more. On
the other hand, the variation of Pr across the boundary layer is usually no
more than 20 or 30%.

The actual numerical solution of Eqs. (6.68) and (6.69) frequently takes the
form of a “shooting” technique, as described next. Equation (6.68) is a third-order
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equation, and Eq. (6.69) is second order. Therefore, in numerically integrating the
equations using a standard technique such as the Runge–Kutta method starting at
the wall and marching across the boundary layer to the outer edge, five boundary
conditions at h ¼ 0 must be specified. In terms of the problem itself, we have
specified only three conditions at the wall, namely,

f (0) ¼ 0 f 0(0) ¼ 0 g(0) ¼ gw

Thus, to integrate the equations, we must assume two additional conditions at
the wall, that is, we must assume values for f 00(0) and g0(0). With this in mind,
the straightforward shooting technique is carried out as follows:

1) Assume values for f 00(0) and g0(0). Numbers on the order of 0.5 to 1.0 are
usually good assumptions.

2) Numerically integrate Eqs. (6.68) and (6.69) across the boundary layer,
going to large enough values of h such that f 0(h) and g(h) become relatively
constant with h. This would correspond to conditions outside the boundary
layer.

3) Do the resulting values of f 0(h) and g(h) at large h approach f 0(h) ¼ 1 and
g(h) ¼ 1, which are the appropriate boundary conditions at the edge of the bound-
ary layer? If not, return to step 1, and assume new values for f 00(0) and g0(0).

4) Repeat steps 1–3 until the proper values for f 00(0) and g0(0) are assumed at
the wall such that the integration of Eqs. (6.68) and (6.69) produces the proper
results at large h, namely, f 0(h) ¼ 1 and g(h) ¼ 1.

At the end of step 4, all aspects of the compressible, laminar boundary layer on
a flat plate are known, including the skin friction and heat transfer determined
from the final, converged values of f 00(0) and g0(0) via simplified versions of
Eqs. (6.61) and (6.65). These simplified forms are obtained as follows. For a
flat plate, where re, ue, and me are constant, Eq. (6.33) gives

j ¼ reuemex (6:70)

Inserting Eq. (6.70) into (6.61) and replacing f 00(j, 0) with simply f 00(0), we
have

cf ¼
2mwrw f 00(0)

re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2reuemex

p ¼
ffiffiffi
2
p mwrw

mere

f 00(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reuex=me

p

or

cf ¼
ffiffiffi
2
p rwmw

reme

f 00(0)ffiffiffiffiffiffiffi
Rex

p (6:71)

where Eq. (6.71) is applicable to the flat-plate case only. Note from Eq. (6.71)
that cf / 1=

ffiffiffiffiffiffiffi
Rex

p
. It is interesting to compare this result with the familiar
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result for incompressible flow over a flat plate (for example, see [5]), given by

cf (incompressible) ¼
0:664ffiffiffiffiffiffiffi

Rex

p (6:72)

Working further with Eq. (6.71), we note from the equation of state p ¼ rRT that

rw

re

¼
Te

Tw

(6:73)

Also, recall that m for a gas is a function of temperature only; if we assume an
exponential variation m / T n, then

mw

me

¼
Tw

Te

� �n

(6:74)

Combining Eqs. (6.71), (6.73), and (6.74), we have

cf ¼
ffiffiffi
2
p Tw

Te

� �n�1
f 00(0)ffiffiffiffiffiffiffi

Rex

p (6:75)

The value of f 00(0) itself is a function of Me, Pr, and g through the solution of
Eqs. (6.68) and (6.69). This is because Pr appears explicitly in Eq. (6.69), and
the term ue

2/he is proportional to M2
e and (g 2 1), that is [noting that for a calori-

cally perfect gas, cp ¼ gR/(g 2 1) and the freestream speed of sound is
ae ¼

ffiffiffiffiffiffiffiffiffiffi
gRTe

p
�,

u2
e

he

¼
u2

e

cpTe

¼ (g� 1)
u2

e

gRTe

¼ (g� 1)
u2

e

a2
e

¼ (g� 1) M2
e

Thus, f 00(0) is a function of Me, Pr, and g through Eqs. (6.68) and (6.69); it also
depends on the wall-to-freestream-temperature (or enthalpy) ratio Tw/Te ¼ hw/he

through the boundary condition. The net result is that we can express the coeffi-
cient of 1=

ffiffiffiffiffiffiffi
Rex

p
in Eq. (6.75) with the functional expression F(Me, Pr, g, Tw/Te),

writing Eq. (6.75) as

cf (compressible) ¼
F(Me, Pr, g, Tw=Te)ffiffiffiffiffiffi

Re
p

x

(6:76)

Thus, comparing Eqs. (6.72) and (6.76), our compressible boundary-layer theory
demonstrates that the familiar coefficient 0.664 in the incompressible result is
replaced by another number, which is a function of Me, Pr, g, and Tw/Te. The
form of Eq. (6.76) is certainly to be expected because we identified Me, Pr, g,
Tw/Te, and Re in Sec. 6.3 as the governing similarity parameters for a compres-
sible viscous flow. The point here is that compressible boundary-layer theory, just
as in the familiar incompressible case, demonstrates that for laminar flow over
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flat plate cf is inversely proportional to
ffiffiffiffiffiffiffi
Rex

p
; however, the constant of propor-

tionality, which is 0.664 for the familiar incompressible case, becomes for the
compressible case a number that is a function of the compressible flow similarity
parameters Me, Pr, g, and Tw/Te. This number is obtained from the boundary
layer solution just discussed. In regard to heat transfer to a flat plate,
Eq. (6.65) is combined with Eq. (6.70), resulting in

CH ¼
1ffiffiffi
2
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reuex=me

p 1

me

kw

cpw

rw

re

he
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or
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2
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cpw

rw

re

he

(haw � hw)

g0(0)ffiffiffiffiffiffiffi
Rex

p (6:77)

where Eq. (6.77) is applicable to the flat-plate case only. Note from Eq. (6.77)
that CH / 1=

ffiffiffiffiffiffiffi
Rex

p
. It is interesting to compare this result with the familiar

result for incompressible flow over a flat plate given by

CH(incompressible) ¼
0:332ffiffiffiffiffiffiffi

Rex

p Pr�2=3 (6:78)

Working further with Eq. (6.77), and using the calorically perfect-gas relation
h ¼ cpT, we obtain

CH ¼
1ffiffiffi
2
p

rwmw

reme

1

Prw

1

(Taw=Te � Tw=Te)

g0(0)ffiffiffiffiffiffiffi
Rex

p (6:79)

Recalling Eqs. (6.73) and (6.74), we obtain from Eq. (6.79)

CH ¼
1ffiffiffi
2
p

Tw

Te

� �n�1
1

Prw

1

(Taw=Te � Tw=Te)

g0(0)ffiffiffiffiffiffiffi
Rex

p (6:80)

In Eq. (6.80), Taw/Te can be found from a solution of Eqs. (6.68) and (6.69),
using the adiabatic wall boundary condition that (@T/@h) ¼ 0. In turn, the
solution of Eqs. (6.68) and (6.69) depends on Me, g, and Pr. Thus, in Eq. (6.80),
Taw/Te is a function of M1, g, and Pr, and therefore the entire factor multiplying
1=

ffiffiffiffiffiffiffi
Rex

p
in Eq. (6.80) is simply a function of the similarity parameters

CH(compressible) ¼
G(Me, Pr, g, Tw=Te)ffiffiffiffiffiffiffi

Rex

p (6:81)

Thus, comparing Eqs. (6.78) and (6.81), our compressible boundary-layer theory
demonstrates that the familiar coefficient 0.332 Pr22/3 in the incompressible
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result is replaced by another number, which is a function of Me, Pr, g, and Tw/Te.
Finally, we note that Reynolds analogy linking cf and CH, which for the incom-
pressible case is [from Eqs. (6.72) and (6.78)]

CH

Cf

(incompressible) ¼ 1
2
Pr�2=3 (6:82)

now for the compressible case becomes [from Eqs. (6.76) and (6.81)]

CH

Cf

(compressible) ¼
G

F
¼ f Me, Pr, g,

Tw

Te

� �
(6:83)

Emphasis is again made that, in Eqs. (6.76), (6.81), and (6.83), the values of F
and G are obtained by solving the boundary-layer equations (6.68) and (6.69)
with the appropriate boundary conditions. There is no exact method that can
give an a priori answer for F and G.

A word about the viscosity coefficient and thermal conductivity is in order
here. For a pure, nonreacting gas, the viscosity coefficient is dependent only on
temperature. An engineering approximation is to assume an exponential tempera-
ture variation, such as already given in Eq. (6.74), where in the literature
the exponent n seems to vary from 0.5 to 1.0, depending on the nature of the
particular gas. However, perhaps the most commonly used expression for m is
Sutherland’s law

m

mref

¼
T

Tref

� �3=2
Tref þ S

T þ S
(6:84a)

where for air mref ¼ 1.789 � 1025 kg/m s, Tref ¼ 288 K, S ¼ 110 K, and m and T
are in units of kg/m s and K, respectively. Sutherland’s law is accurate for air
over a range of several thousand degrees and is certainly appropriate for hyper-
sonic viscous-flow calculations under the assumptions considered in Part 2 of
this book. Moreover, under these same assumptions the thermal conductivity k
can be obtained from m and the Prandtl number as

Pr ¼
mcp

k

hence

k ¼
mcp

Pr
(6:84b)

For air at standard conditions, Pr ¼ 0.71.
The preceding discussion has presented the theory of laminar, compressible

boundary layers over a flat plate; it was given here to provide the reader with
the flavor of such boundary-layer solutions. Let us now consider some represen-
tative results, particularly at high Mach numbers. Various studies have addressed
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the laminar, compressible boundary layer. Most notably, Van Driest [90] calcu-
lated flows over a flat plate, and Cohen and Reshotko [91] addressed the entire
spectrum of possible self-similar solutions. Figures 6.7 and 6.8 contain results
for an insulated flat plate (zero heat transfer) obtained by Van Driest [90]
using Sutherland’s law for m and assuming a constant Pr ¼ 0.75. The velocity
profiles are shown in Fig. 6.7 for different Mach numbers ranging from 0
(incompressible flow) to the large hypersonic value of 20. Note that at a given
x station at a given Rex the boundary-layer thickness increases markedly as Me

is increased to hypersonic values. This clearly demonstrates one of the most
important aspects of hypersonic boundary layers, namely, that the boundary-
layer thickness becomes large at large Mach numbers. Indeed, in Chapter 7
we will easily demonstrate that the laminar boundary-layer thickness varies
approximately as Me

2. Figure 6.8 illustrates the temperature profiles for the
same case as Fig. 6.7. Note the obvious physical trend that, as Me increases to
large hypersonic values, the temperatures increase markedly. Also note in
Fig. 6.8 that at the wall ( y ¼ 0) (@T/@y)w ¼ 0, as it should be for an insulated

Fig. 6.7 Velocity profiles in a compressible laminar boundary layer over an

insulated flat plate (from Van Driest [90]).
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surface (qw ¼ 0). Figures 6.9 and 6.10 also contain results by Van Driest [90], but
now for the case of heat transfer to the wall. Such a case is called a “cold-wall”
case because Tw , Taw. (The opposite case would be a “hot wall,” where heat is
transferred from the wall into the flow; in this case, Tw . Taw.) For the results
shown in Figs. 6.9 and 6.10, Tw/Te ¼ 0.25 and Pr ¼ 0.75 ¼ constant.
Figure 6.9 shows velocity profiles for various different values of Me, again
demonstrating the rapid growth in boundary-layer thickness with increasing
Me. In addition, the effect of a cold wall on the boundary-layer thickness can
be seen by comparing Figs. 6.7 and 6.9. For example, consider the case of
Me ¼ 20 in both figures. For the insulated wall at Mach 20 (Fig. 6.7), the
boundary-layer thickness reaches out beyond a value of ð y=xÞ

ffiffiffiffiffiffiffi
Rex

p
¼ 60,

whereas for the cold wall at Mach 20 (Fig. 6.9) the boundary-layer thickness is
slightly above ð y=xÞ

ffiffiffiffiffiffiffi
Rex

p
¼ 30. This illustrates the general fact that the effect

of a cold wall is to reduce the boundary-layer thickness. This trend is easily
explainable on a physical basis when we examine Fig. 6.10, which illustrates
the temperature profiles through the boundary layer for the cold-wall case.

Fig. 6.8 Temperature profiles in a compressible laminar boundary layer over an

insulated flat plate (from [90]).
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Comparing Figs. 6.8 and 6.10, we note that, as expected, the temperature levels in
the cold-wall case are considerably lower than in the insulated case. In turn,
because the pressure is the same in both cases, we have from the equation of
state p ¼ rRT that the density in the cold-wall case is much higher. If the
density is higher, the mass flow within the boundary layer can be accommodated
within a smaller boundary-layer thickness; hence, the effect of a cold wall is to
thin the boundary layer. Also note in Fig. 6.10 that, starting at the outer edge
of the boundary layer and going toward the wall, the temperature first increases,
reaches a peak somewhere within the boundary layer, and then decreases to its
prescribed cold-wall value Tw. The peak temperature inside the boundary layer
is an indication of the amount of viscous dissipation occurring within the bound-
ary layer. Figure 6.10 clearly demonstrates the rapidly growing effect of this
viscous dissipation as Me increases—yet another basic aspect of hypersonic
boundary layers.

Carefully study the boundary-layer profiles shown in Figs. 6.7–6.9. They are an
example of the detailed results that emerge from a solution of Eqs. (6.68)

Fig. 6.9 Velocity profiles in a laminar, compressible boundary layer over a cold

plate [90].
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and (6.69); indeed, these figures are graphical representations of Eqs. (6.68) and
(6.69), with the results cast in the physical (x, y) space (rather than in terms of
the transformed variable h). In turn, the surface values of cf and CH can be
obtained from these solutions, as given by Eqs. (6.71) and (6.77), respectively.
These results are given in Figs. 6.11 and 6.12. In particular, cf is shown in
Fig. 6.11 as a function of Me. Note from this figure the following important trends:

1) The effect of increasing Me is to decrease cf. For an insulated flat plate, cf

is reduced by approximately a factor of two in going from Me ¼ 0 to 20. Do not
be misled by this, however. We see that cf decreases as Me increases, but this
does not mean that the actual shear stress at the wall, tw decreases. Keep in
mind that tw ¼

1
2
reu2

ecf ¼
1
2
gpeM2

e cf . Hence, although cf decreases gradually as
Me increases, tw increases considerably as Me increases because of the Me

2 vari-
ation just shown.

2) The effect of cooling the wall is to increase cf. This makes good physical
sense in light of our preceding discussion on the effects of cooling on the
boundary-layer thickness d. A cold wall decreases d, as we have already seen.
In turn, the velocity gradient at the wall is increased when d decreases, that is,
(du/dy)w ¼ 0(ue/d). Because tw ¼ m(du/dy)w, then tw will increase. Because
cf ¼ tw=

1
2
reu2

e , then cf will also increase, which confirms the trend shown in
Fig. 6.11.

Fig. 6.10 Temperature profiles in a laminar, compressible boundary layer over a

cold flat plate [90].
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3) For the insulated wall, as Me! 0, cf

ffiffiffiffiffiffiffi
Rex

p
! 0:664. This is the familiar

result for incompressible flow, as noted in Eq. (6.72).
Heat-transfer results are given in Fig. 6.12. Here, CH [as calculated from

Eq. (6.77)] is plotted vs Me. The trends shown here are identical to the trends
shown for cf in Fig. 6.11. This is simply a demonstration of Reynolds analogy
[Eq. (6.83)], which states the direct relation between cf and CH. Also note that
Fig. 6.12 gives finite values of CH for the insulated-wall case. Recall the

Fig. 6.11 Flat-plate skin-friction coefficients [90].

Fig. 6.12 Flat-plate Stanton numbers [90].
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definition of CH from Eq. (6.63), namely,

CH ¼
qw

reue(haw � hw)

For an insulated wall, by definition qw ¼ 0 and hw ¼ haw. Thus, for the insulated-
wall case CH becomes an indefinite form expressed as

CH ¼
0

0

which clearly has a finite value, as shown in Fig. 6.12.
The physical results shown in Figs. 6.7–6.12 are so important that we

summarize them here.
1) Boundary thickness d increases rapidly with Me.
2) Temperature inside the boundary layer increases rapidly with Me as a result

of viscous dissipation.
3) Cooling the wall reduces d.
4) Both cf and CH decrease as Me increases.
5) Both cf and CH increase as the wall is cooled.
Let us consider some further aspects of aerodynamic heating at hypersonic

speeds. Return to the definition of CH given by Eq. (6.63). Note from this
definition that aerodynamic heating to the surface is given by

qw ¼ reueCH(haw � hw) (6:85)

This equation is important because it emphasizes that the “driving potential” for
aerodynamic heating to the surface is the enthalpy difference (haw 2 hw). We will
find this to be the case for virtually all cases in aerodynamic heating to high-speed
vehicles, even in the chemically reacting cases discussed in Part 3. In turn, the
calculation of the adiabatic-wall enthalpy haw is an important consideration
before Eq. (6.85) can be used to obtain qw. An exact solution for haw for the
flat plate can be obtained by solving Eqs. (6.68) and (6.69) along with the insulated-
wall boundary condition (@T/@y)w ¼ 0. However in most engineering-related
calculations, the value of haw (and of Taw ¼ haw/cp) is expressed in terms of
the recovery factor r, defined as

haw ¼ he þ r
u2

e

2
(6:86)

At the outer edge of the boundary layer, we have

h0 ¼ he þ
u2

e

2
(6:87)

where h0 is the total enthalpy in the inviscid flow outside the boundary layer.
Substituting Eq. (6.87) into (6.86), we have

haw ¼ he þ r(h0 � he)
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r ¼
haw � he

h0 � he

(6:88)

For a calorically perfect gas, where h ¼ cpT, Eq. (6.88) can be written as

r ¼
Taw � Te

T0 � Te

(6:89)

For incompressible flow, the value of r is related to the Prandtl number as
r ¼

ffiffiffiffiffi
Pr
p

. Exact results for r for compressible flow are shown in Fig. 6.13,
obtained from [83], and are compared with the

ffiffiffiffiffi
Pr
p
¼

ffiffiffiffiffiffiffiffiffiffiffi
0:715
p

¼ 0:845. Note
that r decreases as Me increases through the hypersonic regime. However, also
note that the ordinate is an expanded scale, showing that r decreases by only
2.4% from Me ¼ 0 to 16. Hence, for all practical purposes we can assume for
laminar hypersonic flow over a flat plate that

r ¼
ffiffiffiffiffi
Pr
p

(6:90)

With Eqs. (6.90) and (6.88), we can readily estimate haw for use in Eq. (6.85).
To complete an engineering analysis of qw using Eq. (6.85), we must obtain an
estimate of CH. Again, in an exact solution CH would be obtained by solving
Eqs. (6.68) and (6.69) for the specified wall temperature Tw. However, we can
estimate CH using Reynolds analogy. The general, exact value for Reynolds
analogy is expressed by Eq. (6.83); numerical solutions are given in Fig. 6.14,
obtained from [90]. Note that the ratio cf/CH decreases as Me increases across
the hypersonic regime. However, again note that the ordinate is an expanded

Fig. 6.13 Comparison of exact and approximate recovery factor for laminar flow

over a flat plate [83].
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scale, and cf/CH decreases by only 2% from Me ¼ 0 to 16. Thus, the incompres-
sible result given by Eq. (6.82) is a reasonable approximation at hypersonic
speeds, namely,

CH

cf

¼
1

2
Pr�2=3 (6:91)

This brings to an end our discussion of hypersonic flat-plate laminar boundary
layers. Although the results have been obtained for the special case of a flat plate,
their value goes far beyond that special case. For example, the physical trends just
listed hold for hypersonic boundary layers over general aerodynamic shapes. More-
over, the actual flat-plate results are frequently applied to slender three-dimensional
shapes in a “localized” sense, following a given streamline over a thin, three-
dimensional body. Therefore, before progressing further, review all of the material
in the present section until you feel comfortable with the ideas and results.

Example 6.1

Consider a flat plate at zero angle of attack in an airflow at standard sea-level
conditions (p1 ¼ 1.01 � 105 N/m2 and T1 ¼ 288 K). The chord length of the
plate (distance from the leading edge to the trailing edge) is 2 m. The planform
area of the plate is 40 m2. At standard sea-level conditions, m1 ¼ 1.7894 � 1025

kg/(m)(s). Assume the wall temperature is the adiabatic-wall temperature Taw.
Assuming laminar flow, calculate the local shear stress on the plate at the location
0.5 m downstream from the leading edge when the freestream velocity is 3402 m/s.

Solution: The freestream density is

r1 ¼
p1

RT1

¼
1:01� 105

(287)(288)
¼ 1:22 kg=m3

Fig. 6.14 Comparison of exact and approximate Reynolds analogy factor for

laminar flow over a flat plate [90].
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The speed of sound is

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gRT1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1:4)(287)(288)

p
¼ 340:2 m=s

Hence, for V1 ¼ 3402 m/s,

M1 ¼
V1

a1

¼
3402

340:2
¼ 10

From Fig. 6.11, for the insulated-plate results at Mach 10,

cf

ffiffiffiffiffiffiffi
Rex

p
¼ 0:43

From Eq. (6.59),

tw ¼
1

2
reu2

ecf

For the flat plate, the properties at the edge of the boundary layer are the free-
stream properties; hence,

1

2
reu2

e ¼
1

2
r1V2

1 ¼ q1 ¼
1

2
(1:22)(3402)2 ¼ 7:06� 106 N=m2

Thus,

tw ¼ q1cf ¼
0:43 q1ffiffiffiffiffiffi

Re
p

x

At x ¼ 0.5 m,

Rex ¼
r1V1x

m1

¼
(1:22)(3402)(0:5)

1:7894� 10�5
¼ 1:16� 108

Thus,

tw ¼
0:43q1ffiffiffiffiffiffiffi

Rex

p ¼
0:43(7:06� 106)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:16� 108
p ¼ 281:9 N=m2

Note: Because this problem deals with flight at Mach 10 at sea level, the
Reynolds number is high, and the assumption of laminar flow in reality might
be suspect. Matters of hypersonic boundary-layer transition and turbulent flow
are discussed in Secs. 6.7 and 6.8.

Example 6.2

For the conditions in Example 6.1, calculate the skin-friction drag for the
whole plate. Assume the plate is elevated in the air so that air flows over both
the top and bottom surfaces, that is, the total friction drag is caused by shear
stress acting on both the top and bottom surfaces.
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Solution: The overall skin-friction drag coefficient is conventionally defined
as

Cf ;
Df

q1S

where Df is the skin-friction drag on one surface of the plate and S is the
reference area taken as the surface area of one side of the plate. We first
obtain an expression for Cf. To do this, note that the drag per unit span of the
plate is simply the integral of the local shear stress along the plate from the
leading edge, where x ¼ 0, to the trailing edge, where x ¼ c.

D ¼

ðc

0

tw dx (per unit span)

From Example 6.1,

tw ¼
0:43 q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1V1x=m1

p

Hence,

D ¼
0:43 q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1V1=m1

p
ðc

0

dx

x1=2
¼

0:43 q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1V1=m1

p 2x
1
2

h ic

0

¼
0:86 q1c

1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1V1=m1

p ¼
0:86 q1cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1V1c=m1

p ¼
0:86 q1cffiffiffiffiffiffiffi

Rec

p

Recall that D is the drag per unit span. Thus, using D in the definition of Cf, the
reference area must be per unit span, that is, S ¼ c(1). Thus,

Cf ¼
D

q1S
¼

D

q1c(1)
¼

0:86

q1c(1)

q1 cffiffiffiffiffiffiffi
Rec

p

or

Cf ¼
0:86ffiffiffiffiffiffi

Re
p

c

(Note: The classical incompressible flow result is

Cf ¼
1:328ffiffiffiffiffiffiffi

Rec

p

The result for Mach 10 has a smaller number in the numerator.)
The friction drag Df on one side of the plate is given by

Df ¼ q1 S Cf
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where S is now the total surface area of one side of the plate and S ¼ 40 m2 as
given in Example 6.1. Because c ¼ 2 m (given in Example 6.1),

Rec ¼
r1V1c

m1

¼
(1:22)(3402)(2)

1:7894� 10�5
¼ 4:639� 108

Thus,

Cf ¼
0:86ffiffiffiffiffiffiffi

Rec

p ¼
0:86ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4:639� 108
p ¼ 3:99� 10�5

and

Df ¼ q1 SCf ¼ 7:06� 106(40)(3:99� 10�5)

Df ¼ 11,276 N

The total drag, accounting for both the top and bottom surfaces, is

D ¼ 2(11276) ¼ 22552 N

We note an interesting fact. From Example 6.1, the local shear stress at
x ¼ 0.5 m, that is, the quarter-chord location, is tw ¼ 281.9 N/m2. If the shear
stress were assumed constant over the surface of the plate, which of course
it is not, then the total skin-friction drag on one surface would be tw

S ¼ (281.9) (40) ¼ 11,276 N. This is the precise drag value already obtained
for one surface of the plate. This is not a fluke, but rather a geometric feature
of the inverse square-root variation of tw for a laminar boundary layer. If we
let y ¼ x21/2, then the area under the curve for x ¼ 0 to c is simply given by

A ¼

ðc

0

y dx ¼

ðc

0

x�1=2 dx ¼ 2x1=2
	 
c

0
¼ 2

ffiffiffi
c
p

Now consider a rectangle of length c and height equal to y evaluated at x ¼ c/4.
At x ¼ c/4,

y ¼
1ffiffiffi
x
p ¼

1ffiffiffiffiffiffiffi
c=4
p ¼

2ffiffiffi
c
p

The area of the rectangle cð2=
ffiffiffi
c
p
Þ ¼ 2

ffiffiffi
c
p

, which is precisely the area under the
curve of y ¼ x21/2. This result tells us that one way to calculate the total laminar
skin-friction drag on one surface of a flat plate is to evaluate the local shear stress
tw at the quarter-chord location and multiply that shear stress by the surface area
of the plate.
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Example 6.3

For the same flow conditions treated in Examples 6.1 and 6.2, consider a flat
plate at zero angle of attack with a constant wall temperature Tw ¼ 288 K.
Calculate the local heat-transfer rate at the quarter-chord location.

Solution: From Example 6.1, at the quarter-chord location,

Rex ¼ 1:16� 108

From Fig. 6.12, at Mach 10, and a wall-to-freestream ratio of Tw/Te ¼
288/288 ¼ 1, we have

CH

ffiffiffiffiffiffiffi
Rex

p
¼ 0:33

or

CH ¼
0:33ffiffiffiffiffiffiffi

Rex

p ¼
0:33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:16� 108
p ¼

0:33

1:077� 104
¼ 3:06� 10�5

From Eq. (6.63)

CH ¼
qw

reue(haw � hw)

To evaluate the local heating rate qw from Eq. (6.63), we need the adiabatic-wall
enthalpy hw or equivalently the adiabatic-wall temperature Tw. Consistent with
our presentations in Parts 1 and 2 of this book, we assume a calorically perfect
gas, where h ¼ cp T, and g ¼ cp/cv ¼ constant. For a calorically perfect gas
at a freestream Mach number M1, the ratio of total to static temperature in the
freestream is given by (for example, see [4] and [5]),

T0

T1

¼ 1þ
g� 1

2
M2

1 ¼ 1þ
1:4� 1

2
(10)2 ¼ 1þ 0:2(100) ¼ 21

T0 ¼ 21 T1 ¼ 21(288) ¼ 6048 K

To find the adiabatic-wall temperature, we use the recovery factor expressed by
Eq. (6.88), which for a calorically perfect gas becomes

r ¼
haw � he

h0 � he

¼
Taw � Te

T0 � Te

where the recovery factor is given by Eq. (6.90)

r ¼
ffiffiffiffiffi
Pr
p
¼

ffiffiffiffiffiffiffiffiffiffiffi
0:715
p

¼ 0:845

Thus,

Taw ¼ r(T0 þ Te)þ Te ¼ 0:845(6048� 288)þ 288 ¼ 5155 K
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Returning to Eq. (6.63) written in the form of Eq. (6.85),

qw ¼ reueCH(haw � hw)

or

qw ¼ reueCHcp(Taw � Tw)

The relation between cp and the specific gas constant R is (for example, see [4]
and [5])

cp ¼
gR

g� 1

The specific gas constant for standard air is 287 J=kg K. Hence,

cp ¼
(1:4)(287)

0:4
¼ 1004:5

J

kg K

The local aerodynamic heating rate is therefore

qw ¼ reueCHcp(Taw � Tw) ¼ (1:22)(3402)(3:06� 10�5)(1004:5)(5155 � 288)

qw ¼ 6:21� 105 J

sec m2
¼ 6:21� 105 W

m2
¼ 62:1 W=cm2

For flat-plate heat-transfer rates, this is a very large value. It compares to the
approximately 50 W/cm2 stagnation-point heating rate of the space shuttle
shown in Fig. 6.1. The preceding calculation was made for Mach 10 flight at
sea level, and it illustrates why we do not generally fly hypersonic vehicles at
sea level—the aerothermal environment is too severe.

Example 6.4

In Design Example 5.2: Hypersonic Waveriders—Part 1 at the end of Chapter
5, the lift-to-drag ratio of a hypersonic flat plate was shown in Fig. 5.57 assuming
a Newtonian pressure distribution. In particular, the dashed curve in Fig. 5.57
includes the effect of skin friction and shows L/D increasing as the angle of
attack a decreases, then reaching a maximum value at some low angle of
attack, and then going to zero as a! 0. The dashed curve is plotted for
M1 ¼ 10 and Re ¼ 3 � 106. In homework problem 3.6, you are asked to prove

that for the flat plate with a Newtonian pressure distribution (L/D)max ¼ 0.667/
C1/3

Do
and that it occurs at an angle of attack (in radians) of a ¼ C1/3

Do
, where CDo

is
the total skin-friction drag coefficient for the flat plate. Using these expressions
from homework problem 3.6, and assuming an adiabatic wall, calculate the
value of (L/D)max and the angle of attack at which it occurs. Compare with the
results shown in Fig. 5.57.
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Solution: From Fig. 6.11 for M1 ¼ 10 and an adiabatic wall, we have

cf

ffiffiffiffiffiffiffi
Rex

p
¼ 0:43 (same as in Example 6.1)

In Example 6.2, using the preceding result for cf , we proved that the overall skin-
friction coefficient for the drag on one side of the plate Cf is

Cf ¼
0:86ffiffiffiffiffiffiffi

Rec

p

The Reynolds number based on the chord of the plate is given as Rec ¼ 3 � 106.
Hence,

Cf ¼
0:86ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� 106
p ¼ 4:965� 10�4

This is the skin-friction coefficient for one side of the plate. The total skin-friction
drag coefficient for the plate including the shear stress acting on both the top and
bottom surfaces is

CD0
¼ 2Cf ¼ 9:93� 10�4

From the expressions given in homework problem 3.6, we have

(L=D)max ¼
0:667

C
1=3
D0

¼
0:667

(9:93� 10�4)1=3
¼ 6:74

and the angle of attack at which it occurs is

a ¼ C
1=3
D0
¼ 0:0998 rad ¼ 5:7 deg

Examining Fig. 5.57, we see that these values agree with the results shown by the
dashed curve.

6.5.2 Stagnation-Point Case

We now discuss the second of the two classical problems considered in this
section, namely, the laminar boundary layer at a stagnation point. Consider the
stagnation region on a blunt body, as sketched in Fig. 6.15. The boundary-layer
thickness is finite at the stagnation point. As before, x is the distance measured
along the surface, and ue is the velocity in the x direction at the outer edge of
the boundary layer. For the time being, we will consider two-dimensional
flow; hence, Fig. 6.1.5 represents a blunt, two-dimensional cylindrical body
with infinite span perpendicular to the page. The local surface radius of curvature
at the stagnation point is R.
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Let us consider the possibility of a self-similar solution to the governing
boundary-layer equations (6.55) and (6.58) for the stagnation-point case. As
before, we make the assumption that f and g are functions of h only; hence,
@f 0/@j ¼ @f/@j ¼ @g/@j ¼ 0 in Eqs. (6.55) and (6.58). With these assumptions,
Eqs. (6.55) and (6.58) become, respectively,

(Cf 00)0 þ ff 00 ¼
2j

ue

( f 0)2 �
re

r

� �
due

dj
(6:92)

and

C

Pr
g0

� �0
þfg0 ¼ 2j

f 0g

he

@he

@j
þ
reue

rhe

f 0
due

dj

� �
� C

u2
e

he

( f 00)2 (6:93)

Equations (6.92) and (6.93) still exhibit j dependency. However, consider the
following aspects associated with the stagnation point. First, in the stagnation
region ue is very small, and he ¼ h0 (stagnation enthalpy) is very large. Hence

u2
e

he

� 0 (6:94)

Next, we observe that the flow velocity is so low in the stagnation region that we
can assume almost incompressible flow conditions to exist in the inviscid
flow outside the boundary layer. Thus, we use a result from incompressible,

Fig. 6.15 Stagnation region geometry.
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inviscid flow at a stagnation point, namely,

ue ¼
due

dx

� �
s

x (6:95)

where (due/dx)s is the velocity gradient at the stagnation point external to the
boundary layer. Substitute Eq. (6.95) into (6.33),

j ¼

ðx

0

reueme dx ¼

ðx

0

reme

due

dx

� �
s

x dx

or

j ¼ reme

due

dx

� �
s

x2

2
(6:96)

Also, consider the term due/dj. This can be expressed as

due

dj
¼

due

dx

� �
dx

dj

� �
¼

( due=dx)

( dj=dx)
(6:97)

From Eq. (6.33)

dj

dx
¼ reueme (6:98)

Substituting Eq. (6.98) into (6.97), we have

due

dj
¼

1

reueme

due

dx
(6:99)

Substituting Eq. (6.95) into (6.99), we have at the stagnation point

due

dj

� �
s

¼
1

reue(due=dx)sx

due

dx

� �
s

or

due

dj

� �
s

¼
1

remex
(6:100)

Consider the term (2j/ue) due/dj, which appears in Eq. (6.92). Using Eqs. (6.95),
(6.96), and (6.100), we obtain

2j

ue

due

dj
¼

2½reme(due=dx)s(x
2=2)�

(due=dx)sx

1

remex

� �
¼ 1 (6:101)
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Consider the term 2j (reue/rhe)(due/dj), which appears in Eq. (6.93). Using
Eqs. (6.95), (6.96), and (6.100), this becomes

2j
reue

rhe

due

dj
¼ 2

re

rhe

reme

due

dx

� �
s

x2

2

� �
due

dx

� �
s

x

� �
1

remex

� �

¼
re

rhe

due

dx

� �2

s

x2

Because, at the stagnation point, x ¼ 0, then the preceding becomes

2j
reue

rhe

due

dj
¼ 0 (6:102)

Also, note in Eq. (6.92) that the term re/r can be expressed, for a calorically
perfect gas, as

re

r
¼

pe

p

T

Te

¼
pe

p

h

he

¼
h

he

; g (6:103)

where we have recognized for a boundary layer that pe ¼ p. Substituting
Eqs. (6.94) and (6.101)–(6.103) into Eqs. (6.92) and (6.93), we have

(Cf 00)0 þ ff 00 ¼ ( f 0)2 � g (6:104)

and

C

Pr
g0

� �0
þ fg0 ¼ 0 (6:105)

Equations (6.104) and (6.105) are the governing equations for a compressible,
stagnation-point boundary layer. Examining these equations, we see no j depen-
dency. Hence, the stagnation-point boundary layer is a self-similar case.

Numerical solutions to Eqs. (6.104) and (6.105) can be obtained by the “shoot-
ing technique” as described earlier in the flat-plate case. There is nothing to be
gained in going through the details at this stage of our discussion; rather, such
details will be deferred until Part 3, where we will discuss at length a solution
of the stagnation-point problem in a dissociating and ionizing gas. Instead, we
simply state the result of solving Eqs. (6.104) and (6.105), correlated in the
following expression obtained from [92].

Cylinder:

qw ¼ 0:57 Pr�0:6(reme)1=2

ffiffiffiffiffiffiffiffi
due

dx

r
(haw � hw) (6:106)
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If we had considered an axisymmetric body, the original transformation
given by Eqs. (6.33) and (6.34) would have been slightly modified as follows:

j ¼

ðx

0

reuemer2 dx (6:107)

and

h ¼
uerffiffiffiffiffi

2j
p

ðy

0

r dy (6:108)

where r is the vertical coordinate measured from the centerline, as shown in
Fig. 6.15. Equations (6.107) and (6.108) lead to equations for the axisymmetric
stagnation point almost identical to Eq. (6.104) and (6.105), namely,

(Cf 00)0 þ ff 00 ¼ 1
2
½( f 0)2 � g� (6:109)

and

C

Pr
g0

� �0
þ fg0 ¼ 0 (6:110)

The derivation of Eqs. (6.109) and (6.110) is left as a homework problem. In turn,
the resulting heat-transfer expression is [92] as follows.

Sphere:

qw ¼ 0:763 Pr�0:6(reme)1=2

ffiffiffiffiffiffiffiffi
due

dx

r
(haw � hw) (6:111)

Compare Eq. (6.106) for the two-dimensional cylinder with Eq. (6.111)
for the axisymmetric sphere. The equations are the same except for the leading
coefficient, which is higher for the sphere. Everything else being the same,
this demonstrates that stagnation-point heating to a sphere is larger than to
a two-dimensional cylinder. Why? The answer lies in a basic difference
between two- and three-dimensional flows. In a two-dimensional flow, the gas
has only two directions to move when it encounters a body—up or down. In con-
trast, in an axisymmetric flow, the gas has three directions to move—up, down,
and side-ways, and hence the flow is somewhat “relieved,” that is, in comparing
two- and three-dimensional flows over bodies with the same longitudinal section
(such as a cylinder and a sphere), there is a well-known three-dimensional reliev-
ing effect for the three-dimensional flow. As a consequence of this relieving
effect, the boundary-layer thickness d at the stagnation point is smaller for
the sphere than for the cylinder. In turn, the temperature gradient at the wall
(@T/@y)w, which is O(Te/d), is larger for the sphere. Because qw ¼ k(@T/@y)w,
then qw is larger for the sphere. This confirms the comparison between
Eqs. (6.106) and (6.111).

310 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



The preceding results for aerodynamic heating to a stagnation point have a
stunning impact on hypersonic vehicle design, namely, they impose the require-
ment for the vehicle to have a blunt, rather than a sharp, nose. To see this, con-
sider the velocity gradient due/dx, which appears in Eqs. (6.106) and (6.111).
From Euler’s equation applied at the edge of the boundary layer,

dpe ¼ �reue due (6:112)

we have

due

dx
¼ �

1

reue

dpe

dx
(6:113)

Assuming a Newtonian pressure distribution over the surface, we have from
Eq. (3.2)

Cp ¼ 2 sin2 u

where u is defined as the angle between a tangent to the surface and the
freestream direction. If we define f as the angle between the normal to the
surface and the freestream, then Eq. (3.2) can be written as

Cp ¼ 2 cos2 f (6:114)

From the definition of Cp, Eq. (6.114) becomes

pe � p1

q1

¼ 2 cos2 f

or

pe ¼ 2q1 cos2 fþ p1 (6:115)

Differentiating Eq. (6.115), we obtain

dpe

dx
¼ �4q1 cosf sinf

df

dx
(6:116)

Combining Eqs. (6.113) and (6.116), we have

due

dx
¼

4q1

reue

cosf sinf
df

dx
(6:117)

Equation (6.117) is a general result that applies at all points along the body. Now
consider the stagnation-point region, as sketched in Fig. 6.15. In this region,
let Dx be a small increment of surface distance above the stagnation point,
corresponding to the small change in f, Df. From Eq. (6.95)

ue ¼
due

dx

� �
s

Dx (6:118)
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Also, in the stagnation region f is small; hence, from Fig. 6.15,

cosf � 1 (6:119a)

sinf � f � Df �
Dx

R
(6:119b)

df

dx
¼

1

R
(6:119c)

where R is the local radius of curvature of the body at the stagnation point.
Finally, at the stagnation point, Eq. (6.114) becomes

Cp ¼ 2 ¼
pe � p1

q1

or

q1 ¼
1
2

( pe � p1) (6:120)

Substituting Eqs. (6.118–6.120) into Eq. (6.117), we have

due

dx

� �2

¼
2( pe � p1)

reDx

Dx

R

� �
1

R

� �

or

due

dx
¼

1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2( pe � p1)

re

s
(6:121)

Examine Eqs. (6.106) and (6.111) in light of Eq. (6.121). We see that

qw /
1ffiffiffi
R
p (6:122)

This states that stagnation-point heating varies inversely with the square root of
the nose radius; hence, to reduce the heating, increase the nose radius. This is the
reason why the nose and leading-edge regions of hypersonic vehicles are blunt;
otherwise, the severe aerothermal conditions in the stagnation region would
quickly melt a sharp leading edge. Indeed, for Earth entry bodies, such as the
Mercury and Apollo space vehicles (see Fig. 1.7), the only viable design to
overcome aerodynamic heating is a very blunt body. The derivation leading to
Eq. (6.122) is quantitative proof of the need for blunt bodies in hypersonic
applications. There is also an important qualitative rationale for hypersonic
blunt bodies, which as presented in [1] and [5] and hence will not be repeated
here. The reader is encouraged to examine these qualitative discussions in [1]
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and [5], in order to acquire a more in-depth understanding of the hypersonic
aerodynamic heating differences between slender and blunt bodies. The fact
that qw is inversely proportional to

ffiffiffi
R
p

is experimentally verified in Fig. 6.16,
obtained from [81]. Here, various sets of experimental data for CH at the
stagnation point are plotted vs Reynolds number based on nose diameter; the
abscissa is essentially proportional R. This is a log-log plot, and the data
exhibit a slope of 20.5, hence verifying that qw / 1=

ffiffiffi
R
p

.
As a corollary to the preceding discussion on stagnation-point heating, we

note that for a laminar flow around a cylindrical or spherical nose, qw drops
considerably with distance from the stagnation point. This is graphically
demonstrated in Fig. 6.17, taken from [81]. Here, the heat-transfer distribution
around a circular cylinder is given in terms of qw(f)/qw(0), where qw(0) is
the stagnation-point heat transfer and f is the angle shown in Fig. 6.15.
Figure 6.17 displays experimental data recently obtained by Koppenwallner at
Germany’s DFVLR and reported in [81]. The solid curve in Fig. 6.17 is
simply a fairing of the data. Note the rapid drop in qw as f increases. The
local values of qw vary approximately as cos3/2f. Indeed, Beckwith and
Gallagher [93] have given the following curve fit for heat-transfer data around
an unswept circular cylinder:

Nu ¼ Nus (0:7 cos3=2 fþ 0:3)

where Nus is the Nusselt number at the stagnation point. [Recall from Eq. (6.64)
that Nu ¼ CH Re Pr.]

Fig. 6.16 Stagnation-point Stanton number vs Re based on nose radius (from

Koppenwallner [81]).
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6.5.3 Summary

This concludes the present section on similar solutions of hypersonic laminar
boundary layers. We have seen that the governing boundary-layer equations,
which are partial differential equations (6.27–6.30), reduce to a system of
ordinary differential equations for the special cases of the flat plate and the stag-
nation point. Hence these special cases are examples of self-similar solutions.
There are other cases where self-similar solutions apply, for example, supersonic
and hypersonic flow over a right-circular cone, where the inviscid flow at
the edge of the boundary layer is constant, independent of distance from the
nose tip. In addition, Cohen and Reshotko [91] give self-similar results for a
whole spectrum of external flows generated by

ue ¼ cxm

where c is a constant. Defining a pressure gradient parameter as

b ¼
2m

mþ 1

Fig. 6.17 Heat-transfer distribution around a circular cylinder (from [81]).
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Reference [91] tabulates results for 0.326 	 b 	 2.0, where b ¼ 0 and 1
represent the special cases of the flat plate and stagnation point, respectively.
For cases other than the preceding, self-similar solutions are not possible.
Indeed, the vast majority of hypersonic boundary-layer applications involve
general situations where the boundary layers are nonsimilar. Such nonsimilar
boundary layers are discussed in the next section. However, the time we spent
on similar solutions in the present section was in no way wasted. Quite the
contrary, the flat-plate and stagnation-point cases represent fundamental
applications in hypersonic aerodynamics. They are useful in two regards: 1) as
the source of engineering formulas for predicting aerodynamic heating and
2) as a clear demonstration of the basic behavior of hypersonic boundary
layers—behavior that is indicative of all hypersonic boundary layers, similar
or nonsimilar.

6.6 Nonsimilar Hypersonic Boundary Layers

Prior to 1960, the everyday world of boundary-layer applications emphasized
approximate solutions of the boundary-layer equations; the only exact solutions
that were available were the self-similar solutions discussed in Sec. 6.5. Many of
the approximate solutions involved the assumption of polynomial profiles for u
and h across the boundary layer and the application of the integral forms
of the governing equations (in contrast to the partial differential equation form
presented in Sec. 6.3). Such integral solutions of the boundary layer are well
known and extensively presented elsewhere (for example, see [83]); hence,
they will not be considered here.

In the modern world of hypersonic aerodynamics today, exact solutions of the
boundary-layer equations (6.27–6.30) can be obtained numerically for arbitrary
pressure (hence, velocity) gradients external to the boundary layer. Here, the
word “exact” is being used in the same computational-fluid-dynamic sense as
in Chapter 5, that is, the exact boundary-layer equations are used, but errors
are introduced via the numerical solution in the form of truncation and round-
off errors. Hence, we can readily state that the numerical solution of arbitrary
nonsimilar boundary layers is a fairly common practice in hypersonic aerody-
namics today. The purpose of the present section is to provide the flavor of
such nonsimilar solutions; the existing literature in this field is so expansive
that we can only highlight some of the more important developments. A thorough
review of numerical boundary-layer solutions is given by Blottner in [94], which
should be consulted for more details.

In this section, we will introduce three separate methods for solving
general, nonsimilar boundary layers: l) local similarity, 2) difference-differential
approach, and 3) finite difference solutions. The first two are somewhat historical
in the sense that they are no longer in widespread use today, but they constitute
interesting ideas with which any student of hypersonic viscous flows should be
acquainted. The last item, finite difference solutions, represents today’s state of
the art. Finally, in regard to the chapter road map in Fig. 6.4, we are now
temporarily at the bottom of the map, that is, the last of the items shown under
the box at the left side of the map, labeled “laminar flow boundary-layer
equations.”
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6.6.1 Local Similarity Method

The method of local similarity is not a precisely exact solution for general
nonsimilar boundary layers, but it is an important bridge between the exact
self-similar technique discussed in Sec. 6.4 and the exact nonsimilar solutions
in the present section. The concept of local similarity is outlined next.

1) Consider a boundary layer with properties at the outer edge and at the wall
that have an arbitrary variation with x, as sketched in Fig. 6.18.

2) Apply the general transformed boundary-layer equations (6.55) and (6.58)
to a small slice of the boundary layer located at some local value of x, say, x ¼ x1;
this small slice is shown as the shaded region located at x1 in Fig. 6.18. Take the
thickness of this slice Dx to be small enough such that the variations of Tw, ue, he,
pe, etc., over Dx are small. Indeed, assume Tw, ue, he, etc. to be equal to their local
values at x1. This includes the gradient due/dj, which is taken to be a numerical
value in Eqs. (6.55) and (6.58) equal to its local value at x1.

3) In Eqs. (6.55) and (6.58), assume that all of the partial derivatives with
respect to j, namely, @f 0/@j, @f/@j, and @g/@j are small and can be neglected.
This is why the local similarity method is an approximate method. In a truly
self-similar solution, these derivatives are precisely zero. Here, they are finite,
but we assume them to be small enough so that they can be neglected in
Eqs. (6.55) and (6.58).

4) Under these assumptions, Eq. (6.55) becomes [recalling Eq. (6.103)]

(Cf 00)0 þ ff 00 ¼
2j

ue

½(f 0)2 � g�
due

dj
(6:123)

Fig. 6.18 Schematic for the concept of local similarity.
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and Eq. (6.58) becomes

C

Pr
g0

� �0
þ fg0 ¼ 2j

reue

rhe

f 0
due

dj
� C

u2
e

he

( f 00)2 þ 2j
f 0g

he

@he

@j
(6:124)

Equations (6.55) and (6.58) are the exact governing, transformed, boundary-layer
equations, whereas Eqs. (6.123) and (6.124) are approximate forms. At any given
x (or j) station, due/dj, re, ue, and he are the local values and hence enter
Eqs. (6.123) and (6.124) as specific numerical values. Equations (6.55) and
(6.58) are partial differential equations; in contrast, Eqs. (6.123) and (6.124)
are ordinary differential equations, in the same spirit as in Sec. 6.5. Hence,
these equations can be solved (say, by the shooting technique described
earlier) at the local value of x. The solution gives f ¼ f (h) and g ¼ g(h) for
the slice of the boundary layer located at x1 (the first shaded region of Fig. 6.18).

5) Pick another slice of the boundary layer at another value of x, say, x ¼ x2,
and repeat the preceding process. This is shown schematically in Fig. 6.18,
where two locations are denoted by x1 and x2. The preceding locally similar
solution is carried out at each value of x, resulting in f1(h) and g1(h) at x1 and
f2(h) and g2(h) at x2. In general,

f1(h) = f2(h)

g1(h) = g2(h)

Thus, the “locally similar” solution is a solution of the nonsimilar boundary layer,
albeit in an approximate sense.

6) After application to many values of x, the preceding procedure yields
the skin friction [via f 00(0)] and heat transfer [via g0(0)] as functions of x
(numerically).

One of the best examples of the application of local similarity is the work
by Kemp et al. [95], which treated the boundary layer over a hemisphere-cylinder
as sketched at the top right of Fig. 6.19. This work treated chemically reacting,
dissociating air, which is the purview of Part 3. However, these results are
presented here to demonstrate the viability of the local similarity method.
Figure 6.19 gives the variation of qw as a function of angular distance f away
from the stagnation point, as measured in a shock tube. The freestream conditions
were such as to simulate the pressure and enthalpy levels associated with
free flight in the atmosphere with a velocity of 18,000 ft/s at an altitude of
70,000 ft. [The actual shock-tube freestream conditions were different than the
preceding velocity and altitude; recall only low supersonic Mach numbers
can be produced in a shock tube (for example, see [4]), but that the actual
stagnation enthalpy and pressure can be directly simulated.] The symbols in
Fig. 6.19 denote shock-tube data, and the curve represents the local similarity cal-
culation. Considering the scatter of the shock-tube data, the local similarity
method compared fairly well with experiment. The numerical results in [95]
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indicate that, for ordinary blunt bodies, the calculated variation of g0(0) as a
function of x around the body is very weak. To be precise, for the conditions
treated in [95],

0:96 	
g0(0) as a function of x

g0(0) at the stagnation point
	 1:03

that is, the transformed enthalpy gradient at the wall is essentially the same at all
points around the body. Because qw is obtained from Eqs. (6.63) and (6.65), then
the strong variation of qw with f shown in Fig. 6.19 is caused by the variation of
he, re, and ue in those equations.

Note that the local similarity method blocks out any effect of the upstream
properties within the boundary layer. The calculation at any given x does not
utilize values of the boundary-layer profiles upstream of x. Therefore, the
“history” of the development of the boundary layer from the leading edge to
the local station x is not properly accounted for in the local similarity method.

Fig. 6.19 Comparison of the local similarity method with shock-tube data for the

heat-transfer distribution over a hemisphere-cylinder (from [95]).
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However, the upstream history of the inviscid flow is transmitted to the local
similarity solutions insofar as the local values of ue, he, etc., are influenced
by this history. This physical defect does not appear to be serious, probably for
the following reason. The boundary-layer equations are parabolic partial
differential equations; for such equations, information is readily transmitted
across the flow, normal to the surface. At the same time, information is carried
downstream; however, the history of this information “damps out” quickly with
distance downstream. That is to say, the real, physical boundary layer at any
given location x is mainly dominated by the local wall and edge conditions at
x, and these conditions are the driving parameters in the local similarity method.

6.6.2 Difference-Differential Method

Unlike the approximate local similarity method just discussed, the difference-
differential method is inherently an exact solution of the general boundary-layer
equations. The general idea was originated in 1937 by Hartree and Womersley
[96], but was not applied in a practical sense until the work of A. M. O. Smith
in the 1960s. Smith utilized the difference-differential method extensively
and with success; a typical example of his work is represented by [97]. The
idea is as follows. Consider the general, transformed boundary-layer equations
(6.55) and (6.58). These equations are to be solved for arbitrary flow conditions
at the boundary-layer edge and arbitrary wall conditions. This arbitrary
boundary layer is sketched in Fig. 6.20. Also shown is a grid network at
four different j (or x) stations, namely, (i 2 2), (i 2 1), i and (iþ 1). Assume
that we wish to calculate the boundary-layer profiles at the station denoted by i.
In the difference-differential method, the j derivatives in Eqs. (6.55) and (6.58)
are replaced by finite difference quotients. For second-order accuracy, Smith
used the following three-point one-sided difference:

@f

@j

� �
i

¼
3fi � 4f(i�1) þ f(i�2)

2Dj
at a given j (6:125)

Identical expressions are used for @f 0/@j and @g/@j. We assume that the
boundary-layer profiles have already been solved at locations (i 2 1) and
(i 2 2); hence, f(i21) and f(i22) in Eq. (6.125) are known numbers. The only
unknown in Eq. (6.125) is fi. When the difference expressions such as Eq.
(6.125) are substituted into Eqs. (6.55) and (6.58), the only derivatives that
appear are h derivatives. This can easily be seen by displaying, for example.
Eq. (6.55) as follows:

(Cf 00)0 þ ff 00 ¼
2j

ue

( f 0)2 �
re

r

� �
due

dj
þ 2j

�
f 0

3f 0 � 4f 0(i�1) þ f 0(i�2)

2Dj

� �

�f 00
3f � 4f(i�1) þ f(i�2)

2Dj

� ��
(6:126)
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where the subscript i has been dropped to emphasize that fi is simply the unknown
f at the given station denoted by i. Equation (6.126) can be rewritten as

(Cf 00)0 þ ff 00 ¼
2j

ue

( f 0)2 �
re

r

� �
due

dj
þ

j

Dj
½3( f 0)2 þ Af 0 � 3f 00f þ Bf 00� (6:127)

where A and B are simply known numbers, obtained from the previous boundary-
layer solutions at stations (i 2 1) and (i 2 2). [Note: These numbers will change
with j as the integration is carried out across the boundary layer at a given
station i.] Carrying out the same substitution in Eqs. (6.58), we obtain for the
energy equation

C

Pr
g0

� �0
þ fg ¼

j

Dj
(3f 0gþ Ef 0 � 3fg0 þ Fg0)þ 2j

reue

rhe

f 0
due

dj

� C
u2

e

he

( f 00)2 þ
f 0g

he

dhe

dj
(6:128)

where E and F are known numbers. Examine Eqs. (6.127) and (6.128) closely; the
only derivatives that appear are h derivatives, denoted by the prime. (Recall that

Fig. 6.20 Schematic for finite difference solution of the boundary layer.
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due/dj is a known number, obtained from the known velocity variation at the
outer edge of the boundary layer.) Hence, Eqs. (6.127) and (6.128) are ordinary
differential equations that can be integrated across the boundary layer at station i
in the same manner as described earlier, that is, using an iterative shooting tech-
nique to match the boundary conditions at the wall and the outer edge. Note that
Eqs. (6.127) and (6.128) are still the exact boundary-layer equations; no simpli-
fying physical assumptions have been made in going from Eqs. (6.55) and (6.58)
to Eqs. (6.127) and (6.128). Therefore, the difference-differential method is an
exact method for the solution of general nonsimilar boundary layers.

Returning to Fig. 6.20, recall that the solution at location i is dependent on
previous solutions upstream of i, namely, at (i 2 1) and (i 2 2). The entire
boundary-layer solution must be started at some location, say, a leading edge
or at a stagnation point. In Fig. 6.20, station 1 denotes the stagnation point.
The boundary-layer solution at this location can be obtained from the self-similar
solution discussed in Sec. 6.4. Moving to the next downstream location, station 2
in Fig. 6.20, the difference-differential method can be implemented, but with
two-point one-sided differences for the j derivatives, that is,

@f

@j
¼

f2 � f1

Dj
etc:

Moving to the next downstream location, station 3, the full method as just
described can now be implemented. In this fashion, the complete nonsimilar
boundary layer over the whole body can be calculated.

A word of caution is noted here. In comparison to the usual self-similar
equations [such as Eqs. (6.68) and (6.69) for the flat plate], Eqs. (6.127) and
(6.128) contain a number of extra terms. These terms act as “forcing functions”
and cause the numerical solution of these equations to be much “stiffer” than in
the flat-plate or stagnation-point cases, that is, the solution tends to become
numerically unstable unless fairly accurate guesses for f 00(0) and g0(0) are
made at the wall to start the iterative shooting technique. As Smith and Clutter
state in [97] “meeting boundary conditions efficiently has been the most difficult
part of the entire problem.”

Nevertheless the difference-differential method is an exact solution to general,
nonsimilar boundary layers, and it has been applied with success to hypersonic
problems. An example is given by Fig. 6.21, which shows the heat-transfer dis-
tribution over a flat-faced cylinder at Mach numbers between 7.4 and 9.6
obtained from [97]. The open symbols represent experimental data, the dashed
line is from the local similarity method as calculated in [95], and the solid
curve is from the difference-differential method as calculated in [97]. Note
that, as is to be expected, the difference-differential method gives better
agreement with experiment than with local similarity. The flow over a flat-faced
cylinder is a good test case for any theory because the boundary layer is highly
nonsimilar, especially in the rapid expansion region at the corner. Note
also the physical trends shown in Fig. 6.21. Here is a case where the stagnation
point is not the location of maximum heating; rather, the peak heat transfer occurs
in the corner region. The physical explanation for this is as follows. The rapid
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expansion of the inviscid flow around the corner imposes an extremely large
favorable pressure gradient on the boundary layer, which results in an actual
reduction of the boundary-layer thickness. In turn, the temperature gradients
within the boundary layer, including at the wall, are increased because they are
inversely proportional to the boundary-layer thickness, (@T/@y)y ¼ O(Te/d).
Because qw ¼ k(@T/@y)w, we therefore expect the local heat transfer to increase.
This trend is clearly demonstrated in Fig. 6.21.

6.6.3 Finite Difference Method

In the difference-differential method just discussed, the j derivatives are
replaced by finite differences. The next logical step is to replace both the j and
h derivatives by finite differences. Such finite difference solutions are discussed
here; they represent the current state of the art in hypersonic boundary-layer
solutions.

Consider again the general, transformed boundary-layer equations given by
Eqs. (6.55) and (6.58). Assume that we wish to calculate the boundary layer at
station (iþ 1) in Fig. 6.20. As discussed in Chapter 5, the general philosophy
of finite difference approaches is to evaluate the governing partial differential
equations at a given grid point by replacing the derivatives by finite difference
quotients at that point. Consider, for example, the grid point (i, j) in Fig. 6.20.
At this point, replace the derivatives in Eqs. (6.55) and (6.58) by finite difference

Fig. 6.21 Heat-transfer distribution over a flat-faced cylinder (from [97]).
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expressions of the form:

@f

@j
¼

fiþ1; j � fi; j

Dj
(6:129)

@f

@h
¼

u ( fiþ1; jþ1 � fiþ1; j�1)

2Dh
þ

(1� u)( fi; jþ1 � fi; j�1)

2Dh
(6:130)

@2f

@h2
¼

u ( fiþ1; jþ1 � 2fiþ1; j þ fiþ1; j�1)

(Dh)2
þ

(1� u)(fi; jþ1 � 2fi; j þ fi;j�1)

(Dh)2
(6:131)

f ¼ u fiþ1; j þ (1� u) fi; j (6:132)

where u is a parameter that adjusts Eqs. (6.129–6.132) to various finite difference
approaches (to be discussed next). Similar relations for the derivatives of g are
employed. When Eqs. (6.129–6.132) are inserted into Eqs. (6.55) and (6.58),
along with the analogous expressions for g, two algebraic equations are obtained.
If u ¼ 0, the only unknowns that appear are fiþ1, j and giþ1, j, which can be
obtained directly from the two algebraic equations. This is an explicit approach.
Using this approach, the boundary-layer properties at grid point (i þ 1, j) are
solved explicitly in terms of the known properties at points (i, jþ 1), (i, j), and
(i, j 2 1). [Recall that the boundary-layer solution is a downstream-marching
procedure; we are calculating the boundary-layer profiles at station (iþ 1) only
after the flow at the previous station (i) has been obtained.]

When 0 , u 	 1, then fiþ1, j þ 1, fiþ1, j, fiþ1, j 2 1, giþ1, j þ 1, giþ1, j, and
giþ1, j 2 1 appear as unknowns in Eqs. (6.55) and (6.58). We have six unknowns
and only two equations. Therefore, the finite difference forms of Eqs. (6.55) and
(6.58) must be evaluated at all of the grid points through the boundary layer
at station (iþ 1) simultaneously, leading to an implicit formulation for the
unknowns. In particular, if u ¼ 1/2, the scheme becomes the well-known
Crank-Nicolson implicit procedure, and if u ¼ 1 the scheme is called fully
implicit. These implicit schemes result in large systems of simultaneous algebraic
equations, the coefficients of which constitute block tridiagonal matrices.

Already the reader can sense that implicit solutions are more elaborate than
explicit solutions. Indeed, we remind ourselves that the subject of this book is
hypersonics, and it is beyond our scope to go into great computational-fluid-
dynamic detail. Therefore, we will not elaborate any further. Our purpose here
is only to give the flavor of the finite difference approach to boundary-layer sol-
utions. Chapter 7 of [224] contains a detailed discussion of such matters, and [94]
is a thorough survey of the subject. The reader is strongly encouraged to consult
these references. We emphasize that modern hypersonic boundary-layer
solutions (of an exact nature) are predominately finite difference solutions.
They are inherently faster and more accurate solutions than any of the methods
discussed before. We will revisit such finite difference solutions in Part 3,
when we discuss the analysis of chemically reacting boundary layers.

At this stage, return to the original boundary-layer equations in physical co-
ordinates, Eqs. (6.27–6.30). The finite difference schemes already mentioned can
be applied directly to these equations; there is no compelling need to deal with the
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transformed equations. In this case, the derivatives in Eqs. (6.27–6.30) are
replaced by difference quotients such as

@u

@x
¼

uiþ1; j � ui; j

Dx

@u

@y
¼

u (uiþ1; jþ1 � uiþ1; j�1)

2Dy
þ

(1� u)(ui; jþ1 � ui; j�1)

2Dy

etc.
In this case, the real physical variables are the unknowns, such as uiþ1, j þ 1,
uiþ1, j, uiþ1, j 2 1, etc. However, when the computations are carried out in physical
(x, y) space, the grid spacing in the y direction must be very small; this is because
the boundary-layer properties change rapidly near the wall, and the grid must be
fine enough to accurately define these changes. Therefore, the transformation
to j-h space given by Eqs. (6.33) and (6.34) is still useful here because
the Lees–Dorodnitsyn transformation stretches the grid in the normal direction,
especially near the wall, that is, a uniformly spaced grid in terms of h is equi-
valent in physical space to fine spacing near the wall, and coarse spacing near
the boundary-layer edge, a desirable arrangement for efficient boundary-layer
calculations. Therefore, it is frequently recommended to carry out finite-
difference calculations using the transformed j-h space.

In summary, a finite difference solution of a general, nonsimilar boundary
layer proceeds as follows:

1) The solution must be started from a given solution at the leading edge, or at
a stagnation point (say, station 1 in Fig. 6.20). As stated earlier, this can be
obtained from appropriate self-similar solutions.

2) At station 2, the next downstream station, the finite difference procedure
reflected by Eqs. (6.129–6.132) yields a solution of the flowfield variables
across the boundary layer.

3) Once the boundary-layer profiles of u and T are obtained, the skin friction
and heat transfer at the wall are determined from

t ¼ m
@u

@y

� �� �
w

and

q ¼ k
@T

@y

� �
w

Here, the velocity gradients can be obtained from the known profiles of u and T
by using one-sided differences, such as

@u

@y

� �
w

¼
�3u1 þ 4u2 � u3

2Dy
(6:133)

@T

@y

� �
w

¼
�3T1 þ 4T2 � T3

2Dy
(6:134)
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In Eqs. (6.133) and (6.134), the subscripts 1, 2, and 3 denote the wall point and
the next two adjacent grid points above the wall. Of course, because of the speci-
fied boundary conditions of no velocity slip and a fixed wall temperature, u1 ¼ 0
and T1 ¼ Tw in Eqs. (6.133) and (6.134).

4) Thepreceding stepsare repeated for the next downstream location, say, station 3
in Fig. 6.20. In this fashion, by repeating applications of these steps, the complete
boundary layer is computed, marching downstream from a given initial solution.

An example of results obtained from such finite difference boundary-layer
solutions is given in Figs. 6.22 and 6.23, obtained by Blottner [94]. These are

Fig. 6.22 Velocity and temperature profiles across the boundary layer at x/RN 5 50

on an axisymmetric hyperboloid (from Blottner [94]).
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calculated for flow over an axisymmetric hyperboloid flying at 20,000 ft/s at an
altitude of 100,000 ft, with a wall temperature of 1000 K. At these conditions, the
boundary layer will involve dissociation, and such chemical reactions were
included in the calculations of [94]. Chemically reacting boundary layers are
the purview of Part 3; however, some results of [94] are presented here just to
illustrate the finite difference method. For example, Fig. 6.22 gives the calculated
velocity and temperature profiles at a station located at x/RN ¼ 50, where RN is
the nose radius. The local values of velocity and temperature at the boundary-
layer edge are also quoted in Fig. 6.22. Considering the surface properties, the
variations of CH and cf as functions of distance from the stagnation point are
shown in Fig. 6.23. Note the following physical trends illustrated in Fig. 6.23:

1) The shear stress is zero at the stagnation point (as is always the case), then
it increases around the nose, reaches a maximum, and decreases further
downstream.

2) The values of CH are relatively constant near the nose and then decrease
further downstream.

3) Reynolds analogy can be written as

CH ¼
cf

2s
(6:135)

where s is called the Reynolds analogy factor. For the flat-plate case, we see
from Eq. (6.91) that s ¼ Pr2/3. However, clearly from the results of Fig. 6.23
we see that s is a variable in the nose region because CH is relatively constant
while cf is rapidly increasing. In contrast, for the downstream region, cf and

Fig. 6.23 Stanton number and skin-friction coefficient (based on freestream

properties) along a hyperboloid (from [94]).
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CH are essentially equal, and we can state that Reynolds analogy becomes
approximately CH/cf ¼ 1. The point here is that Reynolds analogy is greatly
affected by strong pressure gradients in the flow and hence loses its usefulness
as an engineering tool in such cases, at least when CH and cf are based on
freestream quantities as shown in Fig. 6.23.

6.7 Hypersonic Transition

To this point in our discussion, we have considered laminar hypersonic flows.
Returning once again to the road map in Fig. 1.24, we have completed the first
two items under the viscous-flow branch. In the present section, we will treat
the next item, namely, transition from laminar to turbulent flow at hypersonic
speeds. Also, in terms of our chapter road map in Fig. 6.4, we move back to
the center row of four boxes arrayed horizontally, we are now at the second
box from the left, labeled “boundary-layer transition.”

There is a basic principle that applies universally in our world, in both physical
science and in our daily human activities; simply stated, it is that nature, left to its
own devices, always moves toward the state of maximum disorder. This is never
more true than in the flow of a viscous fluid; such flows begin in the orderly,
smooth manner that we define as laminar flow, but at some downstream region
will transit into the disorderly, tortuous motion that we define as turbulent
flow. Transition to turbulent flow has been a well-observed phenomena in fluid
dynamics since the pioneering work of Osborne Reynolds in the 1880s (see
Sec. 4.25 of [1] for an historical sketch of Reynolds, and Sec. 15.2 of [5] for a
basic discussion of what is meant by transition from laminar to turbulent flow).
On the other hand, although transition has been well observed, it certainly is
not well understood, even to the present day. Turbulence, and transition to turbu-
lence, is one of the unsolved problems in basic physics. Our only recourse in
aerodynamics is to treat these problems in an approximate, engineering sense,
depending always on as large a dose of empirical data as we can find and
swallow. This situation is particularly severe at hypersonic speeds, where tran-
sition seems to exhibit some peculiar anomalies in comparison to our experience
at lower speeds. All of the discussion in the present section is flavored by the
preceding remarks.

First, let us address the matter of transition itself; the modeling of fully turbu-
lent flows will be addressed in the next section. For simplicity, first consider the
simple picture of transition, as sketched in Fig. 6.24 for flow over a flat surface.
As discussed in any basic fluid-dynamics text (for example, see [5]), the flow
starts out at the leading edge as laminar; this laminar flow is highly stable, and
any disturbances are not amplified. However, at some location downstream the
laminar flow becomes unstable, and any disturbances (say, from the freestream,
or from the surface such as surface roughness) are now amplified. This point is
labeled B in Fig. 6.24, for the beginning of transition. As the amplification of
disturbances continues in this unstable flow, transition to turbulence takes
place, finally becoming fully turbulent at point E in Fig. 6.24, where point E
is the end of transition. The region between points B and E is called the
transition region. (See [98] for a discussion of the basic theoretical aspects of
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boundary-layer stability and transition to turbulent flow.) Because our knowledge
of transition is so imprecise, including our knowledge of the extent of the tran-
sition region, engineering analyses frequently assume that transition takes
place at a point, labeled the transition point in Fig. 6.24. For purposes of analysis,
the flow is assumed laminar upstream of the transition point and fully turbulent
downstream. The location of the transition point is given by xT in Fig. 6.24, and
we define a transition Reynolds number as

ReT ¼
reuexT

me

(6:136)

For the accurate prediction of skin friction and aerodynamic heating to a body,
knowledge of the transition Reynolds number is critical. To date, no theory
exists for the accurate prediction of ReT; any knowledge concerning its value
for a given situation must be obtained from experimental data. If the desired
application is outside the existing database, then an estimate of ReT is essentially
guesswork. For a state-of-the-art discussion of transition, see the definitive
article by Reshotko [99].

Given this situation, in the present section we can only discuss some guide-
lines for transition at hypersonic speeds. Many of our remarks will be influenced
by a recent survey by Stetson [100]. Indeed, Stetson begins by the flat statement
that “there is no transition theory,” although our database at hypersonic speeds is
sufficient to establish some general trends based on experiment. The hypersonic
transition Reynolds number can be expressed functionally as

ReT ¼ f Me, uc, Tw, _m, a, kR, E,
@p

@x
, RN , Re1=ft,

x

RN

, V , C,
@w

@z
, T0, d
, t, Z

� �

where Me is the Mach number at the edge of the boundary layer, uc is a charac-
teristic defining the shape of the body (for a cone uc would be the cone angle), Tw

Fig. 6.24 Schematic of transition.
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is the wall temperature, ṁ is mass addition or removal at the surface, a is the
angle of attack, kR is a parameter expressing the roughness of the surface, E is
a general term characterizing the environment (such as freestream turbulence,
or acoustic disturbances propagating from the nozzle boundary layer in a wind
tunnel), @p/@x is the local pressure gradient, RN is the radius of a blunt nose
tip, Re1/ft is the Reynolds number per foot (to be discussed later), x/RN is the
location of the boundary layer while it is immersed in the entropy layer generated
by the nose (effects of the entropy layer can be felt more than 180 nose radii
downstream of the tip), V is an index of the vibration of the body, C is the
body curvature, @w/@z is the crossflow velocity gradient, T0 is the stagnation
temperature, d
 is a characteristic dimension of the body, t is a chemical reaction
time, and Z is an index of the magnitude of chemical reactions taking place in
the boundary layer. One look at this list, and the reader is justified in becoming
frustrated. Clearly, the transition Reynolds number is an elusive quantity, and it
is no surprise that our knowledge of it is so imprecise. However, the situation is
not hopeless; for any given situation ReT will be dominated by only a few of
the parameters just listed, and the others will be secondary. Let us examine
those parameters that seem to be most important for hypersonic speeds.

6.7.1 Mach Number

The Mach number at the edge of the boundary layer Me has a strong influence
on the stability of the laminar boundary layer and through this on ReT. Boundary-
layer stability theory shows that stability of the laminar boundary layer is gener-
ally enhanced by an increasing Mach number, and hence ReT is increased
with increased Me, especially above Me ¼ 4. This is dramatically shown
in Fig. 6.25, obtained from [101]. Here we see a plot of ReT vs Me for sharp

Fig. 6.25 Transition Reynolds-number data on sharp cones from wind tunnels and

free flight (from Stetson [100]).
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cones in both wind tunnels and free flight. Clearly, above Mach 4, ReT increases
rapidly with Me. In basic fluid-dynamic courses, a virtual rule of thumb places
the transition Reynolds number for incompressible flow over a flat plate near
5 � 105; in contrast, at high hypersonic Mach numbers ReT can be on the
order of 108. This effect of Mach number on transition is extremely beneficial.
Because skin friction and aerodynamic heating are considerably smaller for
laminar in comparison to turbulent flows, the relatively large region of laminar
flow that can occur over a body at hypersonic speeds is a very advantageous
design feature.

6.7.2 Environment

Transition is quite sensitive to disturbances that come from the environment,
such as freestream turbulence, acoustic disturbances from sources either exterior
or interior to the body, and disturbances that are introduced into wind-tunnel
flows from the active turbulent boundary layer on the walls of the tunnel.
These environmental phenomena can make dramatic changes in the transition
behavior of a boundary layer. For this reason, wind-tunnel measurements of
transition are always compromised by the environmental question; indeed, for
hypersonic aerodynamics there is a prevailing feeling that the only meaningful
transition data must be obtained from free-flight experiments. This feeling is
reinforced by the data in Fig. 6.25 which, in addition to the effect of increasing
Me, also shows a marked difference in data obtained in wind tunnels compared
to that obtained in free flight. Note that, as we might expect, the flight data are
consistently higher than the correlation of wind-tunnel data.

6.7.3 Unit Reynolds Number

The unit Reynolds number is defined as the Reynolds number based on a unit
length, for example, unit Re ¼ reue x/me, where x is taken as 1 ft, or 1 m, yielding
the unit Reynolds number per foot or per meter, respectively. There is no basic
physical reason to expect the unit Reynolds number to influence transition;
however, experimental data clearly show some correlation with unit Reynolds
number. Considering again Fig. 6.25, we see that the flight data depend on unit
Reynolds number, with ReT increasing as unit Re increases. The role of unit
Reynolds number in determining transition at hypersonic speeds has been the
subject of much debate and even disbelief; however, the weight of experimental
evidence clearly shows that unit Reynolds number plays a strong role in hyper-
sonic transition. Let us accept this observation at face value here and wait for
the future to explain its significance.

6.7.4 Angle of Attack

Three-dimensional flows can have a strong effect on boundary-layer tran-
sition. An example is given in Fig. 6.26, which shows the measured transition
variation on sharp cones as a function of angle of attack (from [102]). Note
that, as a is increased, transition moves rearward on the windward side and
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forward on the leeward side. This is exactly opposite to what might be expected
intuitively from results at zero angle of attack. For example, consider the wind-
ward ray on the cone in Fig. 6.26. As the angle of attack increases, the local invis-
cid flow Mach number decreases, and the local Reynolds number increases.
Based on experience at zero angle of attack, both of these changes should
cause the transition point to move forward. However, Fig. 6.26 shows exactly
the opposite. There is clearly an overriding three-dimensional effect. The
trends shown in Fig. 6.26 have been observed by many investigators; they are
well established in the literature. For example, additional angle-of-attack tran-
sition data are shown in Fig. 6.27, obtained from [103]. The case examined is
a sharp cone with uc ¼ 8 deg at an angle of attack 2 deg in a Mach 6 airflow
with Re1/ft ¼ 9.7 � 106. Here, the radial distribution of the transition region
is shown by the shaded region; the axial location of transition (measured along
the surface from the tip) is plotted vs the radial angle f. The windward ray is
denoted by f ¼ 0 deg, and the leeward ray by f ¼ 180 deg. The bottom of the
shaded region (labeled B) is the beginning of transition, and the top of the
shaded region (labeled E) is the end of transition (corresponding to the sketch
in Fig. 6.24). Note that the transition region moves upstream as we move
around the cone from the windward to the leeward ray, consistent with the
results shown in Fig. 6.26. Moreover, note that the length of the transition
region decreases as we move around the cone. For comparison, the results for
zero angle of attack (labeled a ¼ 0 deg) are also shown in Fig. 6.27. Clearly,
there is a strong three-dimensional effect on transition. Superimposed on

Fig. 6.26 Effect on angle of attack on boundary-layer transition on a sharp cone;

uc 5 8 deg (from DiCristina, [102]).
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Fig. 6.27 are lines of constant Reynolds number based on the boundary-layer
momentum thickness Reu; the significance of Reu will be mentioned later.

6.7.5 Nose Bluntness

As stated in Part 1, the inviscid flow over a blunt-nosed slender body is charac-
terized by the entropy layer created behind the highly curved bow shock wave
and wetting the body downstream of the nose. Ramifications of this entropy
layer are shown in Fig. 6.28, obtained from [100]. Here, inviscid flow calcu-
lations are shown for a blunted, 8-deg cone at zero angle of attack. The nose
bluntness is small; the nose radius RN is only 0.04 in., and the length of the
cone is 14 in. The surface values of local Mach number, local static pressure
(referenced to the pressure at the stagnation point pST), and local unit Reynolds
number are plotted vs surface distance from the nose. The sharp cone values
are given by the dashed lines at the right. In spite of the small nose bluntness,
note the dramatic effect of the entropy layer; the local M and Re/ft vary strongly
downstream of the nose and do not recover to the sharp cone values until the end
of the 14-in. cone. In contrast, the pressure distribution recovers much earlier.
This is characteristic of the entropy layer—the thermodynamic properties such
as T (hence M through the speed of sound) and r are most influenced by the
layer. Clearly, the transition behavior of a boundary layer should feel some

Fig. 6.27 Variation of transition region around a sharp cone at angle of attack:

uc 5 8 deg, Re/ft 5 9.7 3 106, M¥ 5 6, and x 5 2 deg (from [100]).
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effect of this entropy layer (in comparison to a sharp cone). This is indeed the
case, as shown in Fig. 6.29. This figure is very similar to Fig. 6.27 for a sharp
cone, except now Fig. 6.29 includes the effect of nose bluntness, where
RN ¼ 0.2 in. Compare Figs. 6.27 and 6.29 closely. Note that by adding a blunt
nose to the cone, transition has been delayed to a distance further downstream
of the nose tip. This is characteristic of small nose-tip bluntness; the transition
Reynolds number is increased by such bluntness. In contrast, for large bluntness
transition can occur prematurely on the nose itself, and hence the transition
Reynolds number is greatly reduced. This nose-tip transition is often referred
to as the “blunt nose paradox.” This phenomena occurs in spite of the fact that
a strong favorable pressure gradient is present on the nose, especially in the
region around the sonic point. In general, favorable pressure gradients stabilize
the laminar boundary, whereas adverse pressure gradients are destabilizing.
The phenomena of nose-tip transition is contradictory to this general behavior—
just another of nature’s tricks associated with transition. In summary, we can
clearly say that nose bluntness affects transition, but this effect can be different
depending on the amount of nose bluntness.

6.7.6 Wall Temperature

Low-speed experiments have shown that wall temperature can have a major
influence on transition; for boundary-layer cooling (Tw , Taw) the laminar
boundary layer is more stable, and transition is delayed, whereas for boundary-
layer heating (Tw . Taw) the laminar boundary layer is destabilized, and
transition occurs earlier. At hypersonic speeds, however, the situation is not so

Fig. 6.28 Calculations of inviscid flow over a slender, blunted cone at a 5 0 deg,

M¥ 5 5.9, and uc 5 8 deg. Nose-tip radius RN 5 0.04 in. (from [100]).
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clear. For moderate cooling, the hypersonic boundary layer is indeed stabilized,
and the transition Reynolds number is increased (transition is delayed), just as
observed in the low-speed case. However, for highly cool walls there is evidence
of a reversal, where the transition Reynolds number actually decreases. As stated
by Stetson in [100], “transition reversal, as a result of wall cooling, has remained
a controversial subject.” In the present book, we leave it at that, also.

This ends our discussion of the physical phenomena that affect transition at
hypersonic speeds. We have highlighted only a few important trends—there
are many others. The reader is encouraged to examine [100] for a more complete
state-of-the-art discussion. We now proceed to examine a few methods, albeit
very imprecise, for the prediction of transition.

6.7.7 Prediction of Transition

As unknown and tenuous as the phenomenon of transition is, in applied
aerodynamics it is vital to have some engineering means of predicting the
transition Reynolds number, even though it might be highly approximate. One
prediction method that has been used for hypersonic transition is based on
the transition Reynolds number referenced to the boundary-layer momentum
thickness u, where u is defined as (for example, see [5])

u ¼

ðd
0

ru

reue

1�
u

ue

� �
dy (6:137)

Fig. 6.29 Variation of transition region around a blunt cone at angle of attack:

uc 5 8 deg, Re/ft 5 19.4 3 106, M1f 5 6, x 5 2 deg, and RN 5 0.2 in. (from [100]).
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In turn, the transition Reynolds number can be referenced to the value of u at
transition uT:

ReuT
¼

reueuT

me

(6:138)

An empirical correlation for hypersonic transition that has found some use is

ReuT

Me

¼ 100 (6:139)

where Me is the local Mach number at the edge of the boundary layer. An
expression similar to Eq. (6.139) was used for the preliminary design of the
space shuttle.

Another prediction correlation, based on the cone data of [102], has been used
recently by Bowcutt et al. [80] in a study of hypersonic waveriders, as follows:

log10 (ReT ) ¼ 6:421 exp½1:209� 10�4M2:641
e � (6:140)

Equation (6.140) is more convenient than Eq. (6.139) because it gives ReT

directly, rather than involving the momentum thickness. However, there is no
reason to favor one correlation over the other. Furthermore, neither might be
appropriate for new conditions outside the data on which they are based, and
neither take into account many of the coupled physical phenomena discussed
earlier. About all we can say in defense of Eqs. (6.139) and (6.140) (or others
like them) is that they are better than nothing. In the design of hypersonic
vehicles, it is usually necessary to make some estimate of where transition
occurs, and this is where correlations such as Eqs. (6.139) or (6.140) are
useful. However, the user must realize the uncertainty involved in such
correlations—uncertainty that we cannot even quantize in most applications.

We end this discussion of transition with the following comments. The accu-
rate prediction of transition at hypersonic speeds is currently one of the leading
state-of-the-art questions. Its ultimate solution will most likely come when we
obtain the ultimate understanding of the basic problem of turbulence itself.
In the meantime, we must continue to make engineering estimates based on
the most appropriate data available. Perhaps one of the most eye-opening
aspects of the importance of transition are some unpublished design studies of
hypersonic transatmospheric vehicles, where, depending on the criteria used
for the transition Reynolds number, the weight of the vehicles varied by
as much as 50%—truly a practical and driving motivation to improve our
abilities in this area.

6.8 Hypersonic Turbulent Boundary Layer

At this point in our discussion, we now assume that the matter of where tran-
sition occurs has been reconciled, and we now ask the question: how do we
analyze the turbulent boundary layer itself? There is no precise answer to this
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question; the analysis of turbulent boundary layers is in the same category as tran-
sition, that is, empirical data are required, and there is always an uncertainty
(sometimes substantial) in the results. A huge amount of literature has been
accumulated on turbulent boundary-layer analysis, covering the flight spectrum
from incompressible to hypersonic. Whole books are devoted to this subject
(for example, see [104] and [105]). Also, an extended discussion of hypersonic
turbulent boundary layers is given in [106]. Therefore, an in-depth discussion
of turbulence effects in hypersonic flow is beyond the scope of this book.
Instead, our intent in the present section is to indicate trends and to discuss
some pertinent results.

It is well known that, because of the large-scale turbulent motion, energy is trans-
mitted more readily in turbulent boundary layers than in laminar. This is the reason
for the fuller velocity profiles through a turbulent boundary layer, and hence the
larger velocity gradients at the surface, as is emphasized in any first course in
fluid mechanics. In turn, the skin friction and heat transfer are larger, sometimes
markedly larger, for turbulent in comparison to laminar flows. These basic trends
are no different at hypersonic conditions than they are for low-speed flow.

To include the effects of turbulence in any analysis or computation, it is first
necessary to have a model for the turbulence itself. Turbulence modeling is a
state-of-the-art subject, and a survey of such modeling as applied to computations
is given in [107]. Again, it is beyond the scope of the present book to give a
detailed presentation of various turbulence models; the reader is referred to the
literature for such matters. Instead, we choose to discuss only one such model
here, because 1) it is a typical example of an engineering-oriented turbulence
model, 2) it is a model that has been used in many applications in turbulent
supersonic and hypersonic flows, and 3) we will discuss several applications in
subsequent chapters that use this model. The model is called the Baldwin–
Lomax turbulence model, first proposed in [108]. It is in the class of what is
called an eddy-viscosity model, where the effects of turbulence in the governing
viscous flow equations (such as the boundary-layer equations or the Navier–
Stokes equations) are included simply by adding an additional term to the trans-
port coefficients. For example, in all of our previous viscous-flow equations, m is
replaced by (mþ mT) and k by (kþ kT), where mT and kT are the eddy viscosity
and eddy thermal conductivity respectively—both caused by turbulence. In
these expressions, m and k are denoted as the molecular viscosity and thermal
conductivity, respectively. For example, the x-momentum boundary-layer
equation for turbulent flow is written as

ru
@u

@x
þ rv

@u

@y
¼ �

@p

@x
þ
@

@y
(mþ mT )

@u

@y

� �
(6:141)

Moreover, the Baldwin–Lomax model is also in the class of algebraic, or
zero-equation, models meaning that the formulation of the turbulence model uti-
lizes just algebraic relations involving the flow properties. This is in contrast to
one- and two-equation models that involve partial differential equations for the
convection, creation, and dissipation of the turbulent kinetic energy and (fre-
quently) the local vorticity. (See [105] for a concise description of such
one- and two-equation turbulence models.)
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The Baldwin–Lomax turbulence model is described next. We give just a
“cookbook” prescription for the model; the motivation and justification for the
model are described at length in [108]. This, like all other turbulence models,
is highly empirical. The final justification for its use is that it yields reasonable
results across a wide range of Mach numbers, from subsonic to hypersonic.
The model assumes that the turbulent boundary layer is split into two layers,
an inner and an outer layer, with different expressions for mT in each layer:

mT ¼
(mT )innery 	 ycrossover

(mT )outery � ycrossover

�
(6:142)

where y is the local normal distance from the wall and the crossover point from
the inner to the outer layer is denoted by ycrossover. By definition, ycrossover is that
point in the turbulent boundary layer where (mT)outer becomes less than (mT)inner.
For the inner region,

(mT )inner ¼ rl2jvj (6:143)

where

l ¼ ky 1� exp
�yþ

Aþ

� �� �
(6:144)

yþ ¼

ffiffiffiffiffiffiffiffiffiffi
rwtw
p

y

mw

(6:145)

and k and Aþ are two dimensionless constants, specified later. In Eq. (6.143), v is
the local vorticity, defined for a two-dimensional flow as

v ¼
@u

@y
�
@v

@x
(6:146)

For the outer region,

(mT )outer ¼ rKCcpFwakeFKleb (6:147)

where K and Ccp are two additional constants and Fwake and FKleb are related to
the function

F(y) ¼ yjvj 1� exp
�yþ

Aþ

� �� �
(6:148)

Equation (6.148) will have a maximum value along a given normal distance y;
this maximum value and the location where it occurs are denoted by Fmax and
ymax, respectively. In Eq. (6.147), Fwake is taken to be either ymax Fmax or Cwk

ymax Udif
2 /Fmax, whichever is smaller, where Cwk is a constant, and

Udif ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
(6:149)
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Also, in Eq. (6.147), FKleb is the Klebanoff intermittency factor, given by

FKleb( y) ¼ 1þ 5:5 CKleb

y

ymax

� �6
" #�1

(6:150)

The six dimensionless constants that appear in the preceding equations are
Aþ ¼ 26.0, Ccp ¼ 1.6, CKleb ¼ 0.3, Cwk ¼ 0.25, k ¼ 0.4, and K ¼ 0.0168.
These constants are taken directly from [108] with the understanding that,
although they are not precisely the correct constants for most flows in general,
they have been used successfully for a number of different applications. Note
that, unlike many algebraic eddy-viscosity models that are based on a character-
istic length, the Baldwin–Lomax model is based on the local vorticity v. This is a
distinct advantage for the analysis of flows without an obvious mixing length,
such as separated flows. Note that, like all eddy-viscosity turbulent models, the
value of m just obtained is dependent on the flowfield properties themselves
(for example, v and r); this is in contrast to the molecular viscosity m, which
is solely property of the gas itself.

The molecular values of viscosity coefficient and thermal conductivity are
related through the Prandtl number

k ¼
mcp

Pr
(6:151)

In lieu of developing a detailed turbulence model for the turbulent thermal con-
ductivity kT, the usual procedure is to define a turbulent Prandtl number as
PrT ¼ mTcp/kT. Thus, analogous to Eq. (6.151), we have

kT ¼
mT cp

PrT

(6:152)

where the usual assumption is that PrT ¼ 1. Therefore, mT is obtained from a
given eddy-viscosity model (such as the Baldwin–Lomax model), and the corre-
sponding kT is obtained from Eq. (6.152).

The Baldwin–Lomax model just discussed is just one of many eddy-viscosity
turbulence models that have been advanced over the years. For basic flows, such
as flow over a flat plate, many of these models are quite accurate. Let us examine
in more detail results obtained for hypersonic turbulent flow over a flat plate.
Such solutions can be obtained by utilizing the boundary-layer equations
(6.27–6.30) with @p/@x ¼ 0 and with the transport properties m and k directly
replaced by the sums (mþ mT) and (kþ kT), respectively. Results for the vari-
ation of cf with Mach number are given in Fig. 6.30, obtained from [107].
Here, calculations based on several turbulence models are made: an algebraic
(zero-equation) model from [104], a two-equation model from [109]; and two
different Reynolds-stress equations (which provide the turbulent stresses directly
in the turbulent mean momentum equations) from [109] and [110]. The solid
curve in Fig. 6.30 is a prediction by Van Driest [111], which is within 10%
of available experimental data and which can be considered a standard for

338 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



comparison. Note that all of the models give essentially the same results. Also,
note the important physical variation shown in Fig. 6.30, namely, that the
effect of increasing Mach number is to decrease cf . This is the same trend as
shown for laminar flow in Fig. 6.11. However, comparing Figs. 6.11 and 6.30,
we note that the Mach-number effect is stronger for turbulent flow; the turbulent
cf decreases faster with Mach number in comparison to the laminar results. This
trend is further emphasized by the heat-transfer results shown in Fig. 6.31,
obtained from [92]. Here, the Stanton number is plotted vs Re, with M1, as a par-
ameter; lines for both laminar and turbulent flow are shown. Note in Fig. 6.31 that
for a given Re the Mach-number effect is stronger on the turbulent results in
comparison to the laminar results. Also note that for a given Me and Re the
turbulent values of CH are considerably larger than the laminar results, which
demonstrates the importance of predicting hypersonic turbulent flows.

Some typical experimental heat-transfer data for hypersonic viscous flow over
a sharp 8-deg cone at zero angle of attack are shown in Fig. 6.32, obtained from
[102]. The freestream Mach number is 10, and the unit Reynold number of
2.1 � 106/ft. Here, CH

ffiffiffiffiffiffiffi
Rex

p
is plotted vs the running length along the surface

of the cone, expressed in terms of the Reynolds number Rex ¼ reuex/me. At
values of Rex of 3 � 106 or less, the flow is laminar, and the measured Stanton
number agrees very well with a theoretical laminar prediction (shown by the
dashed line). Transition takes place above Rex ¼ 3 � 106, with fully turbulent
flow achieved about Rex ¼ 7 � 106. This figure is shown for several reasons:
1) to illustrate some classical hypersonic results for heat transfer to a basic
cone; 2) to further illustrate the phenomena of hypersonic transition; and 3) to

Fig. 6.30 Effects of compressibility on turbulent skin friction on a flat plate:

adiabatic wall, where ReL 5 107 (from Marvin [107]).
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demonstrate how much turbulent flow can increase the local heat-transfer rate—
in the case shown here the increase is over a factor of three.

This concludes our discussion of hypersonic turbulent boundary layers. The
subject is virtually inexhaustible, and our purpose here has been to give only
its flavor. We have discussed a frequently used eddy-viscosity turbulence

Fig. 6.31 Station number as a function of Reynolds and Mach numbers for an

insulated flat plate (from Van Driest [92]).

Fig. 6.32 Stanton number for a sharp cone: uc 5 8 deg, M¥ 5 10, and Re/ft 5
2.1 3 106 (from [102]).
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model, namely, the Baldwin–Lomax model, and we have shown some results for
hypersonic turbulent flows over flat plates and cones. These basic flows were
chosen to illustrate the trends associated with high-Mach-number effects on tur-
bulent boundary-layer flows. For more detailed information on more complex
flows, the reader is referred to the literature. In addition, for an in-depth study
of the general aspects of hypersonic turbulent boundary layers, make certain to
read the references given in this section.

6.9 Reference Temperature Method

In this section we discuss an approximate engineering method for predicting
skin friction and heat transfer for both laminar and turbulent hypersonic flow.
It is based on the simple idea of utilizing the formulas obtained from incompres-
sible flow theory, wherein the thermodynamic and transport properties in these
formulas are evaluated at some reference temperature indicative of the tempera-
ture somewhere inside the boundary layer. This idea was first advanced by
Rubesin and Johnson in [112] and was modified by Eckert [113] to include a
reference enthalpy. In this fashion, in some sense the classical incompressible
formulas were “corrected” for compressibility effects. Reference temperature
(or reference enthalpy) methods have enjoyed frequent application in
engineering-oriented hypersonic analyses because of their simplicity. For this
reason, we briefly describe the approach here.

Consider the incompressible laminar flow over a flat plate. The local skin-
friction coefficient cf, the overall skin-friction drag coefficient Cf, and the heat-
transfer coefficient CH, obtained from classical theory (for example, see [5]
and [83], are respectively

c f ¼
0:664ffiffiffiffiffiffi

Re
p

x

(6:153)

C f ¼
1:328ffiffiffiffiffiffi

Re
p

c

(6:153a)

CH ¼
0:332ffiffiffiffiffiffi

Re
p

x

Pr�2=3 (6:154)

where Re and Pr are based on properties at the edge of the boundary layer, that is,
Rex ¼ reuex/me, Rec ¼ reuec/me, and Pr ¼ mecpe

/ke. In the preceding, x is the
local distance downstream from the leading edge and c is the chord length of
the plate.

Now consider the compressible laminar flow over a flat plate. In the reference
temperature method, the compressible local skin-friction coefficient, the overall
skin-friction drag coefficient, and the heat-transfer coefficient are given by
expressions analogous to Eqs. (6.153), (6.153a), and (6.154):

c
f ¼
0:664ffiffiffiffiffiffiffiffi

Re
c
p (6:155)

VISCOUS FLOW 341



C
f ¼
1:328ffiffiffiffiffiffiffiffi

Re
c
p (6:155a)

C
H ¼
0:332ffiffiffiffiffiffiffiffi

Re
x
p (Pr
)�2=3 (6:156)

where cf

, Cf


, CH

, Rex


, Rec

, and Pr
 are evaluated at a reference temperature

T
. That is,

c
f ¼
tw

1
2
r
u2

e

(6:157a)

C
f ¼
D f

1
2
r
u2

eS
(6:157b)

C
H ¼
qw

r
ue(haw � hw)
(6:157c)

Re
x ¼
r
uex

m

(6:158a)

Re
c ¼
r
uec

m

(6:158b)

Pr
 ¼
m
c
p

k

(6:158c)

where r
, m
, c
p and k
 are evaluated for the reference temperature T
. From
Sec. 6.5 we know that, for compressible flow, cf and CH depend on Me and
Tw/Te. Hence T
 must be a function of Me and Tw/Te. From [83] and [113]
this function is

T


Te

¼ 1þ 0:032 M2
e þ 0:58

Tw

Te

� 1

� �
(6:159)

Return to Fig. 6.11, where the solid curves give the exact solutions for compres-
sible laminar flow over a flat plate. The approximate results obtained from the
reference temperature method using Eq. (6.155) where T
 is given by Eq.
(6.159) are shown as dashed curves in Fig. 6.11. For most of the curves, the refer-
ence temperature method falls directly on the exact results, and hence no distinc-
tion can be made between the two sets of results; only for the insulated plate is
there some discernible difference, and that is small.

To apply the preceding results to cones, simply multiply the right-hand sides

of Eqs. (6.155) and (6.156) by the Mangler fraction
ffiffiffi
3
p

. It makes sense that,
everything else being equal, the skin friction and heat transfer to the cone
should be higher than the flat plate. For the cone, there is a three-dimensional
relieving effect that makes the boundary layer thinner. This in turn results in
larger velocity and temperature gradients throughout the boundary layer includ-
ing at the wall and hence yields a higher skin friction and heat transfer than in the
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two-dimensional boundary layer over a flat plate. Also, the idea of the reference
temperature method has been carried over to general three-dimensional flows
simply by defining Re
x as the running length Reynolds number along a stream-
line (where now x denotes distance along the streamline). This idea is discussed
by Zoby et al. [114]. Moreover, in [114] a modified reference temperature
approach using the Reynolds number based on momentum thickness is
employed. See [114] for details.

For turbulent flow over a flat plate, a reasonable incompressible result is
(see [83])

cf ¼
0:0592

(Rex)0:2
(6:160)

Carrying over the reference temperature concept to the turbulent case, the com-
pressible turbulent flat-plate skin-friction coefficient can be approximated as

c
f ¼
0:0592

(Re
x )0:2
(6:161)

where Re
x is evaluated at the reference temperature given by Eq. (6.159). The tur-
bulent flat-plate heat transfer can be estimated from a form of Reynolds analogy,
written as

CH ¼
cf

2s
(6:162)

where s is defined as the Reynolds analogy factor. For reasonable values of s for
turbulent flow, see Van Driest [92].

We end this section with the following caution. The reference temperature
method is approximate. Because of its simplicity along with (sometimes) reason-
able accuracy, it is useful for preliminary design purposes. In Sec. 6.10, more will
be said about its accuracy within the framework of approximate three-
dimensional solutions. It is interesting, however, that Dorrance [106] has
shown in the special case of the flat plate that the evaluation of the reference
temperature is indeed an accurate representation, falling out of the detailed,
exact laminar boundary-layer theory discussed in Sec. 6.5. In general,
however, it must be realized that the best obtainable accuracy in predicting
skin friction and heat transfer over general shapes can only be obtained by a
detailed numerical solution of the governing boundary-layer equations (such as
discussed in Sec. 6.6), or the complete Navier–Stokes equations, at the cost of
considerable complexity and computer time.

Example 6.5

Repeat Example 6.1 except use the reference temperature method for its
solution.
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Solution: From Example 6.1, M1 ¼ 10, p1 ¼ 1.01 � 105 N/m2, and
T1 ¼ 288 K. Also, because we are dealing with a flat plate with an adiabatic
wall, from Example 6.3 we have

Tw ¼ Taw ¼ 5155 K

The reference temperature T
 is obtained from Eq. (6.159) repeated here:

T


Te

¼ 1þ 0:032 M2
e þ 0:58

Tw

Te

� 1

� �

where for the flat-plate case Te ¼ T1 and Me ¼ M1. Hence,

T


T1

¼ 1þ 0:032(10)2 þ 0:58
5155

288
� 1

� �
¼ 14

T
 ¼ 14 T1 ¼ 14(288) ¼ 4032 K

The reference density r
 is obtained from the equation of state, recalling that the
pressure is constant through the flat-plate boundary layer.

r
 ¼
p1

RT

¼

1:01� 105

(287)(4032)
¼ 0:0873 kg=m3

The coefficient of viscosity m
 is obtained from Sutherland’s law given by
Eq. (6.84a):

m


mref

¼
T


Tref

� �3=2
Tref þ S

T
 þ S

where mref ¼ 1.789 � 1025 kg/(m)(s), Tref ¼ 288 K, and S ¼ 110 K. This gives

m


mref

¼
4032

288

� �3=2
(288þ 110)

(4032þ 110)
¼ 5:03

or

m
 ¼ 5:03mref ¼ 5:03(1:789� 10�5) ¼ 9� 10�5 kg

(m)(s)

Also, from Example 6.1, ue ¼ 3402 m/s, and x ¼ 0.5 m. From Eq. (6.158a)

Re
x ¼
r
u
ex

m

¼

(0:0873)(3402)(0:5)

9� 10�5
¼ 1:65� 106
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From Eq. (6.155)

c
f ¼
0:664ffiffiffiffiffiffiffiffi

Re
x
p ¼

0:664ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:65� 106
p ¼ 5:17� 10�4

From Eq. (6.157a)

tw ¼
1
2
r
u2

ec
f ¼
1
2
(0:0873)(3402)2(5:17� 10�4)

tw ¼ 261 N=m2

This compares favorably with the result of tw ¼ 281.9 N/m2 obtained in
Example 6.1.

Note: In Example 6.1, we used Fig. 6.11 to obtain a value of cf

ffiffiffiffiffiffiffi
Rex

p
. Although

the curves given in Fig. 6.11 are obtained from the exact laminar compressible
boundary-layer solution for a flat plate, for use in Example 6.1 we can only
read the curves within some degree of graphical accuracy. Hence the preciseness
of the answer obtained in Example 6.1 might be slightly compromised. Neverthe-
less, we can say with confidence that results obtained using the reference temp-
erature method compare favorably with exact boundary-layer solutions.

Example 6.4 illustrates the real value of the reference temperature method. In
just the few steps shown in this example, we obtained an answer for surface shear
stress that otherwise requires a detailed solution of the boundary-layer equations
as discussed in Secs. 6.4 and 6.5. The reference temperature method is a
back-of-the-envelope solution that is ready made for engineering-oriented pre-
liminary design studies. We will say more about this feature in the Design
Examples at the end of this chapter.

6.9.1 Recent Advances: Meador–Smart Reference

Temperature Method

The reference temperature method discussed in Sec. 6.9 is a concept that dates
back to the late 1940s, but is still a work in progress. Very recently, Meador and
Smart in [244] published improved formulas for the calculation of the reference
temperature, one for laminar flow and another for turbulent flow. This result for a
laminar flow is

T


Te

¼ 0:45þ 0:55
Tw

Te

þ 0:16 r
g� 1

2

� �
M2

e

where r is the recovery factor for laminar flow, r ¼
ffiffiffiffiffiffiffi
Pr

p

:
This method gives a reference temperature equation for turbulent flow slightly

different than that for laminar flow. For a turbulent flow, their equation is

T


Te

¼ 0:5 1þ
Tw

Te

� �
þ 0:16 r

g� 1

2

� �
M2

e
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They also use a local turbulent skin-friction coefficient for incompressible flow as

cf ¼
tw

1
2
r1u2

e

¼
0:02296

(Rex)0:139

When integrated over the entire plate of length c, this gives for the net skin-
friction drag coefficient (prove it to yourself )

Cf ¼
Df

1
2
r1V2

1S
¼

0:02667

(Rec)0:139

This leads to the analogous expressions for compressible flow with the properties
evaluated, as usual, at the reference temperature.

c
f ¼
tw

1
2
r
u2

e

¼
0:02296

(Re
x )0:139

and

C
f ¼
Df

1
2
r
u2

eS
¼

0:02667

(Re
c )0:139

The author has shown in [5] that the Meador–Smart reference temperature
method gives slightly more accurate results than the older method described in
Sec. 6.9, but for engineering purposes the differences are small. Of primary
importance is the fact that the Meador–Smart method is a recent reinforcement
of the viability of the reference temperature philosophy in general.

6.10 Hypersonic Aerodynamic Heating: Some Comments

and Approximate Results Applied to Hypersonic Vehicles

The present chapter serves as an introduction to the basic physics of hyper-
sonic viscous flow, with primary concentration on boundary-layer theory. We
have discussed such diverse topics as exact solutions to hypersonic laminar
boundary layers, the uncertainties and approximations associated with transition
and turbulence, and an approximate “engineering” method of predicting local
skin friction and heat transfer. In the process we have discussed many detailed
fluid-dynamic aspects of hypersonic boundary layers. Therefore, it is appropriate
at this stage in our discussion to recall the basic practical reasons for studying
hypersonic viscous flows, as discussed in Sec. 6.1; namely, from the practical
aspect of the design of hypersonic vehicles and facilities, we are vitally con-
cerned with the prediction of surface heat transfer and skin friction. Moreover,
of these two items, surface heat transfer is usually the dominant aspect that
drives the design characteristics of conventional hypersonic vehicles, although
skin friction is very important in tailoring the aerodynamic efficiency of
slender vehicles. Because of the importance of aerodynamic heating at hyper-
sonic speeds, the present section provides some elaboration on that topic.
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Section 6.1 discussed some of the practical motivation for the concern about
aerodynamic heating to hypersonic vehicles; at this stage, the reader should
review Sec. 6.1 before progressing further. In particular, in Sec. 6.1 some esti-
mates of the stagnation-point heating to a transatmospheric vehicle were given
and compared to that for the space shuttle (see Fig. 6.1). We are now in a position
to understand why the aerodynamic heating becomes so large at hypersonic
speeds, as demonstrated by the following reasoning. The Stanton number was
defined by Eq. (6.63) in terms of the local properties at the outer edge of the
boundary layer. If we take the case of a flat plate parallel to the flow, these
local properties are freestream values, and CH can be written as

CH ¼
qw

r1V1(haw � hw)

or

qw ¼ r1V1(haw � hw)CH (6:163)

Assuming an approximate recovery factor of unity, haw ¼ h0, where h0 is the total
enthalpy, defined as

h0 ¼ h1 þ
V2

1

2
(6:164)

At hypersonic speeds, V1
2 /2 is much larger than h1, and from Eq. (6.164) h0 is

essentially given by

h0 �
V2

1

2
(6:165)

Moreover, the surface temperature, although hot by normal standards, still must
remain less than the melting or decomposition temperature of the surface
material. Hence, the surface enthalpy hw is usually much less than h0 at hyperso-
nic speeds.

h0 � hw (6:166)

Combining Eqs. (6.163–6.166), we obtain the approximate relation that

qw �
1
2
r1V3

1CH (6:167)

The main purpose of Eq. (6.167) is to demonstrate that aerodynamic heating
increases with the cube of the velocity and hence increases very rapidly in the
hypersonic flight regime. By comparison, aerodynamic drag is given by

D ¼ 1
2
r1V2

1SCD (6:168)

VISCOUS FLOW 347



which increases as the square of the velocity. Hence, at hypersonic speeds, aero-
dynamic heating increases much more rapidly with velocity than drag, and this is
the primary reason why aerodynamic heating is a dominant aspect of hypersonic
vehicle design. Moreover, from Eq. (6.167), we can understand why Fig. 6.1 indi-
cates that the major aerodynamic heating for a transatmospheric vehicle is
encountered during ascent rather than during entry. Some designs call for such
a vehicle to accelerate to orbital velocity within the sensible atmosphere (using
airbreathing propulsion); hence, high velocity will be combined with relatively
high r1, which from Eq. (6.167) combine to yield very high heating values. In
contrast, on atmospheric entry, the transatmospheric vehicle will follow a
gliding flight path where deceleration to lower velocities will take place at
higher altitudes, hence resulting in lower heating rates than are encountered
during ascent. Please note that the preceding discussion is for general guidance
only; Eq. (6.167) is approximate only, and moreover CH and CD in Eqs.
(6.167) and (6.168) respectively both decrease as M1 increases (a general
trend we have established frequently in our earlier discussions). However, the
trends shown by these equations are correct, and they clearly demonstrate
why aerodynamic heating progressively becomes more important, and indeed
dominant, as the hypersonic flight regime is more deeply penetrated.

Now that we have established the importance of aerodynamic heating, it is
instructional to examine various prediction methods for estimating the heat trans-
fer to hypersonic vehicles. Within the context of the ideas presented in the present
chapter, the most precise method would be as follows:

1) Calculate the inviscid three-dimensional flow over the vehicle by means of
an appropriate numerical CFD technique, such as described in Secs. 5.3 and 5.5.
The surface-flow properties from such a calculation will provide the outer-edge
boundary conditions for a boundary layer calculation.

2) Using these outer-edge conditions, calculate the boundary-layer profiles
by an exact finite difference method, such as described in Sec. 6.6. An important
distinction must be made here, however. In Sec. 6.6, only two-dimensional
boundary layers were discussed. These two-dimensional calculations could be
employed in an approximate sense by following a surface streamline generated
by the three-dimensional inviscid flow calculation and ignoring any crossflow
gradients perpendicular to the streamline. However, in regions of large crossflow
gradients, such a “locally two-dimensional” boundary-layer calculation is
certainly not appropriate. The only true exact method would be to carry out a
three-dimensional boundary-layer calculation. We have not discussed such three-
dimensional boundary-layer calculations—they are beyond the scope of this
book. Such calculations are a state-of-the-art research problem today. It is not
just a simple matter of adding the third dimension to the boundary-layer
equations and then routinely proceeding with a finite difference solution. Any
numerical solution of the three-dimensional boundary-layer equations must pay
close attention to various “regions of influence” somewhat analogous to those
encountered in a method-of-characteristics analysis. However, three-dimensional
boundary-layer solutions can, with some effort, be carried out (for example, see
[83]). In any event, the locally two-dimensional or precise three-dimensional
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boundary-layer solutions will provide detailed flowfield profiles through the
boundary layer including of course the local temperature gradient at the surface.

3) Using this local temperature gradient at the surface, the local heat-transfer
rate can be calculated: qw ¼ k(@T/@y)w.
The application of this approach to calculating the aerodynamic heating distri-
bution over a three-dimensional hypersonic vehicle, although feasible, is costly
in terms of the large amount of computer time involved. Moreover, today—if
such a detailed calculation is desired—a solution of the complete Navier–
Stokes equations such as described in Chapter 8 might be the more appropriate
choice. Such matters will be discussed in detail in Chapter 8.

Solutions for the aerodynamic heating distributions as just described are not
yet practical for engineering analysis and design, where a large number of differ-
ent cases are examined. For such applications simpler and, hence, more approxi-
mate methods are needed. In the remainder of this section, several such
approximate methods are discussed.

In the extreme, perhaps the simplest method for estimating hypersonic aero-
dynamic heating is to use a generalized form of Eq. (6.167) as

qw ¼ rN
1VM

1 C (6:169)

Such a form was used in [79] for a preliminary analysis of aerodynamic heating to
a transatmospheric vehicle and was the basis for the results shown in Fig. 6.1. For
these calculations, the following values for N, M, and C were used, where the
units for qw, V1, and r1 were W/cm2, m/s, and kg/m3, respectively.

Stagnation point:

M ¼ 3, N ¼ 0:5, C ¼ 1:83� 10�8R�1=2 1�
hw

h0

� �

where R is the nose radius in meters and hw and h0 are the wall and total enthal-
pies, respectively. With these values of M, N, and C, there is a direct similarity
between the approximate Eq. (6.169) and the exact result given by Eq. (6.106).
(The demonstration of this similarity is left as a homework problem.)

Laminar flat plate:

M ¼ 3:2 N ¼ 0:5 C ¼ 2:53� 10�9(cosf)1=2(sinf)x�1=2 1�
hw

h0

� �

where f is the local body angle with respect to the freestream and x is the distance
measured along the body surface in meters.

Turbulent flat plate:

N ¼ 0:8
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For V1 4 3962 m/s

M ¼ 3:37

C ¼ 3:89� 10�8(cosf)1:78(sinf)1:6x
�1=5
T

Tw

556

� ��1=4

1� 1:11
hw

h0

� �

For V1 . 3962 m/s

M ¼ 3:7

C ¼ 2:2� 10�9(cosf)2:08(sinf)1:6x
�1=5
T 1� 1:11

hw

h0

� �

where xT is the distance measured along the body surface in the turbulent
boundary layer.

The preceding is an extreme example of an engineering method for estimating
hypersonic aerodynamic heating, requiring the least amount of work and detail.
The validity of these correlations is “reasonable” as long as the flight conditions
are such that boundary-layer theory is valid. They are useful for preliminary
analysis and are not recommended for more detailed work. They are presented
here only as an example of the most approximate method for estimating hyper-
sonic aerodynamic heating and for providing information on how the results
shown earlier in Fig. 6.1 were obtained.

Note that the preceding method does not directly incorporate the variation of
local inviscid flow properties along the surface. In contrast, the use of the refer-
ence enthalpy approach, described in Sec. 6.9, has this advantage. An example of
an improved engineering method for predicting hypersonic aerodynamic heating,
albeit still approximate, is the work of Zoby and Simmonds [115]. Here, the
inviscid flow over a hypersonic vehicle is calculated using a version of the
approximate thin shock-layer analysis of Maslen, the elements of which are
given in Sec. 4.9. The local aerodynamic heating distributions are then obtained
from standard incompressible formulas modified for compressible conditions by
Eckert’s reference enthalpy relation (see Sec. 6.9). Sample results are shown in
Fig. 6.33, which gives the local laminar Stanton number (normalized by the
stagnation-point value) for the windward centerline for a blunt 25-deg cone at
various angles of attack. The freestream Mach number is 7.77. In this figure, s
is the distance along the surface of the cone from the nose, and R is the nose
radius. The open symbols are experimental data obtained from [116], and the
curves are from the approximate calculations of [115]. Reasonable agreement
is obtained between the calculations and experiment. Note the expected physical
trends shown in Fig. 6.33, namely, 1) heat transfer decreases with distance from
the nose and 2) heat transfer increases with increasing angle of attack along the
windward centerline.

A more complex heat-transfer calculation applied to the space shuttle has been
carried out by Hamilton et al. [117]. The exact three-dimensional inviscid flow is
calculated by the time-dependent finite difference approach discussed in Sec. 5.3,
yielding an inviscid streamline pattern over the windward surface of the space

350 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



shuttle as shown in Fig. 6.34 for M1 ¼ 9.15 and a ¼ 34.8 deg. Then, following
each streamline, the modified reference temperature method of [114] is used to
calculate the aerodynamic heating distributions. The basic ideas of [114] have
been discussed in Sec. 6.9; hence, no further elaboration will be given here.

Fig. 6.33 Comparison of predicted [115] and measured [116] laminar heat-transfer

rates on a blunt cone (from Zoby and Simmonds [115]).

Fig. 6.34 Calculated streamline pattern on the space shuttle (from DeJarnette et al.

[118]).
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Consider a “midwing” chord of the space shuttle located at 2x/b ¼ 0.5, as shown
in Fig. 6.35. Also shown in Fig. 6.35 is the irregular pattern of transition observed
from shuttle flight-test data. The calculated streamwise heat-transfer distributions
along the chord at 2x/b ¼ 0.5 are shown in Fig. 6.36, obtained from the method
of [114]. Both laminar and turbulent calculations are shown by the solid curves,
as reported in [117]. The flight-test data are given by the open circles. These data
are bracketed by the laminar and turbulent calculations. Near the leading edge,
good agreement is obtained with the laminar calculations, and near the trailing
edge good agreement is obtained with the turbulent calculations. This graphically
demonstrates the accuracy that can be obtained with approximate heat-transfer
calculations in complex flows. The behavior of the flight-test data in the transition
region, which at first glance appears irregular (first laminar, then transitional, then
laminar, then transitional, then laminar again, finally approaching fully turbulent
flow at the trailing edge) is indeed totally consistent with the observed transition
pattern shown in Fig. 6.35.

This is a good ending point for our discussion of approximate hypersonic heat-
transfer calculations. There are other approximate methods that have been devel-
oped over the past years; this section has endeavored to indicate only a few recent
approaches. An excellent and authoritative review of approximate aerodynamic
heat-transfer methods was published by DeJarnette et al. [118], which the inter-
ested reader is encouraged to study carefully. Again, the purpose of this section
has been to serve as a counterpoint to our previous discussions concerning exact

Fig. 6.35 Measured transition region on the space shuttle wing, from the STS-2

flight (from [118]).
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hypersonic boundary-layer calculations and to emphasize the usefulness of
approximate heat-transfer analyses for engineering studies. The final choice of
an exact or an approximate method for calculating hypersonic aerodynamic
heating depends on the problem, the need for accuracy, and the resources
available.

6.11 Entropy-Layer Effects on Aerodynamic Heating

Consider the inviscid hypersonic flow over a blunt-nosed body, such as
sketched in Fig. 6.37. The surface streamline, which has passed through the
normal portion of the bow shock wave, is indicated by the dashed line.
Because the flow is inviscid and adiabatic, the entropy is constant along this
streamline, and equal to the entropy behind a normal shock wave. According
to the usual boundary-layer method, this streamline with its normal shock
entropy would constitute the boundary condition at the outer edge of the bound-
ary layer. On the other hand, return to Fig. 1.14 with the attendant discussion in
Chapter 1 concerning the entropy layer. Recall that for some distance down-
stream of the blunt nose the thin boundary layer will be growing inside the
entropy layer, and then the boundary layer will eventually “swallow” the
entropy layer far enough downstream. In both cases, it is clear that the entropy
at the outer edge of the boundary layer will not be the normal shock entropy.
Therefore, the conventional boundary-layer assumption that the outer-edge
boundary condition is given by the inviscid surface streamline as shown in
Fig. 6.37 when dealing with blunt-nosed hypersonic bodies is not appropriate.

The interaction of the entropy layer and the boundary layer has been a challen-
ging aerodynamic problem for years. Within the framework of boundary-layer

Fig. 6.36 Streamwise distribution of heating on the wing of the space shuttle at

2x/b 5 0.5, where 2x/b is the spanwise location shown in Fig. 6.35 (from [117]).
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analysis, current practice is to estimate the boundary-layer thickness d and then
utilize the inviscid-flow properties located a distance d from the wall as outer-
boundary conditions for the boundary layer. This approximate approach has
been used successfully by Zoby and colleagues in [114] and [115] and
Hamilton et al. in [117]. The entropy layer can have an appreciable effect on
the prediction of hypersonic aerodynamic heating. This is dramatically shown
in Fig. 6.38, obtained from [118] and [119]. Here, the aerodynamic heat-transfer
distribution along the space shuttle windward ray is shown at the velocity and
altitude corresponding to maximum heating along the entry trajectory. The
open circles are experimental data extrapolated from wind-tunnel data. The
various curves are predictions of the heating distributions from [120] and [121]
both making two sets of calculations, first assuming normal shock entropy at
the outer edge of the boundary layer and then treating the variable entropy associ-
ated with the entropy-layer/boundary-layer interaction. The solid circles are
from the calculations of [119], which also account for the entropy layer. Note
two important aspects from Fig. 6.38: l) the presence of the entropy layer
increases the predicted values of qw by at least 50%—a nontrivial amount and
2) the taking into account of the entropy layer by using boundary-layer outer-
edge properties associated with the inviscid flow a distance d from the wall
gives good agreement with the experimental data.

Clearly, the presence of the entropy layer on a blunt-nosed hypersonic body
has an important effect on aerodynamic heating predictions using boundary-layer
techniques. However, the simple method just stated appears to be a reasonable
approach to including the effect of the entropy layer. Indeed, the heat-transfer
predictions shown earlier in Figs. 6.33 and 6.36 take into account the entropy
layer as just described, and reasonable agreement with wind-tunnel and flight-test
data is obtained.

Finally, the problems discussed in this section concerning the entropy layer
are important for boundary-layer calculations. In contrast, when the entire

Fig. 6.37 Illustration of the surface streamline containing the normal shock entropy.
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shock layer is treated as viscous from the body to the shock wave, the explicit
treatment of the entropy layer is not needed. For such viscous shock layers, the
interaction between the entropy layer and the shock layer “comes out in the
wash”; no separate treatment is required because it is contained within the frame-
work of a fully viscous calculation. Such fully viscous-flow calculations are dis-
cussed in Chapter 8.

6.12 Summary and Comments

In the present chapter, we have discussed some basic physical aspects of
hypersonic viscous flow and have concentrated on the conventional boundary-
layer concept with associated results at hypersonic conditions. Referring again
to our road map in Fig. 1.24, we have covered the first five items listed under
viscous flows, ranging from basic aspects to approximate engineering methods.

Fig. 6.38 Comparison of predicted shuttle windward-ray heat-transfer

distributions; illustration of the entropy-layer effects (from [118]).
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Examine these items in Fig. 1.24, and make certain that you feel comfortable with
the associated material in this chapter before you progress further. In the next two
chapters, we will treat hypersonic viscous flows by more general and modern
(and hence more accurate) methods. However, the boundary-layer theory and
results discussed in the present chapter constitute the “bread and butter” of
many hypersonic viscous flow applications, and they provide a foundation on
which the understanding of hypersonic viscous flow is built. Therefore, in the fol-
lowing paragraphs it is useful to highlight some of the material we have
discussed.

The Navier–Stokes equations (6.1–6.5) are the fundamental governing
equations for viscous flow. These are coupled nonlinear partial differential
equations, difficult to solve by any approach other than detailed numerical sol-
utions (to be discussed in Chapter 8). The boundary-layer equations, obtained
from the Navier–Stokes equations by an order-of-magnitude reduction analysis,
are simpler to solve and serve as a classical starting point for the analysis of
viscous flows. For two-dimensional flow, the boundary-layer equations are as
follows.

Continuity:
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For hypersonic flow, the constant pressure condition given by Eq. (6.29) can be
relaxed; it is appropriate to allow a normal pressure gradient through a hypersonic
boundary layer without invalidating the boundary-layer concept.

By transforming the boundary-layer equations through the Lees–Dorodnitsyn
transformation,

j ¼

ðx

0

reueme dx (6:33)
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ueffiffiffiffiffi
2j
p

ðy

0
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a form of the boundary-layer equations is obtained as displayed in Eqs. (6.55) and
(6.58). In turn, these equations lead to self-similar solutions for the special cases
of the flat plate and stagnation point. Defining the skin-friction coefficient as

cf ¼
tw

1
2
reu2

e

(6:59)

the Nusselt number as

Nu ¼
qwx

ke(Taw � Tw)
(6:62)

and the Stanton number as

CH ¼
qw

reue(haw�hw)

(6:63)

where the Nusselt and Stanton numbers are alternative heat-transfer coefficients
related by Nu ¼ CH Re Pr, we find that
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where f 0 ¼ u/ue and g ¼ h/he. The self-similar solutions for the transformed
boundary-layer equations yield numbers for f 00(0) and g0(0), giving the following
laminar flow results.

Flat plate:
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Stagnation point:
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The stagnation-point heat transfer for a sphere is larger than that for a cylinder
because of the three-dimensional relieving effect. At a stagnation point, the
skin friction is zero. For hypersonic flow, the velocity gradient due/dx is given
from Newtonian flow as

due

dx
¼

1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(pe � p1)

re

s
(6:121)

From this, we obtain the important result that

qw /
1ffiffiffi
R
p (6:122)

In general, boundary layers encountering arbitrary streamwise gradients of
velocity, pressure, and temperature at the outer edge are nonsimilar. For nonsimi-
lar boundary layers, several methods of solution have been developed, including
local similarity, the difference-differential method, and finite difference methods,
the latter being the standard approach today.

Detailed boundary-layer solutions such as just mentioned yield the flowfield
profiles through the boundary layer, as well as the velocity and temperature gra-
dients at the surface, hence the surface skin friction and heat transfer. These
detailed solutions frequently require extensive computer resources. For engineer-
ing preliminary analysis, simplified, more approximate methods are useful for
rapid estimation of skin friction and aerodynamic heating. The reference temp-
erature (or reference enthalpy) method is an excellent example of such an
approximate approach. Calculations as elaborate as the estimation of space
shuttle three-dimensional heat-transfer distributions have been made using the
reference temperature concept.

Finally, the aspects of hypersonic transition and turbulent flow are extremely
important for vehicle design and analysis. Sections 6.7 and 6.8 discuss these
matters, emphasizing the basic aspects of transition and turbulence at hypersonic
speeds and underscoring the great uncertainties that still exist in our predictions
of such phenomena.

Design Example 6.1

The Configuration Based Aerodynamics (CBAERO) software package newly
developed at the NASA Ames Research Laboratory is described in a Design
Example at the end of Chapter 3. This is a modern design-oriented code for
the engineering prediction of hypersonic vehicle aerodynamic characteristics.
In Chapter 3, we examined the use of this code for the prediction of pressure dis-
tributions over hypersonic bodies of arbitrary shapes. In the present Design
Example, we extend these considerations to aerodynamic heating. In CBAERO,
the stagnation-point convective heating is predicted using the engineering corre-
lations of Tauber, as discussed in Sec. 6.10 and given in detail in [79] and [245].
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The aerodynamic heating over the remainder of the body is calculated by means
of the reference enthalpy (reference temperature) method discussed in Sec. 6.9.
See [228] and [229] for more details. We simply emphasize that the engineering
methods described in this chapter for predicting aerodynamic heating and skin
friction, especially the reference temperature method, are alive and well today
in the world of modern hypersonic vehicle design.

Return to Fig. 3.29 showing the space shuttle covered by a distribution of
panels over its surface used by Kinney and Garcia [229] to implement
CBAERO. In [229], rather than plotting the heat-transfer rate itself, Kinney
and Garcia plot the resulting surface temperature. They calculate the surface
temperature on the basis of a simple energy balance at the surface, assuming
that the surface is cooled only by heat radiated away from the surface (see
Sec. 1.4 and Chapter 18 for discussions of surface radiative cooling). That is,

qconvective þ qradiative ¼ s1 T4
w

where qconvective is the convective heat transfer to the surface, qradiative is the radia-
tive heat transfer to the surface stemming from thermal radiation from the hot gas
in the shock layer (to be discussed in Chapter 18), and s1T 4

w is the thermal
energy radiated away from the hot wall. Here, s is the Stefan–Boltzman con-
stant, 1 is the emissivity of the surface, and Tw is the wall temperature. For the
atmospheric entry flight path of the space shuttle, qradiative is small and is
usually neglected. The resulting calculations for the centerline temperature distri-
bution over both the bottom and top surfaces of the space shuttle are shown in
Fig. 6.39 for the case of M1 ¼ 24.87 and an angle of attack of 40 deg. Two

Fig. 6.39 Calculated centerline temperature distribution for the space shuttle,

where M¥ 5 24.87 and angle of attack 5 40 deg [229].
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sets of results are shown, one from the engineering predictions of CBAERO and
the other from a detailed calculation using a high-fidelity finite volume CFD sol-
ution of the Navier–Stokes equations developed at the NASA Ames Research
Center and labeled DPLR. Laminar flow is assumed for both sets of calculations.
In Fig. 6.39, the upper curves correspond to the bottom surface of the shuttle (the
windward side), and the lower curves correspond to the top surface (the leeward
side). Note that CBAERO does a good job of predicting the windward surface
temperatures. On the leeward side, CBAERO captures the trend for increased
heating on the canopy and the vertical tail, but quantitative agreement with the
CFD solution from DPLR is not as good. Given the complexity of the leeward
side flowfield, however, the engineering predictions from CBAERO are in the
ballpark.

Return to Fig. 3.32 showing the Apollo command module as treated by Kinney
and Garcia. Figure 6.40 shows the calculated surface temperature distribution
along the centerline cut for the vehicle flying at Mach 28.6 at an 18.2 deg
angle of attack. The upper curves pertain to the windward surface and the
lower curves to the leeward surface. The overall temperature on the heat shield
is reasonably predicted by CBAERO, including capturing the peak heating on
the shoulder of the capsule. The off-shoulder distribution, however, deviates
somewhat from the DPLR results.

Return to Fig. 3.34 showing the Project Fire II test vehicle as treated by
Kinney and Garcia. Figure 6.41 shows the calculated aerodynamic heating
rates in Watt/cm2 along the centerline for the vehicle flying at Mach 35.75 at
0 deg angle of attack. For this case, the surface heating is caused both by convec-
tive and radiative heating, qconvectiveþ qradiative. (The engineering method used in

Fig. 6.40 Calculated temperature distribution along the centerline for the Apollo

command module, where M¥ 5 28.6 and angle of attack 5 18.2 deg [229].
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CBAERO for predicting qradiative is discussed in Chapter 18.) Once again, the
results from CBAERO compare favorably with the CFD results from DPLR
except near the shoulder region. There, the Navier–Stokes solution predicts a
local peak in heat transfer that is not simulated by the engineering predictions
in CBAERO.

For more details on these engineering predictions, see [228] and [229].

Design Example 6.2: Hypersonic Waveriders—Part 2

This is continuation of the Design Example at the end of Chapter 5 entitled
Hypersonic Waveriders—Part 1. There we identified what is a waverider and dis-
cussed the basic philosophy of their design, namely, that waverider shapes are
carved out of inviscid streamsurfaces downstream of known supersonic and
hypersonic shock waves. Moreover, we mentioned cases where hypersonic
waverider shapes were optimized to obtain high values of (L/D)max, but that
such optimizations did not include the skin-friction drag. As a result, the resulting
waverider shapes when tested in wind tunnels did not achieve the expected values
of (L/D)max. I suggest that you review the waverider Design Example at the end
of Chapter 5 before proceeding further.

Appropriate to the present chapter on viscous flow, the present Design
Example highlights the design of viscous optimized hypersonic waveriders,
wherein skin-friction drag is included within the optimization process itself.
Details of the design process can be found in [80] and [246] by Bowcutt et al.,
based on their work at the University of Maryland. This work, beginning in
the late 1980s, led to a new class of waveriders where the optimization process

Fig. 6.41 Calculated convective heating distribution for the Fire II test vehicle,

where M¥ 5 35.75 and angle of attack 5 zero [229].
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is trying to reduce the wetted surface area, hence reducing skin-friction drag,
while maximizing L/D. Because detailed viscous effects cannot be couched in
simple analytical forms, the formal optimization methods based on the calculus
of variations cannot be used. Instead, a numerical optimization technique was
used based on the simplex method of Nelder and Mead [247]. By using a numeri-
cal optimization technique, other real configuration aspects could be included in
the analysis in addition to viscous effects, such as blunted leading edges and an
expansion upper surface (in contrast to the standard assumption of a freestream
upper surface, i.e., an upper surface with all generators parallel to the freestream
direction). The results of the study by Bowcutt et al. led to a new class of waver-
iders, namely, viscous optimized waveriders. Moreover, these waveriders pro-
duced relatively high values of (L/D), as will be discussed later.

For the viscous optimized waverider configurations, the following philosophy
was followed:

1) The lower (compression) surface was generated by a streamsurface behind
a conical shock wave. The inviscid conical flowfield was obtained from the
numerical solution of the Taylor–Maccoll equation, derived for example in [4].

2) The upper surface was treated as an expansion surface, generated in a
similar manner from the inviscid flow about a tapered, axisymmetric cylinder
at zero angle of attack, and calculated by means of the axisymmetric method
of characteristics.

3) The viscous effects were calculated by means of an integral boundary-layer
analysis following surface streamlines, including transition from laminar to tur-
bulent flow.

4) Blunt leading edges were included to the extent of determining the
maximum leading-edge radius required to yield acceptable leading-edge
surface temperatures, and then the leading-edge drag was estimated by modified
Newtonian theory.

5) The final waverider configuration, optimized for maximum L/D at a given
Mach number and Reynolds number with body fineness ratio as a constraint, was
obtained from the numerical simplex method taking into account all of the effects
itemized in 1–4 within the optimization process itself. For a highly detailed dis-
cussion of all of these items, see [248].

The following discussion provides some insight into the optimization process.
First, assume a given conical shock wave in a flow at a given Mach number, say, a
conical shock wave angle of us ¼ 11 deg at Mach 6. As discussed at the end of
Chapter 5, now trace a curve on the surface of the shock wave. The stream surface
generated from this curve is a bottom surface of a waverider, and the curve itself
forms the leading edge of the waverider. An infinite number of such curves can be
traced on the conical shock wave, generating an infinite number of waverider
shapes using the conical shock with us ¼ 11 deg at M1 ¼ 6. Indeed, some of
these leading-edge curves are shown in Fig. 6.42. The optimization procedure
progresses through a series of these leading-edge shapes, each one generating a
new waverider with a certain lift-to-drag ratio, and finally settling on that particu-
lar leading-edge shape that yields the maximum value of L/D. This is the
optimum waverider for the given generating conical shock wave angle of
us ¼ 11 deg. This resulting (L/D)max is then plotted as a point in Fig. 6.43 for
the conical shock wave angle us ¼ 11 deg. Figure 6.43 also gives the
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corresponding value of lift coefficient CL and volumetric efficiency h ¼ V2/3/Sp,
where V is the vehicle volume and Sp is the planform area. Now choose another
conical shock angle for the generating flowfield, say, us ¼ 12 deg, and repeat the
preceding procedure, finding that leading-edge shape that yields the waverider
shape that produces the highest (L/D). This result is now plotted in Fig. 6.43
for us ¼ 12 deg. Then another conical shock wave angle, say, us ¼ 13 deg, is
chosen, and the process is repeated again, finding that particular waverider
shape that produces the highest L/D. This point is now plotted in Fig. 6.43 for
us ¼ 13 deg. And so forth. The front views of these optimized waverider
shapes are shown in Fig. 6.44, each one labeled according to its generating
conical shock-wave angle. These same optimized waveriders are shown in per-
spective in Fig. 6.45. Returning to Fig. 6.43, note that the curve of L/D vs us

itself has a maximum value of (L/D), occurring in this case for us ¼ 12 deg.

Fig. 6.42 Examples of initial and optimized waverider leading edge shapes (Bowcutt

et al. [246]).
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This yields an “optimum of the optimums” and defines the final viscous opti-
mized waverider at M1 ¼ 6 for the flight conditions shown in Fig. 6.43.
Finally, a summary three view of the best optimum (the optimum of the
optimum) waverider, which here corresponds to us ¼ 12 deg, is given in
Fig. 6.46. Also, in Figs. 6.44–6.46 the lines on the upper and lower surfaces

Fig. 6.43 Results for a series of optimized waveriders at Mach 6: l 5 length of

waverider, b/l 5 body fineness ratio, and r 5 leading-edge radius [246].
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of the waveriders are inviscid streamlines. Note in these figures that the shape of
the optimum waverider changes considerably with us. Moreover, examining (for
example) Fig. 6.46, note the rather complex curvature of the leading edge in both
the planform and front views; the optimization program is shaping the waverider
to adjust both wave drag and skin-friction drag so that the overall L/D is a
maximum. Indeed, it was observed that the best optimum shape at any given
M1 results in the magnitudes of wave drag and skin-friction drag being approxi-
mately the same, never differing by more than a factor of two. For conical shock
angles below the best optimum (for example, us ¼ 11 deg in Figs. 6.44 and 6.45),
skin-friction drag is greater than wave drag; in contrast, for conical shock angles

Fig. 6.45 Perspective views of a series of optimized waveriders at Mach 6 [246].

Fig. 6.44 Results for a series of optimized waveriders at Mach 6 [246].
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above the best optimum (for example, us ¼ 13 and 14 deg in Figs. 6.44 and 6.45),
skin-friction drag is less than wave drag. (Note: For a hypersonic flat plate, using
Newtonian theory and an average skin-friction coefficient, it can readily be
shown that at maximum L/D, the wave drag is twice the friction drag.)

The results in Figs. 6.43–6.46 pertain to M1 ¼ 6. An analogous set of results
for the other extreme of the lifting hypersonic flight spectrum at M1 ¼ 25 is
given in Figs. 6.47–6.50. The aerodynamic characteristics of optimum wave-
riders for us ¼ 7, 8, 9, and 10 deg are given as the open symbols Fig. 6.47. (The
solid symbols will be discussed later.) The respective front views are shown in
Fig. 6.48 and perspective views in Fig. 6.49. Finally, the best optimum Mach
25 waverider (which occurs at us ¼ 9 deg) is summarized in Fig. 6.50. Comparing
the optimum configuration at M1 ¼ 6 (Fig. 6.46) with the optimum configuration
at Mach 25 (Fig. 6.50), note that the Mach 25 shape has more wing sweep and per-
tains to a conical flowfield with a smaller wave angle, both of which are intuitively
expected at higher Mach number. However, note from the flight conditions listed in
Figs. 6.43 and 6.47 that the body slenderness ratio at M1 ¼ 6 is constrained to be
b/l ¼ 0.06 (analogous to a supersonic transport such as the Concorde), but that
b/l ¼ 0.09 is the constraint chosen at M1 ¼ 25 (analogous to a hydrogen-fueled
hypersonic airplane). The two different slenderness ratios are chosen on the basis
of reality for two different aircraft with two different missions at either extreme of
the hypersonic flight spectrum. Also note in Figs. 6.48–6.50 that the optimization
program has sculptured a best optimized configuration with a spline down the
center of the upper surface—an interesting and curious result, caused principally
by the competing effects of minimizing pressure and skin-friction drag, while
meeting the slenderness ratio constraint.

Fig. 6.46 Three view of the best optimum waveriders at Mach 6 [246].
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Return to Fig. 6.47, and note the solid symbols. These pertain to the values of
CL and L/D obtained by setting the ratio of specific heats g to 1.1 in order to
assess possible effects of high-temperature chemically reacting flow. The solid
symbols pertain to an optimized waverider at us ¼ 9 deg with g ¼ 1.1. This is
not necessarily the best optimum at Mach 25 with g ¼ 1.1; rather, it is just a

Fig. 6.47 Results for a series of optimized waveriders at Mach 25 [246].
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Fig. 6.48 Front views of series of optimized waveriders at Mach 25 [246].

Fig. 6.49 Perspective views of a series of optimized waveriders at Mach 25 [246].
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point of calculation to indicate that high-temperature effects have some impact on
optimized waverider generation. This impact will be examined at the end of
Chapter 14.

Recall that for supersonic and hypersonic vehicles, L/D markedly decreases
as M1 increases. Indeed, Kuchemann [249] gives the following general empirical
correlation for (L/D)max based on actual flight-vehicle experience:

(L=D)max ¼
4(M1 þ 3)

M1

This variation is shown as the solid curve in Fig. 6.51. This figure is important to
our present discussion; it brings home the importance of the viscous optimized
waveriders discussed in this design box. The Kuchemann curve (the solid
curve) in Fig. 6.51 represents a type of “L/D barrier” for conventional vehicles,
which is difficult to break. The open circles in Fig. 6.51, which form an almost
“shotgun” scatter of points, are data for a variety of conventional vehicles repre-
senting various wind-tunnel and flight tests. (Precise identification of the sources
for these points is given in [248].) The solid symbols pertain to the viscous opti-
mized hypersonic waveriders discussed here. The solid squares are results for the
waveriders based on conical generating flows discussed in this Design Example.

Fig. 6.50 Three view and perspective of the best optimized waverider at Mach 25

[246].
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The solid circles are results for another family of viscous optimized waveriders
based on the shock wave and downstream streamsurfaces generated by a one-
half-power-law ogive-shaped body, obtained by Corda and Anderson [250]. From
Fig. 6.51 we see that the viscous optimized waveriders break the L/D barrier, that
is, they all give (L/D)max values that lie above the Kuchemann curve. Indeed, the
L/D variation of the viscous optimized waveriders is more closely given by

(L=D)max ¼
6(M1 þ 2)

M1

This variation is shown as the dotted curve in Fig. 6.51. The importance of the
viscous optimized waveriders is established by the results shown in Fig. 6.51.
These results have been confirmed by various wind-tunnel tests. They are the
reason for renewed interest in the waverider configuration as a hypersonic
vehicle, particularly for sustained cruising in the atmosphere.

Hypersonic vehicle design is sensitive to the location of transition from
laminar to turbulent flow, and the design of viscous optimized hypersonic wave-
riders is no exception. Figures 6.52–6.54 show results of a numerical experiment
carried out at M1 ¼ 10 wherein the transition location was varied over a wide
latitude, ranging from all laminar flow on one hand, to almost all turbulent
flow on the other hand, with various cases inbetween. Specific results at Mach
10 are given in Fig. 6.52; here values of (L/D) are given for optimized waveriders

Fig. 6.51 Maximum lift-to-drag ratio comparison for various hypersonic

configurations [246].
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as a function of assumed transition location. The point corresponding to the tran-
sition correlation described in [80] and [248] is denoted by x in Fig. 6.52. Other
points in Fig. 6.52 labeled 5x, 10x, and 15x correspond to transition locations that
are 5, 10, and 15 times the value predicted by the transition correlation. All of the
data given in Fig. 6.52 pertain to optimized waveriders for us ¼ 9 deg, which
yields the best optimum at Mach 10 for the usual transition correlation. (Note,
however, that us ¼ 9 deg might not yield the best optimum for other transition
locations; this effect was not investigated in [80] and [248].) The results in
Fig. 6.52 demonstrate a major increase in (L/D) in going from almost all turbu-
lent flow to all laminar flow. However, for the case where transition is changed by
a factor of five, only a 2% change in L/D results. Even for the case where tran-
sition is changed by a factor of 10, a relatively small change in L/D of 11%
results. On the other hand, the shapes of the resulting optimized waveriders are
fairly sensitive to the transition location, as illustrated in Figs. 6.53 and 6.54.
The conclusion to be made here is that waverider optimization is indeed rela-
tively sensitive to transition location, and this underscores the need for reliable
prediction of transition at hypersonic speeds.

Tieing up a loose end, the solid symbols in Fig. 6.43 correspond to calculations
where an average overall skin-friction drag coefficient was calculated for the
complete waverider configuration and subsequently used for the optimization

Fig. 6.52 Lift-to-drag comparison of optimized Mach 10 waveriders designed with

various boundary-layer transition criteria [246].

VISCOUS FLOW 371



process, rather than the use of the detailed shear-stress distributions employed in
the standard calculations. Only a small difference exists between the two cases as
seen in Fig. 6.43. Indeed, the resulting waverider shapes are virtually the same.
The use of an average skin-friction drag coefficient greatly reduces the computer
time for the optimization process.

The question of aerodynamic heating of viscous optimized waveriders was
examined by Vanmol and Anderson in [251]. To minimize aerodynamic
heating, the leading edges of waveriders must be blunt, as for all classes of hyper-
sonic vehicles. Vanmol and Anderson used Tauber’s engineering correlation for
stagnation-point heat transfer [79] and [245] modified to apply to a swept leading

Fig. 6.53 Front views of optimized Mach 10 waveriders designed with various

boundary-layer transition criteria [246].
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edge using the correlation of Hamilton [252]. A swept blunt leading edge has no
stagnation points, but rather an attachment line along the leading edge; the attach-
ment line is simply the dividing line between the flow that wets the upper and
lower surfaces. Moreover, there is a finite component of velocity along the attach-
ment line. Thus, at the outer edge of the boundary layer on the leading edge there
is a finite component of velocity in the direction of the attachment line, creating

Fig. 6.54 Perspective views of optimized Mach 10 waveriders designed with various

boundary-layer transition criteria [246].
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the possibility that transition from laminar to turbulent flow might occur along the
attachment line. Where transition and turbulent flow do occur along the attach-
ment line, the boundary layer over the top and bottom surfaces of the wing
will be turbulent downstream of that portion of the attachment line. This attach-
ment line transition was taken into account by Vanmol and Anderson; complete
details are given in [253] by Vanmol. Transition along the attachment line was
found to be important for some Mach- and Reynolds-number combinations.
For the upper and lower surfaces of the waverider, the reference temperature
method (see Sec. 6.9) was used.

This study used flight conditions associated with two different constant
dynamic pressure flight trajectories through the atmosphere, one for q1 ¼ 0.2
atm and the other for q1 ¼ 1.0 atm. The results indicate that aerodynamic
heating to hypersonic viscous optimized waveriders is manageable. For Mach
numbers less than 10, passive radiative cooling of the surface is sufficient. For
Mach numbers greater than 10, a combination of radiative cooling and
state-of-the-art active cooling is sufficient. In addition, for a vehicle of 60 m
length considered in this study, the degree of leading-edge bluntness demanded
by aerodynamic heating constraints (a leading-edge radius distribution from 6
to 1.2 cm) does not materially degrade the aerodynamic performance of the
waveriders. See [251] and [253] for more details.

In summary, viscous optimized hypersonic waveriders have been highlighted
in this Design Example. They are a graphic example of the fundamental hyper-
sonic flow aspects discussed so far in this book as applied to hypersonic
vehicle design. Moreover, they offer a promising design option for future hyper-
sonic vehicles. We will have more to say about these waveriders in Design
Examples at the end of Chapters 7 and 14.

Problems

6.1 Starting with the Navier–Stokes equations in dimensional form, derive
Eqs. (6.7–6.10).

6.2 Derive Eq. (6.58).

6.3 Derive Eqs. (6.109) and (6.110) for an axisymmetric stagnation point.

6.4 Consider the hypersonic laminar flow over a flat plate. When Pr ¼ 1, show
that enthalpy is a function of local velocity, that is, show that h ¼ h(u).
Obtain this function.

6.5 Show similarities between the approximate Eq. (6.169) and exact results.
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7
Hypersonic Viscous Interactions

It is yet too early to describe other promising methods of
inquiry by which knowledge of the size and texture of the
boundary layer may be obtained. It seems, however, that
we are on the threshold of a new domain of great
promise; research is needed, first for the advancement of
our knowledge and then for its application.

Leonard Bairstow, English aerodynamicist, 1923

Interact—to act on each other.

From The American Heritage Dictionary
of the English Language, 1976

Chapter Preview

Hypersonic flow—what is it? Section 1.3 served to answer this question. One

of the physical characteristics defining hypersonic flow described in Sec. 1.3

is the rapid growth of the boundary-layer thickness with increasing Mach

number, creating a substantial interaction with the outer inviscid flow and

changing the flow properties of this inviscid flow. In turn, these changes

feed back to affect the growth of the boundary layer. In Sec. 1.3, this phenom-

enon was labeled viscous interaction. Hypersonic viscous interaction is so

important that it rates a chapter all by itself—this chapter. Hypersonic

viscous interaction can have important effects on the surface-pressure distri-

butions over vehicles, changing the lift and drag of such vehicles and mark-

edly affecting their stability characteristics. Moreover, skin friction and

heat transfer are increased by viscous interaction. So this is important stuff.

How do you calculate the effects of viscous interaction? You will learn in

this chapter. How can you tell under what flight conditions (say, what

Mach numbers and Reynolds numbers) is viscous interaction important,

and under what conditions is it not important? You will learn in this chapter.
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Finally, we have another subject piggybacking on this chapter—hypersonic

shock-wave/boundary-layer interactions. This is the interaction that occurs

when and external shock wave impinges on a boundary layer. Such an inter-

action is not a part of the classic viscous interaction phenomena we just

described, but is nevertheless an interaction between the external inviscid

flow from whence the shock wave is coming and the boundary layer on

which the shock wave impinges. Hence it is an appropriate subject under the

title of this chapter. Moreover, it is an enormously important subject. Shock-

wave impingement results in local peaks in heat transfer on the surface. At

hypersonic speeds these peaks are so high that holes can be burned into the

surface with sometimes disastrous consequences to hypersonic vehicles.

Shock-wave impingement can also lead to separation of the boundary layer

from the surface, and such flowfield separation can cause a large increase in

drag and a substantial decrease in lift on a hypersonic vehicle. If the interaction

occurs internally in an airbreathing scramjet engine, the engine performance

can be severely reduced if not totally wiped out. This is important stuff. It is

so important that decades of experimental study and numerical calculations

have been focused on this problem. You will see some of this work described

in this chapter.

The bottom line of this chapter is that viscous interactions, including

shock-wave/boundary-layer interactions, are a vital part of the study of the

fundamentals of hypersonic flow. Therefore, the material in this chapter is

serious stuff—important stuff. Please treat it this way, and march on.

7.1 Introduction

In contrast to the preceding statement by the eminent British aerodynamicist,
L. Bairstow, in 1923, it is no longer “too early to describe other promising
methods” of studying viscous flows. Indeed, in the modern world of hypersonics,
it is mandatory that we go beyond the original boundary-layer concept as intro-
duced by Prandtl in 1904. The material in this chapter is one such example. Here,
we will examine two important flow problems where the viscous boundary layer
changes the nature of the outer inviscid flow, and in turn these inviscid changes
feed back as changes in the boundary-layer structure. This gives rise to phenom-
ena classified as viscous interactions. In hypersonic flow, there are two important
viscous interactions: 1) pressure interaction, caused by the exceptionally thick
boundary layers on surfaces under some hypersonic conditions, and 2) shock-
wave/boundary-layer interaction, caused by the impingement of a strong shock
wave on a boundary layer. The first item, pressure interaction, is frequently ident-
ified in the hypersonic literature as simply “viscous interaction.” This is the phys-
ical effect described in Sec. 1.3.3 and sketched in Figs. 1.15 and 1.16. This material
from Chapter 1 should be reviewed at this stage before progressing further. The
viscous interaction described in Sec. 1.3.3 constitutes the subject for most of the
present chapter.
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The road map for this chapter is given in Fig. 7.1. We start out on the left side
of the map and discuss the classic viscous interaction problem. This is divided
into two categories, the strong interaction and the weak interaction. Then we
move to the right side of the map and consider the shock-wave/boundary-layer
interaction. This interaction is also divided into two categories, one where the
boundary layer is laminar and the other where the boundary layer is turbulent.

The classic hypersonic interaction between the outer inviscid flow and the
boundary layer is caused by the very large boundary-layer thicknesses, which
can occur at hypersonic speeds. Indeed, it was stated in Sec. 1.3.3 that for a flat-
plate laminar boundary layer d grows as

d/
M2

effiffiffiffiffiffiffi
Rex

p (7:1)

Hence, for equal Reynolds number, d grows as the square of the Mach number.
We are now in a position to prove this, as follows. For a laminar boundary layer
on a flat plate, the self-similar solution described in Sec. 6.5 leads to the familiar
result that

d/
xffiffiffiffiffiffi
Re
p (7:2)

Because of intense viscous dissipation in hypersonic boundary layers, the temp-
erature can vary widely. In turn, r and m can be strongly variable throughout the
boundary layer. Let us choose to evaluate the Reynolds number in Eq. (7.2) using
rw and mw at the wall. Then,

d/
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rwuex=mw

p
or

d/
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

reuex=me

p
ffiffiffiffiffi
re

rw

r ffiffiffiffiffiffi
mw

me

r
(7:3)

Fig. 7.1 Road map for Chapter 7.
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From the equation of state, assuming pe ¼ pw ¼ p ¼ constant through the
boundary layer,

re

rw

¼
pe

pw

Tw

Te

¼
Tw

Te

(7:4)

Also, assuming a linear dependency of m on T,

mw

me

¼
Tw

Te

(7:5)

Combining Eqs. (7.3–7.5), we have

d/
xffiffiffiffiffiffi
Re
p

Tw

Te

� �
(7:6)

where Re is the conventional Reynolds number based on properties at the outer
edge of the boundary layer, that is, Re ¼ reuex/me. Assuming an adiabatic wall
with recovery factor r ¼ 1,

Tw

Te

¼
Taw

Te

¼
T0

Te

¼ 1þ
g� 1

2
M2

e (7:7)

For large Me, Eq. (7.7) becomes

Tw

Te

¼
T0

Te

¼
g� 1

2
M2

e (7:8)

Substituting Eq. (7.8) into (7.6), we find

d

x
/

M2
effiffiffiffiffiffi

Re
p (7:9)

Clearly, the thickness grows as the square of the Mach number, and therefore
hypersonic boundary layers can be orders of magnitude thicker than low-speed
boundary layers at the same Reynolds number.

This thick hypersonic boundary layer displaces the outer inviscid flow, chan-
ging the nature of the inviscid flow. For example, inviscid flow over a flat plate is
sketched in Fig. 7.2a; the streamlines are straight and parallel, and the pressure on
the surface is constant (as sketched above the streamlines). In contrast, for hyper-
sonic viscous flow with a thick boundary layer, the inviscid streamlines are dis-
placed upward, creating a shock wave at the leading edge as sketched in Fig. 7.2b.
Moreover, the pressure varies over the surface of the flat plate, as sketched above
the flow picture in Fig. 7.2b. This is the source of the viscous interaction. The
increased pressure (hence increased density) tends to make the boundary layer
thinner than would be expected (although d is still large on a relative scale),
and hence the velocity and temperature gradients at the wall are increased. In
turn, the skin friction and heat transfer are increased over their values that
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would exist if a constant pressure equal to p1 were assumed. In the viscous inter-
action, the pressure increase, and the resulting cf and CH increases, become more
severe closer to the leading edge. We will soon see that the magnitude of the
viscous interaction increases as Mach number is increased and Reynolds
number is decreased. Therefore, viscous interaction effects are important for
slender hypersonic vehicles flying at high Mach numbers and high altitudes.

Fig. 7.2 Illustration of pressure distributions over a flat plate: a) inviscid flow and

b) viscous flow.
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7.2 Strong and Weak Viscous Interactions:

Definition and Description

Consider the sketch shown in Fig. 7.3, which illustrates the hypersonic viscous
flow over a flat plate. Two regions of viscous interaction are illustrated here—the
strong interaction region immediately downstream of the leading edge and the
weak interaction region further downstream. By definition, the strong interaction
region is one where the following physical effects occur:

1) In the leading-edge region, the rate of growth of the boundary-layer
displacement thickness is large, that is, dd�/dx is large.

2) Hence, the incoming freestream “sees” an effective body with rapidly
growing thickness; the inviscid streamlines are deflected upward, into the incoming
flow, and a shock wave is consequently generated at the leading edge of the flat plate,
that is, the inviscid flow is strongly affected by the rapid boundary-layer growth.

3) In turn, the substantial changes in the outer inviscid flow feedback to the
boundary layer, affecting its growth and properties.

This mutual interaction process, where the boundary layer substantially affects
the inviscid flow, which in turn substantially affects the boundary layer, is called
a strong viscous interaction, as sketched in Fig. 7.3.

In contrast, further downstream a region of weak interaction is eventually
encountered. By definition, the weak interaction region is one where the follow-
ing physical effects occur:

1) The rate of growth of the boundary layer is moderate, that is, dd�/dx is
reasonably small.

2) In turn, the outer inviscid flow is only weakly affected.
3) As a result, the changes in the inviscid flow result in a negligible feedback

on the boundary layer, and this is ignored.

Therefore, as indicated in Fig. 7.3, the region of flow where the feedback
effect is ignored is called a weak viscous interaction.

Fig. 7.3 Illustration of strong and weak viscous interactions.
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The similarity parameter that governs laminar viscous interactions, both
strong and weak, is “chi bar,” defined as

x ¼
M3

1ffiffiffiffiffiffi
Re
p

ffiffiffiffi
C
p

(7:10)

where

C ¼
rwmw

reme

(7:11)

The value of x can be used to ascertain whether an interaction region is strong or
weak; large values of x correspond to the strong interaction region, and small
values ofx denote a weak interaction region. The role ofx as a similarity para-
meter is derived in the next section.

Finally, we emphasize again the major consequence of this viscous inter-
action, namely, the creation of an induced pressure change that can be substantial.
This induced pressure change, sometimes called the induced pressure increment,
is sketched in Fig. 7.4, where the actual pressure ratio p/p1 along the surface of
the plate lies considerably above the inviscid flow value of unity. This type of

Fig. 7.4 Schematic of the induced pressure increment caused by viscous interaction.
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effect was first reported by Becker [122] in 1950, who measured pressures near
the leading edge of a wedge that were above the classical wedge pressure from
oblique shock theory.

7.3 Role of x in Hypersonic Viscous Interaction

The induced pressure increment sketched in Fig. 7.4 is governed by the
parameter x, defined by Eqs. (7.10) and (7.11). The purpose of this section is
to demonstrate this fact. The following analysis, patterned after that of Stollery
in [123], is a physically based argument, with a minimum of mathematical
detail, which illustrates the major role played by x in hypersonic viscous
interactions.

The displacement thickness d�, shown in Fig. 7.3, can be expressed for a
hypersonic laminar boundary layer on a flat plate as proportional to the familar
result

d� /
xffiffiffiffiffiffi
Re
p (7:12)

where, following the reference temperature method discussed in Sec. 6.9, Re
is based on average properties within the boundary layer evaluated at the refer-
ence temperature given by Eq. (6.159). Equation (7.12) can then be written as

d� / x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

r�V1x

r
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r1V1x

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
r1

r�
m�

m1

s
¼

xffiffiffiffiffiffi
Re
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r1

r�
m�

m1

s
(7:13)

where Re is the usual Reynolds number based on freestream properties and r� and
m� are evaluated at the reference temperature T�. From the equation of state,

r1

r�
¼

T�

T1

p1

p�
(7:14)

Assuming that pressure is constant through the boundary layer in the direction
normal to the surface, we have p� ¼ pe, where pe is the pressure at the outer
edge of the boundary layer. Keep in mind that, because of the viscous interaction
effect, pe is not equal to the freestream pressure p1. Thus, Eq. (7.14) can be
written as

r1

r�
¼

T�

T1

p1

pe

(7:15)

Also, assume a variation of viscosity with temperature as

m�

m1

¼ C
T�

T1

(7:16)

382 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



where C is given by

mw

me

¼ C
Tw

Te

From the equation of state and recalling that pressure is constant through the
boundary layer in the normal direction, Tw/Te ¼ re/rw. Thus, the preceding
relation becomes

mw

me

¼ C
re

rw

or

C ¼
rwmw

reme

Therefore, C in Eq. (7.16) is the same as defined in Eq. (7.11) associated with the
definition ofx. Substituting Eqs. (7.15) and (7.16) into (7.13), we have

d� /
xffiffiffiffiffiffi
Re
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

T�

T1

� �2
p1

pe

s
(7:17)

Examining Eq. (6.159) for the reference temperature, we see that T�/Te depends
on M2

e . Thus, with only a small approximation, we can assume that Te � T1 and
Me � M1, and accept the following proportionality:

T�

T1

/M2
1 (7:18)

Combining Eqs. (7.17) and (7.18), we have

d� /
xffiffiffiffiffiffi
Re
p M2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C

pe=p1

s
(7:19)

Equation (7.19) is an intermediate result, to which we will return later. Note that
it expresses the variation of d� in terms of the ratio of the boundary-layer edge
pressure to freestream pressure. Since pe is higher than p1 because of the rapid
growth of the boundary layer (examine again Fig. 7.3), let us obtain an expression
for pe/p1 in terms of dd�/dx.

In Sec. 2.3 we obtained from exact oblique shock theory an exact expression
for p2/p1 in terms of the hypersonic similarity parameter. This result is given in
Eq. (2.28), repeated here:

p2

p1

¼ 1þ
g (gþ 1)

4
K2 þ gK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4

� �2

þ
1

K2

s
(2:28)
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Here, K ¼ Mlu, where u is the flow deflection angle across the oblique shock.
Recall that the nomenclature in Chapter 2 used the usual shock conventions,
with subscripts 1 and 2 denoting conditions upstream and downstream of the
shock respectively. Let us now apply Eq. (2.28) to estimate the pressure at the
outer edge of the boundary layer shown in Fig. 7.3. We will assume that the effec-
tive body thickness seen by the freestream is given by d�, with a slope equal to
dd�/dx. Using the tangent wedge method described in Sec. 3.6, Eq. (2.28) can be
written as

pe

p1

¼ 1þ
g (gþ 1)

4
K2 þ gK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4
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þ
1

K2

s
(7:20)

where K ¼ M1(dd�/dx).
Pause for a moment, and assess our progress so far. We have obtained an

expression for d� in terms of pe/p1 given by Eq. (7.19). In turn, we have devel-
oped an equation for pe/p1 in terms of dd�/dx, given by Eq. (7.20). These two
equations provide the tools for analyzing the viscous interaction—the effect of
the boundary layer on the outer inviscid flow [Eq. (7.20)] and the effect of the
outer inviscid flow on the boundary layer [Eq. (7.19)]. However, the use of
these two equations depends on whether we are dealing with the strong inter-
action or the weak interaction region as illustrated in Fig. 7.3. Let us consider
each of these separately.

7.3.1 Strong Interaction

In the region of strong interaction, dd�/dx is large. Because K ¼ M1(dd�/dx),
we therefore assume that K2

� 1. With this, Eq. (7.20) becomes

pe

px

�
g (gþ 1)

2
K2 ¼

g (gþ 1)

2
M2

1

dd�

dx

� �2

(7:21)

To couple the boundary layer with the outer inviscid flow, substitute Eq. (7.21)
into (7.19), obtaining

d� /
xffiffiffiffiffiffi
Re
p M2

1

ffiffiffiffi
C
p 1

M1(dd�=dx)

or

d� dd� /

ffiffiffiffiffiffi
C

Re

r
M1 x dx (7:22)

Recalling that Re ¼ r1V1 x/m1, Eq. (7.22) can be written as

d� dd� /

ffiffiffiffiffiffiffiffiffiffiffiffi
Cm1

r1V1

s
M1x1=2 dx (7:23)
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Integrating Eq. (7.23), we obtain

(d�)2 /

ffiffiffiffiffiffiffiffiffiffiffiffi
Cm1
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s
M1x3=2

or

d� /
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M1=2
1 x3=4 (7:24)

Note an important physical result from Eq. (7.24). We are used to the convention-
al laminar boundary-layer result that d� grows parabolically, that is, as x1/2.
However, in the strong interaction region Eq. (7.24) demonstrates that

d� / x3=4 (7:25)

Differentiating Eq. (7.24), we obtain

dd�

dx
/

Cm1

r1V1

� �1=4

M1=2
1 x�1=4 (7:26)

Hence, in the strong interaction region,

dd�

dx
/ x�1=4 (7:27)

Combining Eqs. (7.27) and (7.21), we also see in the strong interaction region that

pe

p1

/ x�1=2
(7:28)

Hence, for strong viscous interaction, the variation of induced pressure with
sketched in Fig. 7.4 is an inverse square-root variation. Finally, let us rewrite
Eq. (7.26) as

dd�
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Hence
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Finally, substituting Eq. (7.30) into (7.20), we have (neglecting the 1/K2 term
because K� 1)

pe

p1

¼ 1þ a1 �x (7:31)

where a1 is a constant. Equation (7.31) is important. It demonstrates that, for
strong viscous interaction, 1) pe/p1 depends only onx; hence, x is the governing
similarity parameter for induced pressure changes, as sketched in Fig. 7.4; and
2) the induced pressure change varies linearly withx.

Note: In examining Fig. 7.4, keep in mind that, for given freestream conditions,
x / x21/2. Hence, the abscissa of Fig. 7.4, which is the running length along the
plate, can also be interpreted as a variation inx, wherex decreases with increasing
x, that is, at the leading edge, x! 1, and as x increases, x constantly decreases.
For example, in a single wind-tunnel test at a given set of freestream conditions,
one set of surface-pressure measurements gives data over a range of x.

7.3.2 Weak Interaction

For weak viscous interactions, recall from Fig. 7.3 that dd�/dx is moderate. In
fact, let us assume that dd�/dx is small enough that K ¼ M1(dd�/dx) , 1, and
hence K2

� 1. With this Eq. (7.20) can be written as

pe

p1

¼ 1þ gK þ
g (gþ 1)

4
K2 (7:32)

Because K , 1 and K2
� 1, Eq. (7.32) given approximately pe/p1 � 1; hence,

from Eq. (7.19),
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and
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This is consistent with the definition of weak viscous interaction illustrated in
Fig. 7.3; there is no feedback of the changes in the inviscid flow to the boundary
layer. Consequently, from Eqs. (7.33) and (7.34) we obtain the familiar results that

d� / x1=2 (7:34a)

and

dd�

dx
/ x�1=2 (7:35)
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Also,

K ¼ M1

dd�

dx
/

M3
1ffiffiffiffiffiffi
Re
p

ffiffiffiffi
C
p
¼ x (7:36)

Note from Eq. (7.36) that, in contrast to strong interaction theory where K2 /x,
we find that for weak interaction theory, K /x. Thus, from Eq. (7.32),

pe

p1

¼ 1þ b1xþ b2x
2

(7:37)

If dd�/dx, hence K, is small enough, Eq. (7.37) can be further reduced to

pe

p1

¼ 1þ b1 x (7:38)

In summary, the analysis of this section has demonstrated thatx is the govern-
ing parameter that dictates the induced pressure increment for hypersonic viscous
interactions. Moreover, expressions for the induced pressures as a function of
x have been obtained. In a more detailed analysis, Hayes and Probstein [46]
have obtained the following results for air with g ¼ 1.4.

For an insulated flat plate, the strong interaction is

p

p1

¼ 0:514xþ 0:759 (7:39)

and the weak interaction is

p

p1

¼ 1þ 0:31xþ 0:05x2 (7:40)

For a cold-wall case, where Tw� Taw, the strong interaction is

p

p1

¼ 1þ 0:15x (7:41)

and the weak interaction is

p

p1

¼ 1þ 0:078x (7:42)

Note that a cold wall mitigates to some extent the magnitude of the viscous inter-
action. This makes sense because for a cold wall the density in the boundary layer
will be higher; hence, the boundary-layer thickness will be smaller, thus dimin-
ishing the root cause of the viscous interaction in the first place. Also note that the
form of Eqs. (7.39–7.42) is consistent with that of Eqs. (7.31), (7.37), and (7.38).

Some classical results are shown in Fig. 7.5, obtained from [46]. Here, experi-
mental data for p/p1 on an insulated flat plate (denoted by the circles and tri-
angles) are compared with both strong and weak viscous interaction theory
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(denoted by the curves.) Note that the data are reasonably correlated byx, and that
reasonable agreement is obtained between theory and experiment. Also note that,
for all practical purposes, the strong and weak interaction regions appear to be
described by

x . 3

for strong interaction and

x , 3

for weak interaction.
Additional experimental and theoretical data are given in Fig. 7.6, obtained

from [81]. Here, the induced pressure increment is plotted vsx21 for hypersonic
flow over a flat plate. Measurements were made at Mach numbers of 5, 10, and
20. Looking at the right half of Fig. 7.6, we see again that the pressure data are
correlated by x and agree well with weak and strong viscous interaction theory.
Along the abscissa, x is increasing from right to left; hence, the left half
of Fig. 7.6 corresponds to high values of x, dictated by the low Reynolds
numbers associated with x locations near the leading edge of the plate. As the

Fig. 7.5 Correlation of induced pressures (from Hayes and Probstein [46]).
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leading edge is approached more closely, low-density effects such as discussed
in Sec. 1.3.5 are encountered, that is, the Knudsen number becomes large.
Hence, in the immediate neighborhood of the leading edge, the continuum
assumption breaks down, and the measured pressures decrease because of slip-
flow effects. Of course, the continuum theory discussed in this chapter does
not hold for such low-density conditions.

7.4 Other Viscous Interaction Results

In Sec. 7.3, x was demonstrated to be the proper viscous interaction corre-
lation parameter for the induced pressure change p/p1. In contrast, a different
correlation parameter governs pressure coefficient and force coefficients. This
is easily seen by considering the pressure coefficient in the form given by
Eq. (2.13) written as

Cp ¼
2

gM2
1

p

p1

� 1

� �

Assuming that for hypersonic conditions p/p1� 1, then the preceding becomes

Cp �
2

gM2
1

p

p1

(7:43)

Fig. 7.6 Induced pressures on a flat plate (from [81]).
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From the results of Sec. 7.3,

p

p1

/ x ¼
M3

1ffiffiffiffiffiffi
Re
p

ffiffiffiffi
C
p

Substituting this into Eq. (7.43), we have

Cp /
M1ffiffiffiffiffiffi

Re
p

ffiffiffiffi
C
p

; V (7:44)

Hence, we see that the proper viscous interaction correlation parameter for Cp

is not M3
1

ffiffiffiffi
C
p

=
ffiffiffiffiffiffi
Re
p

, but rather M1

ffiffiffiffi
C
p
=
ffiffiffiffiffiffi
Re
p

, defined as V in Eq. (7.44). More-
over, because lift and wave drag coefficients are obtained by integrating Cp

over a given body surface, then viscous interaction effects on both CL and CDw

are also correlated by V , that is,

CL ¼ f1(V)

CDw ¼ f2(V)

Viscous interaction effects on skin friction and heat-transfer coefficients are
also correlated by V . Both skin friction and heat transfer are increased by
viscous interaction. Sample results are shown in Fig. 7.7, obtained from [81].
Here the skin-friction coefficient cf is plotted vs Re for hypersonic laminar flow
over a flat plate. Conventional boundary-layer theory shows that cf / 1=

ffiffiffiffiffiffi
Re
p

,

Fig. 7.7 Viscous interaction effect on skin friction (from [81]).
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and this variation is given as the double line, which makes a slope of 20.5 on the
log-log plot of Fig. 7.7. Experimental data are given by the symbols, and viscous
interaction theory is given by the solid and dashed lines. Both the experimental
data and the viscous interaction theory fall far above the conventional boundary-
layer theory, thus demonstrating the important effect of viscous interactions on cf.
The fact that viscous interaction effects on cf are correlated by V (rather thanx) is
demonstrated in Fig. 7.8, obtained from [81]. Here, cf is plotted vs M1=

ffiffiffiffiffiffi
Re
p

(hence essentially V). Note that experimental data obtained at different Mach
and Reynolds numbers are correlated fairly well by this parameter.

The preceding discussion has centered on viscous interaction as it affects flow
over a flat plate. This is because a flat plate is a simple configuration that allows
us to highlight the physical aspects of viscous interaction. However, viscous
interaction is a basic phenomenon that affects the hypersonic flow over any con-
figuration. Another simple geometry is a sharp cone. Figure 7.9 gives experimen-
tal and theoretical data for the hypersonic flow over cones. Here, the induced
pressure increment is plotted vs xc, where p is the actual cone surface pressure,
pc is the inviscid cone pressure, and xc is defined as

xc ¼ M3
c

ffiffiffiffiffiffiffi
C

Rec

r

Fig. 7.8 Correlation of the viscous interaction effect on skin friction (from [81]).
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where the subscript c denotes inviscid cone surface properties. Also, here
C ¼ (rm)w/(rm)c. In Fig. 7.9, the circles denote experimental data obtained
from [6], and the lines denote theoretical results from [124] and [125]. These
theoretical analyses are approximate techniques for estimating the viscous inter-
action effect. Probstein [124] obtained analytic results using a Taylor-series
expansion in powers of the slope of the boundary-layer displacement thickness.
Talbot’s method [125] is an approximate graphical approach coupling the displa-
cement thickness slope with the inviscid flow over a cone. The major point to be
noted from Fig. 7.9 is that xc is a reasonable parameter for correlating the induced
pressure increment on cones. As x c increases (caused by either or both Mach
number increasing and Reynolds number decreasing), the induced pressure incre-
ment increases. Moreover, this variation is linear, as seen in Fig. 7.9, and is
consistent with the flat-plate results discussed earlier.

The overall effect of viscous interaction on a hypersonic flight vehicle is to
reduce the lift-to-drag ratio L/D. This is illustrated in Fig. 7.10, obtained from
[123] where maximum L/D is plotted vs M1=

ffiffiffiffiffiffi
Re
p

(hence essentially V ) for a
number of different generic vehicle shapes ranging from blunt to slender
bodies. In all cases, (L/D)max decreases as V increases. This is because viscous
interaction effects increase pressure (hence wave drag) and skin friction (hence
friction drag), both increasing the overall drag of the body. The viscous inter-
action effect on lift is minor because the increased pressure caused by viscous
interaction acts on both the top and bottom of lifting surfaces and hence tends
to cancel in the lift direction. Thus the degradation of (L/D)max with increasing
V shown in Fig. 7.10 is caused primarily by an increase in D.

Fig. 7.9 Induced pressure increment vs the hypersonic interaction parameter

(from [6]).
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More recent work on viscous interaction correlations for force coefficients
derived from the space shuttle program has identified a modified viscous inter-
action parameter as

V
0;

M1ffiffiffiffiffiffi
Re
p

ffiffiffiffiffi
C0
p

where

C0 ¼
r0m0

r1m1

and where r0 and m0 are evaluated at a reference temperature T 0 within the bound-
ary layer

T 0

T1

¼ 0:468þ 0:532
Tw

T1

þ 0:195
g� 1

2

� �
M2

1 (7:45)

Fig. 7.10 Viscous effects on hypersonic maximum lift-to-drag ratio for five classes of

vehicles correlated with the viscous interaction parameter (from Stollery [123]).
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The validity of V
0

as a viscous interaction parameter for force coefficients is
demonstrated in Fig. 7.11, obtained from [126]. Here, experimental and flight
data for the axial-force coefficient for the space shuttle are correlated by four
different parameters. In Fig. 7.11a the data are plotted vs a modified form ofx,
where the constant C 0 is evaluated at the references temperature given by
Eq. (7.45). A poor correlation is obtained, as shown by the scattered data
points. In Fig. 7.11b, the correlation parameter is V; again, the data are scattered.
In Fig. 7.11c, a simple M1=

ffiffiffiffiffiffi
Re
p

correlation is attempted, but it also fails. Finally,
in Fig. 7.11d, we see that the data collapse to the same curve when correlated vs
V
0
. This is the desired result, and it confirms the use of V

0
as a force coefficient

correlation parameter.
Note that all of our discussion so far on viscous interaction has assumed a

laminar boundary layer. This is usually the case that actually prevails; viscous
interactions occur whenx, V , or V

0
are large, and this corresponds to large M1

and/or small Re. In turn, in Sec. 6.7 we saw that large M1 and small Re promoted
laminar flow. Hence, most viscous interaction theory is based on laminar flow.
However, for the sake of completeness, we mention the work of Stollery (see
[123]) on studies of viscous interactions associated with turbulent flow. His
analysis identified the following viscous interaction parameters for turbulent
flow.

Strong interaction:

M9
1C

Re

� �2=7

Weak interaction:

M9
1C

Re

� �1=5

This brings to an end our discussion of pressure-oriented viscous interactions.
These viscous interactions are an important element of hypersonic viscous flow.
By no means are all hypersonic flows dominated by viscous interactions.
However, for those flow problems wherex (or V , or V

0
) are large, viscous inter-

actions will play an important role. Therefore, when analyzing any hypersonic
viscous-flow problem, it is important to examine the associated values of the
interaction parameters in order to ascertain whether or not the inclusion of
viscous interaction effects is necessary.

7.5 Hypersonic Shock-Wave/Boundary-Layer Interactions

In this section we move to the right-hand side of our chapter road map in
Fig. 7.1 and address a second type of viscous interaction, completely distinct
from the pressure interaction discussed in Secs. 7.1–7.4, namely, the interaction
that occurs when a shock wave impinges on a boundary layer. Such shock-wave/
boundary-layer interactions are particularly important to hypersonic flow pro-
blems where aerodynamic heating is a major factor because there can be local
peaks of heat transfer in the interaction region that can be extremely severe.
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A graphical practical example of this interaction heating is provided by one of the
final flights of the X-15 hypersonic airplane vehicle in the 1960s (see Fig. 7.12).
For this flight, which occurred on 3 October 1967, a dummy ramjet was hung
below the fuselage of the X-15, with a pylon connecting the dummy ramjet
and the lower surface of the fuselage. On that day, test pilot Pete Knight flew
the X-15 at virtually maximum speed, reaching Mach 6.72 at slightly over
100,000 ft altitude. During the hypersonic flight, a shock wave from the ramjet
nacelle impinged upon the pylon and burned a hole through the pylon surface.
A photograph of this damage is shown in Fig. 7.13, obtained from [127]. The
black bar that slashes across the bottom of the pylon is simply a graphical
means of pointing out the burned interaction region. In addition, the bow
shock wave from the pylon, impinging on the bottom surface of the X-15, also
caused local heating damage, as seen at the top of Fig. 7.13. The ramjet model
was burned completely off the pylon and punched a hole in the X-15 that
allowed the extremely hot boundary-layer air to be rammed into the internal
structure, thus weakening the aircraft. Fortunately, Knight was able to safely
land the X-15; however, it was the worst case of damage caused by aerodynamic
heating throughout the test history of the X-15. (A detailed description of this
flight is presented by Richard Hallion in [128].) Clearly from this example,
shock wave–boundary-layer interactions can have serious effects on hypersonic
vehicles, and this only becomes more severe as the Mach number increases. (We
note that the damage from the ramjet-pylon interaction might also have been con-
tributed by a type-IV shock-shock interaction and the resulting supersonic jet
impinging on the pylon. The type-IV shock-shock interaction is detailed in
Sec. 5.5.)

The qualitative physical aspects of a two-dimensional shock-wave/boundary-
layer interaction are sketched in Fig. 7.14. Here we see a boundary layer growing
along a flat plate, where at some downstream location an incident shock wave
impinges on the boundary layer. The large pressure rise across the shock wave
acts as a severe adverse pressure gradient imposed on the boundary layer, thus
causing the boundary layer to locally separate from the surface. Because the
high pressure behind the shock feeds upstream through the subsonic portion of
the boundary layer, the separation takes place ahead of the impingement point
of the incident shock wave. In turn, the separated boundary layer induces a
second shock wave, identified here as the induced separation shock. The

Fig. 7.12 X-15 hypersonic test aircraft (U.S. Air Force, Edwards Air Force Base).
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separated boundary layer subsequently turns back toward the plate, reattaching to
the surface at some downstream location, and causing a third shock wave called
the reattachment shock. Between the separation and reattachment shocks, expan-
sion waves are generated where the boundary layer is turning back toward the
surface. At the point of reattachment, the boundary layer has become relatively
thin, the pressure is high, and consequently this becomes a region of high local
aerodynamic heating. Further away from the plate, the separation and reattach-
ment shocks merge to form the conventional “reflected shock wave,” which is
expected from the classical inviscid picture (for example, see [4]). The scale
and severity of the interaction picture shown in Fig. 7.14 depends on whether
the boundary layer is laminar or turbulent. Because laminar boundary layers sep-
arate more readily than turbulent boundary layers (for example, see [1] and [5]),

Fig. 7.13 Damage to the X-15 as a result of shock-wave impingement (from

Neumann [127]).
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the laminar interaction usually takes place more readily with more severe attend-
ant consequences than the turbulent interaction. However, the general qualitative
aspects of the interaction as sketched in Fig. 7.14 are the same.

The fluid-dynamic and mathematical details of the interaction region sketched
in Fig. 7.14 are complex, and the full prediction of this flow is still a
state-of-the-art research problem. However, great strides have been made in
recent years with the application of computational fluid dynamics to this
problem, and solutions of the full Navier–Stokes equations for the flow sketched
in Fig. 7.14 have been obtained. Solutions of the full Navier–Stokes equations
are described in Chapter 8. The purpose of the present section is simply to
describe some basic physical aspects of the hypersonic shock-wave/boundary-
layer interaction problem.

Experimental and computational data for the two-dimensional interaction of a
shock wave impinging on a turbulent flat-plate boundary layer are given in
Fig. 7.15, obtained from [108]. In Fig. 7.15a, the ratio of surface pressure to free-
stream total pressure is plotted vs distance along the surface (nondimensionalized
by d0, the boundary-layer thickness ahead of the interaction). Here, x0 is taken
as the theoretical inviscid flow impingement point for the incident shock wave.
The freestream Mach number is 3—not hypersonic, but certainly illustrative of
the basic phenomena. The Reynolds number based on d0 is about 106. Note in
Fig. 7.15a that the surface pressure first increases at the front of the interaction
region (ahead of the theoretical incident shock impingement point), reaches a
plateau through the center of the separated region, and then increases again
as the reattachment point is approached. The pressure variation shown in
Fig. 7.15a is typical of that for a two-dimensional shock-wave/boundary-layer

Fig. 7.14 Schematic of the shock-wave boundary-layer interaction.
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interaction. The open circles correspond to experimental measurements of Reda
and Murphy [129]. The curve is obtained from a numerical solution of the thin-
layer Navier–Stokes equations (see Chapter 8) as reported in [108], and using the
Baldwin–Lomax turbulence model discussed in Sec. 6.8. In Fig. 7.15b the vari-
ation of surface shear stress is plotted vs distance along the wall. Note that in the
separated region the shear stress plummets to zero, reverses its direction (nega-
tive values) in a rather complex variation, and then recovers to a positive value
in the vicinity of the reattachment point. The two circles on the horizontal axis
denote measured separation and reattachment points, and the curve is obtained
from the calculations of [108].

Fig. 7.15 Effects of shock-wave boundary-layer interaction on a) pressure distribution

and b) shear stress, for Mach 3 flow over a flat plate. Turbulent flow (from [108]).
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An axisymmetric shock-wave/boundary-layer interaction is illustrated in
Figs. 7.16–7.18, obtained from [130]. The experimental model and a sketch of
the interaction region are shown in Fig. 7.16. Here, an ogive-cylinder is used
as the test surface, and an annular shock-wave generator is mounted concentric
with the cylinder axis. Shock waves of two different strengths are generated by
different annular rings, one beveled at a deflection angle of a ¼ 7.5 deg and
the other with a ¼ 15 deg. Test results obtained at M1 ¼ 7.2 and a freestream

Fig. 7.16 Test model geometry and flowfield sketch for the shock-wave/
boundary-layer interaction studied by Marvin et al. [130].
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unit Reynolds number of 10.9� 106 per meter are shown in Fig. 7.17. One again,
x0 denotes the theoretical inviscid incident shock impingement point. Plotted in
Fig. 7.17 are experimental results for p/p1, cf, and CH vs (x 2 x0)/d0. The bound-
ary layer is turbulent. First, examine the results for the bevel angle a ¼ 7.5 deg,
which produces a relatively weak shock wave. For this case, no flow separation
can be seen. The pressure rises smoothly through the interaction region; the skin
friction first decreases in the face of the adverse pressure gradient but then
increases in the recompression region where the boundary layer becomes
thinner. The heat transfer continually increases, following the same behavior
as the pressure distribution. In contrast, the results for a ¼ 15 deg, which pro-
duces a stronger shock, show definite flow separation. The pressure distribution

Fig. 7.17 Effects of shock-wave/boundary-layer interaction on pressure, skin

friction, and heat-transfer distributions (from [130]).
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has a local plateau in the separation region, the skin friction goes negative in this
region, and the heat transfer rises continually through the interaction region. The
decay in p/p1, cf, and CH downstream of the interaction region is caused by the
expansion wave from the annular ring (see Fig. 7.16). The experimental results
for a ¼ 15 deg are repeated in Fig. 7.18, where they are compared with numerical
calculations based on a solution of the Navier–Stokes equations. This solution
uses MacCormack’s time-marching procedure, which was described in Sec. 5.3
for inviscid flows, but here is applied to the Navier–Stokes equations. (Again,
note that Navier–Stokes solutions are the subject of Chapter 8.) Two sets of
calculations are shown, each made with a different algebraic eddy-viscosity

Fig. 7.18 Comparison between computations and experiment for the shock-wave/
boundary-layer interaction on a flat plate (from [130]).
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model for the turbulent flow (for details on the models, see [130]). Neither calcu-
lation does a very adequate job in predicting the details of the turbulent shock-
wave/boundary-layer interaction, thus demonstrating that improvements are
needed in the state of the art for this problem.

Comparing the variations of p/p1 and CH in Fig. 7.17, we have already noted
that heat-transfer tends to follow the pressure distribution. This is somewhat to be
expected on the basis of flat-plate results, as follows. From Eq. (6.81) for a
laminar flow

CH /
1ffiffiffiffiffiffi
Re
p /

1ffiffiffiffiffi
re

p (7:46)

From the definition of CH [Eq. (6.63)],

qw ¼ reue(haw � hw)CH (7:47)

Combining Eqs. (7.46) and (7.47), we have

qw /
ffiffiffiffiffi
re

p
(7:48)

From the equation of state, p ¼ rRT, Eq. (7.48) becomes

qw /
ffiffiffiffiffi
pe
p

(7:49)

Equation (7.49) holds for a laminar flow. In contrast, for a turbulent flow

CH /
1

Re1=5
(7:50)

and hence, in combination with Eq. (7.47) and the equation of state, we have

qw / p4=5
e (7:51)

From the results of Eqs. (7.49) and (7.51), it is no surprise that heat transfer and
pressure tend to follow the same qualitative variations for a two-dimensional shock-
wave/boundary-layer interaction. Indeed, Neumann [127] suggests the following
relation between maximum pressure in the interaction pmax, maximum heating
qmax, and the standard flat-plate values pfp and qfp:

qmax

q fp

¼
pmax

p fp

� �n

(7:52)

where n ¼ 0.5 for laminar flow and n ¼ 0.8 for turbulent flow. To support this
result, Neumann gives the correlation of turbulent shock-wave/boundary-layer
interaction data shown as a log-log plot in Fig. 7.19. The data are obtained
from various experiments ranging from Mach 6 to 10. The straight line in
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Fig. 7.19 has a slope of 0.8, and the data are clustered around this line, thus
confirming the variation given by Eq. (7.52).

An example of a three-dimensional shock-wave/boundary-layer interaction is
the flow configuration shown in Fig. 7.20. Here we see a sharp wedge mounted on
a flat plate. The interaction between the oblique shock wave from the leading
edge of the wedge and the flat-plate boundary layer is a complex, three-
dimensional problem. This flow problem has been studied experimentally
Oskam et al. [131] and [132] and numerically by Knight [133]. In particular,
using MacCormack’s time-marching technique (see Sec. 5.3) to solve the com-
plete Navier–Stokes equations and the Baldwin–Lomax turbulence model (see
Sec. 6.8), Knight obtained the results shown in Fig. 7.21. Here, the pressure dis-
tribution is given as a function of z (the distance from the wedge surface) at a
given axial location, x/d1 ¼ 14.1, for a Mach 3 freestream and a wedge angle
a ¼ 9.72 deg. In Fig. 7.21, z is nondimensionalized by d1, the flat-plate
boundary-layer thickness at x ¼ 0 (the location of the wedge leading edge).
The arrow in Fig. 7.21 denotes the theoretical z coordinate of the inviscid
flow shock wave impinging on the flat-plate surface. The solid curve

Fig. 7.19 Correlation of turbulent shock-wave/boundary-layer interaction on a flat

plate, as given by Neumann [127].
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Fig. 7.20 Three-dimensional shock-wave/boundary-layer interaction geometry;

wedge on a flat plate.

Fig. 7.21 Three-dimensional shock-wave/boundary-layer interaction results;

comparison between computations and experiment for pressure distributions (from

Knight [133]).
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represents Knight’s three-dimensional calculations, and the crosses are data from
Oskam et al. [131] and [132]. Even in a three-dimensional flow, the pressure
exhibits the familiar variation through the interaction region: 1) a rapid increase
at the start of the interaction, 2) a plateau in the separated region, and 3) another
rapid increase associated with reattachment and the near corner flow at the junc-
ture of the wedge and the flat plate. The aerodynamic heating is shown in
Fig. 7.22, where CH/CH1

is plotted vs z/d1; CH1
is the flat-plate value at

x ¼ 0. (Recall that x ¼ 0 is the location of the wedge leading edge at a given dis-
tance downstream of the flat-plate leading edge.) As in the preceding figure, z is
located at x/d1 ¼ 14.1. Note the rapid increase in CH through the interaction
zone and the severe drop and subsequent recovery as the corner is approached.
Again, the solid curve represents the calculations of Knight, and the crosses cor-
respond to the data of Oskam et al. It is rather remarkable in both Figs. 7.21 and
7.22 that fairly reasonable agreement is obtained between the calculations and
experiment, considering the complexity of the three-dimensional interaction.

With this, we end our discussion of the shock-wave/boundary-layer inter-
action. Our purpose has been to describe the basic physical nature of the
interaction, without delving into the theoretical complexities of the problem.
The literature should be consulted for more details.

Fig. 7.22 Comparison between computations and experiment for heat-transfer

distributions in a three-dimensional shock-wave/boundary-layer interaction (from

[133]).
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7.6 Summary and Comments

Return for a moment to the road map given in Fig. 1.24. In the present chapter
we have discussed hypersonic viscous interactions of two types: the pressure
interaction that occurs between a rapidly growing hypersonic boundary layer
and the inviscid flow (usually identified simply as viscous interaction) and the
interaction between an incident shock wave and a boundary layer. Both of
these interactions are listed in Fig. 1.24 near the bottom of the branch dealing
with hypersonic viscous flows. Clearly, we are nearing the completion of our
discussion of such flows.

In the present chapter, we have shown that the laminar boundary-layer
thickness grows as the Mach number squared:

d

x
/

M2
effiffiffiffiffiffi

Re
p (7:9)

Hence, at hypersonic speeds the boundary-layer thickness can be large. In
turn, the rapidly growing boundary layer interacts with the outer inviscid flow,
causing an increase in pressure (induced pressure), skin friction, and heat
transfer. If the inviscid flow is strongly affected, these changes feed back to
the boundary layer itself, causing a strong viscous interaction. If the inviscid
flow is only weakly affected, it has only a negligible feedback effect on the
boundary layer, causing a weak viscous interaction. The governing parameter
for the induced pressure increment as a result of both strong and weak viscous
interaction is

x ;
M3

1ffiffiffiffiffiffi
Re
p

ffiffiffiffi
C
p

(7:10)

where

C ¼
rw

re

mw

me

(7:11)

For an insulated flat plate, the strong interaction is

p

p1

¼ 0:514xþ 0:759 (7:39)

and the weak interaction is

p

p1

¼ 1þ 0:31xþ 0:05x2 (7:40)

For a cold wall, where Tw� Taw, the strong interaction is

p

p1

¼ 1þ 0:15x (7:41)
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and the weak interaction is

p

p1

¼ 1þ 0:07x (7:42)

From a comparison of experimental data with theory, the strong and weak inter-
action regions can be identified by

x . 3

for strong interaction

x , 3

for weak interaction.
The proper correlation parameter for viscous interaction effects on Cp is

V ;
M1ffiffiffiffiffiffi

Re
p

ffiffiffiffi
C
p

(7:44)

V governs skin-friction coefficient. More recent work derived from work on
the space shuttle has identified a modified viscous interaction parameter that
correlates the axial-force coefficient:

V
0 ;

M1ffiffiffiffiffiffi
Re
p

ffiffiffiffi
C
p 0

where

C0 ;
r0m0

r1m1

and where r0 and m0 are evaluated at a reference temperature given by

T 0

T1

¼ 0:468þ 0:532
Tw

T1

þ 0:195
g� 1

2

� �
M2

1

A second type of viscous interaction particularly important at hypersonic
speeds is the shock-wave/boundary-layer interaction. Such an interaction is
characterized by an incident shock, an induced separation shock, a reattachment
shock, an embedded expansion wave, and a separated flow region. Shock-wave/
boundary-layer interactions cause local peaks in aerodynamic heating that can
have serious consequences on hypersonic vehicles.
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Design Example 7.1: Hypersonic Waveriders—Part 3

In this chapter we have seen that the classic viscous interaction effect increases
the pressure and skin-friction drag on a hypersonic body. What effect does this have
on the design of the viscous optimized hypersonic waveriders discussed in the
Design Example at the end of Chapter 6? This question was addressed by Chang
in [254], with some results summarized in [255]. The local flat-plate viscous inter-
action analyses discussed in this chapter were applied locally along each streamline
over the surface of the waverider. This is justified because the streamlines have very
little transverse curvature; they are reasonably straight. Also, for the noninteraction
case the pressure gradients along the surface streamlines are small, and therefore it
is reasonable to apply the flat-plate viscous interaction analyses in this chapter
locally at each point along a streamline. Using these viscous interaction analyses
to obtain pressure and skin friction over the surface, the optimization approach
described in the Design Example at the end of Chapter 6 was utilized to find the
best viscous optimized waverider including the effect of viscous interaction.

These results showed that the shape of the viscous optimized waverider is
greatly affected by viscous interaction. Figure 7.23 shows a viscous optimized
hypersonic waverider for M1 ¼ 16 at an altitude of 140,000 ft not including
viscous interaction. In contrast, Fig. 7.24 shows a viscous optimized hypersonic
waverider for the same flight conditions but including viscous interaction. Both
waveriders are constrained to be 60 m long. The waverider optimized for
viscous interaction (Fig. 7.24) is more slender with a smaller volume than the
case not including viscous interaction (Fig. 7.23). The local values of x on the
upper surface centerline ranged from 8 near the leading edge to 0.2 at the trailing
edge, spanning both the strong and weak interaction regions. The resulting values
of maximum L/D are compared here.

Optimized without viscous interaction (Fig. 7.23):

(L=D)max ¼ 10:9

Optimized with viscous interaction (Fig. 7.24):

(L=D)max ¼ 9:9

Fig. 7.23 Waverider shape without viscous interaction at Mach 16 (Anderson

et al. [255]).
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Clearly, the effects of viscous interaction causes a loss in (L/D)max; this loss is
mainly because of an increase in drag.

Figures 7.25 and 7.26 show the corresponding results for M1 ¼ 25 at an alti-
tude of 230,000 ft. The shape of the viscous optimized waverider not including
viscous interaction is shown in Fig. 7.25, and the shape including viscous inter-
action effects is shown in Fig. 7.26. The local values ofx on the upper-surface
centerline ranged from 110 near the leading edge to about 9 at the trailing
edge—clearly well into the strong interaction region. The resulting values of
maximum L/D are compared here.

Optimized without viscous interaction (Fig. 7.25):

(L=D)max ¼ 5:26

Fig. 7.24 Optimized waverider shape with viscous interaction at Mach 16 [255].

Fig. 7.25 Waverider shape without viscous interaction at Mach 25 [255].
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Optimized with viscous interaction (Fig. 7.26):

(L=D)max ¼ 4:13

Clearly, the shape of viscous optimized waveriders and the resulting value of
(L/D)max are affected by viscous interactions. For the cases reported here, at
Mach 16 and 140,000 ft viscous interaction reduces (L/D)max by 9%, and at
Mach 25 and 235,000 ft viscous interaction reduces (L/D)max by 21%. Consider-
ably more details on the analysis and many more results can be found in [254] and
[255]. The large number of results reported in [254] have been used to lay out a
region in the velocity-altitude map where viscous interaction is important for
hypersonic waveriders. This is the shaded region in Fig. 7.27, defined as that
region where viscous interaction effects cause more than a 5% decrease in
(L/D)max for waveriders of length equal to 60 m. The shaded region in
Fig. 7.27 was mapped by running hundreds of different waverider optimizations
for different Mach and Reynolds numbers. For waveriders larger than 60 m
length, the boundary will move upward and to the right because viscous inter-
action effects are strongest near the leading edge and for longer waveriders the
integrated effect of viscous interactions becomes proportionally smaller. In con-
trast, for a waverider smaller than 60 m length, the boundary will move down and
to the left in Fig. 7.27. These results give some useful guidance for the design of
waveriders insofar as the need to include viscous interaction effects is concerned.

We note that, to this author’s knowledge, the results given in [254] and [255],
summarized in this Design Example, are the first published data on the effects of
viscous interaction on any type of waverider configurations.

Hypersonic waveriders have been chosen as the subject for three Design
Examples in this book, not because this author is necessarily championing them
as configurations for future hypersonic vehicles, but rather as design examples of
the applications of some of the fundamental hypersonic aerodynamics discussed

Fig. 7.26 Optimized waverider shape with viscous interaction at Mach 25 [255].
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in the main parts of the chapters. We have one more waverider Design Example
to go, namely, the effect of chemically reacting flow on waverider design; this
appears at the end of Chapter 14. High-altitude, low-density effects on viscous
optimized waverider design are discussed in [256], but we will not highlight
them here because low-density effects are not a fundamental subject covered
in this book.

Hypersonic waveriders, however, do have promise as future hypersonic
vehicles, for all of the reasons given in this and the previous hypersonic wave-
rider design examples. There are many practical design problems to be overcome
for this to happen. For example, propulsion must be integrated with the waverider
aerodynamics. This matter has been studied at the University of Maryland by
O’Neill and Lewis in [257]. There is the question of off-design performance of

Fig. 7.27 Velocity-altitude map showing that region where viscous interaction

effects cause more than a 5% decrease in maximum lift-to-drag ratio. Length of

the waverider is 60 m [255].
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waveriders. The viscous optimized waveriders discussed in this book are point
designed for a particular Mach number and altitude. What happens when these
waveriders fly at different Mach numbers and altitudes? This subject has been
studied, also at the University of Maryland, by Takashima and Lewis in [258],
and as part of a broader propulsion-oriented investigation by O’Brien and
Lewis in [259]. Because the present book is not a design text, and this work
delves more deeply into design details, we will not discuss it further here. Refer-
ences [257–259] among others are readily available in the archive literature.

Problems

7.1 Consider a flat pate of length equal to 10 m. Assume this flat plate is flying
the trajectory labeled as “high lift” (m/CL S ¼ 50 kg/m2) shown in Fig. 6.3.
The wall temperature of the plate is held constant at 1000 K.

(a) Plot the variation of x at 0.5 m from the leading edge as a function of
M1 as the flat plate files this trajectory.

(b) Repeat part a, except calculatex at the trailing edge of the plate. For
simplicity, in the preceding assume that the angle of attack of the
plate is essentially zero (although this violates the finite lift used in
obtaining the trajectory in Fig. 6.3). The purpose of this problem is
to obtain a “feel” for the values of x encountered by hypersonic
vehicles during atmosphere flight.

7.2 Consider a flat plate with a 5-m length at zero angle of attack. The wall
temperature is 1200 K. The freestream condition are M1 ¼ 25 at a standard
altitude of 280,000 ft. Calculate and plot the variation of pressure as a func-
tion of distance downstream of the leading edge. Compare this with the
exact inviscid pressure. Comment on the impact of viscous interaction
for this case.
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8
Computational-Fluid-Dynamic Solutions

of Hypersonic Viscous Flows

But as no two (theoreticians) agree on this (skin friction) or
any other subject, some not agreeing today with what they
wrote a year ago, I think we might put down all their
results, add them together, and then divide by the number
of mathematicians, and thus find the average coefficient
of error.

Hiram Maxim, early aeronautical designer, 1908

The advent of the electronic computer completely altered
the nature of the facilities available for numerical calcu-
lations. An electronic computer can perform all the func-
tions of a desk calculator but at much higher speeds and,
in addition, it can largely replace the operator as well!

K. N. Dodd, British mathematician, 1964

Chapter Preview

Enough already! It is time for us to treat a hypersonic aerodynamic flowfield in

its full glory the way nature does—as a fully viscous flow at every point

throughout the flowfield. In the previous chapters, as human beings we have

intellectually idealized certain types of flow. We dealt with inviscid flows;

they do not exist in real life, but many flowfields and practical engineering

problems are closely approximated by the assumption of inviscid flow, and,

as we have seen, a lot of good practical results for pressure distributions, lift,

and wave drag can be obtained with this assumption. We also dealt with

limited viscous effects—limited to the boundary layer adjacent to a surface.

Again, a lot of good practical results for skin friction and heat transfer can be

obtained from a boundary-layer analysis. In the modern hypersonic aerody-

namics of today, these analyses still play a pivotal role, and they provide

usually straightforward, rapid, and inexpensive methods for solving many

engineering problems.
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Flows involving flow separation, however, are a different story. None of

the methods discussed in this book so far can handle separated flows. Local

flow separation is frequently a consequence of shock-wave/boundary-layer

interaction, as discussed in Sec. 7.5. The flow over the base of a hypersonic

vehicle is separated flow; it is a major player in determining the base pressure,

hence the base drag. A numerical solution of the full Navier–Stokes equations

for viscous flow is usually required for the calculation of these types of flows.

The flows over hypersonic vehicles flying at very high Mach numbers at

very high altitudes are also a different story. For these high Mach numbers

and comparatively low Reynolds numbers, the boundary layers become so

thick that the conventional boundary-layer equations and boundary-layer

methods discussed in Chapter 6 are not valid. Indeed, the boundary layer

can become so thick that it completely fills the thin shock layer between

the shock wave and the body surface. When this happens, what we have is

no longer a boundary layer in the classical sense but rather a fully viscous

shock layer. Some type of numerical solution assuming that the complete

shock layer is viscous is therefore required.

Numerical solutions of hypersonic fully viscous flows are the subject of

this chapter. You might consider this to be the “crème de la crème” of hyper-

sonic flowfield analysis, especially the full Navier–Stokes solutions discussed

at the end of the chapter. In historical perspective, this chapter could not

have been written 30 years ago. It is possible today only because of the

rapid development of sophisticated numerical algorithms for the solution of

the Navier–Stokes equations and the phenomenal increase in computer

power that allows such algorithms to function. But nevertheless, here we

are. This chapter is a suitable finish to our studies of nonreacting hypersonic

flow in Parts 1 and 2 of this book. With this chapter, we go out in style. Enjoy.

8.1 Introduction

In the chapter’s opening quotation, Hiram Maxim, inventor of the machine
gun and the designer and builder of a large flying machine in the 1890s, is
venting his frustration at the lack of applicability of mathematical theory to the
practical problems of flight. In contrast, in the second quote we have, just 56
years later, K. N. Dodd remarking about the revolution precipitated by the high-
speed digital computer. In the 56 years between these quotations, mathematical
theory was indeed successfully applied to the practical problem of flight (see
the historical notes in [1], [4], and [5]), and in the 43 years that have ensued
from Dodd’s quotation, we have indeed seen a most remarkable revolution in
computing. These quotations are relevant to the present chapter because here
we discuss the most “exact” analyses of hypersonic flows available, and these
exact analyses are made possible only by the use of a high-speed computer.
This chapter could not have been written 40 years ago; moreover, if he were
alive today, Hiram Maxim would have to change his image of the theoretician.
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To be more specific, this chapter deals with the application of computational
fluid dynamics to hypersonic viscous flows. However, as in Chapter 5, our intent
is not to elaborate on the details of CFD; the book by Anderson [52] serves this
purpose. Instead, our objective here will be to present various approaches to the
solution of hypersonic viscous flows that go beyond, and are more exact than, the
boundary-layer analyses discussed in Chapter 6.

Thinking along another line, the weak and strong viscous interaction theories
discussed in Chapter 7 are a product of the 1950s and 1960s, before the advent of
computational fluid dynamics. They serve a useful purpose in providing con-
venient correlations and prediction expressions, albeit based on an approximate
theory. The approximations involved separate calculations of the boundary
layer and outer inviscid flow and then a coupling of these separate calculations
to take into account the viscous interaction. Today, the viscous interaction
effect can be calculated exactly, simply by treating the entire flowfield between
the body and shock as fully viscous—no arbitrary division between a boundary
layer and an inviscid flow needs to be made. Indeed, this is the natural and
physically proper approach. The fully viscous-flow calculations are made with
standard CFD techniques, to be discussed in the present chapter.

There is another reason to favor a fully viscous shock-layer analyses over the
conventional boundary-layer approach. Recall from Sec. 6.4 that the derivation
of the hypersonic boundary-layer equations by means of an order-of-magnitude
reduction of the Navier–Stokes equations did not preclude a finite normal
pressure gradient through the boundary layer, that is, it is compatible with
boundary-layer hypothesis that @p=@y = 0 at hypersonic speeds. However, the
classical first-order boundary-layer theory as discussed in Chapter 6 has no
mechanism for computing @p=@y. Hence, for an analysis of a hypersonic
viscous flow, it is inherently more appropriate to assume the flow is viscous
throughout the entire flowfield and to compute this fully viscous flow by
means of a system of equations more accurate than the boundary-layer equations.
This is the purpose of the present chapter.

In the modern hypersonics of today, there are three approaches to the solution
of a fully viscous flow, which have found widespread use. They are 1) viscous
shock-layer solutions, 2) parabolized Navier–Stokes solutions, and 3) full
Navier–Stokes solutions. Each of three approaches just listed utilizes systems
of equations that are more accurate than the boundary-layer equations; going
from items 1 to 3, the system of equations is progressively more accurate, finally
ending with the complete Navier–Stokes equations with no basic simplifications
whatsoever. Moreover, these CFD techniques go far beyond just the calculation of
viscous interactions—they allow the detailed calculations of the complete flow-
field over a body where the flow is assumed to be viscous at every point. Hence
they provide everything about the flow, such as the shock shape, detailed flow vari-
ables between the shock and the body, skin friction, heat transfer, lift, drag,
moments, etc. In the following sections, we will examine individually the
approach taken by each of these methods, with the presentation of appropriate
results. The intellectual path we take in this chapter is a very linear, very straight-
forward road, and therefore we have no need for a local chapter road map. Also,
referring to our general road map in Fig. 1.24, we note that with this chapter we
have come to the end of the line under viscous flows.
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Finally, all of the techniques discussed here are derived in some form or
another from the complete Navier–Stokes equations given by Eqs. (6.1–6.6).
It is important to examine these equations again, and to review Sec. 6.2, before
progressing further.

8.2 Viscous Shock-Layer Technique

Although all of the techniques discussed in this chapter deal with fully viscous
flows, one technique has acquired the official label as the viscous shock-layer
method. We will follow this terminology here. Specifically, in 1970, the late
Tom Davis introduced a solution of a set of equations that approximate the
Navier–Stokes equations and used them to solve for the fully viscous shock
layer over a blunt body at hypersonic speeds (see [134]). His technique
has subsequently become commonly known as the viscous shock-layer (VSL)
technique. Davis’ viscous shock-layer equations are obtained by writing the
full Navier–Stokes equations (see Sec. 6.2) in boundary-layer coordinates
(parallel and perpendicular respectively to the surface) and performing an
order-of-magnitude analysis on the terms in the equations. Terms are kept up
to second order in 1=

ffiffiffiffiffiffi
Re
p

. This leads to a system of equations, which is more
powerful than the boundary-layer equations in that they hold across the entire
shock layer, but which is far simpler than the full Navier–Stokes equations.
Moreover, Davis’ VSL equations are parabolic and therefore allow a
downstream-marching finite difference solution, starting from some specified
initial data plane. Of particular distinction is that the VSL equations take into
account a pressure gradient in the normal direction to the surface, @p/@n = 0,
in contrast to the familiar boundary-layer assumption. We have already seen
from Sec. 6.4 that, for hypersonic flow, accounting for such a nonzero pressure
gradient is quite appropriate.

The derivation and discussion of the basic equations ultimately used in the
VSL technique can be found in [135]. The details are beyond the scope of the
present book. However, the important ideas are as follows. The Navier–Stokes
equations are first written in boundary-layer coordinates s and n parallel and
perpendicular to the surface respectively, as shown in Fig. 8.1. The resulting
equations are then nondimensionalized in two different ways: 1) one set of
equations is obtained by forming nondimensional variables that are of order
one near the body surface; and 2) a second set of equations is obtained by
nondimensionalizing in terms of variables of order one in the nearly inviscid
region far away from the surface. Terms in each of the two sets of equations
that are third order or higher in terms of the inverse square root of the Reynolds
number are dropped. Finally, after a comparison of the two sets of equations,
one set is found from them that is valid to second order in both the inner and
outer regions. These equations, as they appear in [134], are displayed next
(see also [224]).

Continuity equation:

@

@s�
½(r� þ m� cosf)mr�u�� þ

@

@n�
½(1þ k�n�)(r� þ n� cosf)mr�v�� ¼ 0 (8:1)
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s-Momentum equation:

r� u�
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@u�
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� �
þ v�

@u�

@n�
þ

k�
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� �
u�v�

� �
þ

1

(1þ k�n�)

@p�

@s�

¼
12

(1þ k�n�)2(r� þ n� cosf)m

� �
@

@n�
½(1þ k�n�)2(r� þ n� cosf)mt�

(8:2)

where

t ¼ m�
@u�

@n�
�

k�u�

1þ k�n�

� �

n-Momentum equation:

r� u�
1

(1þ k�n�)

@v�

@s�

� �
þ v�

@v�

@n�
�

k�

(1þ k�n�)

� �
u�2

� �
þ
@p�

@n�
¼ 0 (8:3)

Fig. 8.1 Coordinate system for VSL equations.
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Energy equation:

r� u�
1
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� �
þ

12

m�
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t2 (8:4)

In Eqs. (8.1–8.4), the nondimensional variables are defined as

s� ¼
s

R
n� ¼

n

R
r� ¼

r

R

k�¼
k

R
u� ¼

u

V1

v� ¼
v

V1

T�¼
T

Tref

p� ¼
p

r1V2
1

r�¼
r

r1

m�¼
m

mref

where, from Fig. 8.1, R is the nose radius, k is the longitudinal body curvature,
V1 and r1 are the freestream velocity and density, respectively, and Tref and
mref are reference values; Tref ¼ V2

1, cp1
. Also, in Eqs. (8.2) and (8.4), 1 is

defined as

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mref

r1V1R

r

Do not be intimidated by the form of the preceding equations; their seeming
complexity is really caused by the curvilinear, boundary-oriented coordinate
system. To recast them in the more familiar two-dimensional Cartesian
coordinate system, set m ¼ 0, k� ¼ 0, x� ¼ s�, and y� ¼ n�, and express the
variables in dimensional form, obtaining the following.

Continuity equation:

@(ru)

@x
þ
@(rv)

@y
¼ 0 (8:5)

x-Momentum equation:

ru
@u

@x
þ rv

@u

@y
¼ �

@p

@x
þ
@

@y
m
@u

@y

� �
(8:6)
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y-Momentum equation:

ru
@v

@x
þ rv

@v

@y
¼ �

@p

@y
(8:7)

Energy equation:

ru
@h

@x
þ rv

@h

@y
¼
@

@y
k
@T

@y

� �
þ u

@p

@x
þ v

@p

@y
þ m

@u

@y

� �2

(8:8)

where h ¼ cpT. Examine Eqs. (8.5–8.8) closely, and compare them with the
boundary-layer equations given by Eqs. (6.27–6.30). We find that the viscous
shock-layer equations given by Eqs. (8.5–8.8) are essentially the boundary-layer
equations with two notable exceptions, as follows:

1) Equation (8.7) is a y-momentum equation that allows a finite value of
@p/@y, unlike Eq. (6.29) for the classical boundary-layer case.

2) Equation (8.8) contains a normal pressure gradient term v(@p/@y), which
does not appear in the corresponding boundary-layer energy equation (6.30).

Therefore, in our hierarchy of solutions for a fully viscous flow, we can visu-
alize the VSL equations as “one notch up” from the boundary-layer equations.
However, in being so, the VSL equations have the distinct advantage of allowing
a normal pressure gradient in the flow and hence can be integrated across the
entire viscous flowfield. At the same time, the VSL equations retain the same
convenience as the boundary-layer equations, namely, they can be solved by
means of a downstream-marching finite difference procedure. An implicit
method is employed, similar to that discussed in Sec. 6.6 for nonsimilar boundary
layers. Because the flow conditions behind the shock wave are the outer boundary
conditions on the viscous flowfield, and the shock shape is not known in advance,
a global iteration is needed (using mass continuity) to obtain the shock shape
and location. The shock wave is treated as a discontinuity, with either the exact
oblique shock relations holding across the wave (see Chapter 2), or for very low-
density cases a shock “slip” condition is used. The solution starts at the stagnation
streamline, where the VSL equations become ordinary differential equations, and
then marches downstream, solving the viscous flow across the shock layer at each
streamwise station. See [134] for details on the numerical solution.

Some results obtained with the VSL equations are given by Davis in [134].
An analytical blunt-body shape was treated, namely a 45-deg hyperboloid. The
flow conditions were M1 ¼ 10, 1 ¼ 0.1806, g ¼ 1.4, Pr ¼ 0.7, and Tw/
T0 ¼ 0.2. Some results obtained from [134] are shown in Figs. 8.2–8.6. For
example, in Fig. 8.2 we see the calculated variation of cf vs distance along the
surface, starting at the stagnation point. Here, unlike the usual convention
where cf is based on re and ue at the edge of the boundary layer, the skin-friction
coefficient in Fig. 8.2 is defined as t=1

2
r1V1. This is because the shock layer is

being treated as fully viscous, and a distinct boundary layer is therefore not an
easily distinguished item. Note that the shear stress is zero at the stagnation
point, increases rapidly over the blunt nose, reaches a maximum value about
one nose radius downstream, and then progressively decreases further
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downstream. Tangential velocity profiles are shown in Fig. 8.3. Here, ush and nsh

are the velocity and shock-layer coordinate immediately behind the bow shock
wave; both ush and nsh are functions of location along the shock, that is, are
functions of s. In Fig. 8.3, u/ush is plotted vs n/nsh in the same manner as we

Fig. 8.2 Skin friction on a 45-deg hyperboloid: VSL calculations of Davis [134].

Fig. 8.3 Tangential velocity profiles on a 45-deg hyperboloid at various streamwise

stations. Same conditions as Fig. 8.2 (from [134]).
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plotted boundary-layer profile in Chapter 6. Profiles are shown for different
streamwise locations denoted by s. The stagnation streamline profile is given
by s ¼ 0. Note that, for the conditions shown, there are substantial velocity gra-
dients all of the way across the shock layer. This is just the type of flow for which a

Fig. 8.4 Temperature profiles on a 45-deg hyperboloid at various streamwise

stations. Same conditions as Fig. 8.2 (from [134]).

Fig. 8.5 Heat-transfer distribution over a 45-deg hyperboloid. Same conditions as

Fig. 8.2 (from [134]).
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VSL solution is suited; a boundary-layer calculation would not be appropriate. In
the same region, Fig. 8.4 shows temperature profiles across the shock layer, and the
same comments can be made here. The heat-transfer distribution is given in
Fig. 8.5; note that CH monotonically decreases as a function of distance down-
stream of the stagnation point. The corresponding pressure distribution is shown
in Fig. 8.6, which also shows the expected monotonic decrease with s. In
Fig. 8.6, results are also shown for an inviscid flow calculation using a blunt-body
solution in the nose region and continuing downstream with the method of charac-
teristics. Note that the pressure distribution from the viscous shock-layer
calculation is consistently higher than the inviscid pressure distribution. This is
a clear demonstration of a mild viscous interaction effect occurring on the blunt
body.

The VSL method has found wide application to chemically reacting viscous
flows, as will be discussed in Part 3.

8.3 Parabolized Navier–Stokes Solutions

In this section we discuss a system of equations that contain more terms than
the VSL equations and hence are theoretically more accurate, but which still are
simpler than the full Navier–Stokes equations. This system is called the
parabolized Navier–Stokes (PNS) equations. They are obtained from the full
Navier–Stokes equations by dropping the viscous terms that involve derivatives
in the streamwise direction. For example, the exact x component of the steady
flow momentum equation is obtained from Eqs. (6.2) and (6.6) as
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@u

@x
þ rv

@u

@y
þ rw

@u

@z
¼ �

@p

@x
þ
@

@x
l� � Vþ 2m

@u

@x

� �

þ
@

@y
m
@v

@x
þ
@u

@y

� �� �
þ
@

@z
m
@u

@z
þ
@w
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(8:9)

Fig. 8.6 Pressure distribution on a 45-deg hyperboloid. Same conditions as Fig. 8.2

(from [134]).
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The parabolized form of this equation is obtained by neglecting the viscous terms
that involve the x derivatives, obtaining directly
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Of particular importance is the steady flow y-momentum equation, given in its
exact form by Eqs. (6.3) and (6.6) as

ru
@v

@x
þ rv

@v

@y
þ rw

@v

@z
¼ �

@p

@y
þ
@

@x
m
@v

@x
þ
@u

@y

� �� �

þ
@

@y
l� � Vþ 2m

@v

@y

� �
þ
@

@z
m
@w

@y
þ
@v

@z

� �� �
(8:11)

The parabolized form of this equation is also obtained by neglecting the viscous
terms that involve the x derivatives, obtaining directly

ru
@v

@x
þ rv

@v

@y
þ rw

@v

@z
¼ �

@p

@y
þ
@

@y
(lþ 2m)

@v

@y
þ l

@w

@z

� �

þ
@

@z
m
@w

@y
þ
@v

@z

� �� �
(8:12)

Clearly, Eq. (8.12) takes into account a normal pressure gradient across the shock
layer. Moreover, Eq. (8.12) is superior to the corresponding y-momentum
equation contained in the VSL system. This can be seen by comparing the
two-dimensional counterpart of Eq. (8.21), namely,

ru
@v

@x
þ rv

@v

@y
¼ �

@p

@y
þ
@

@y
(lþ 2m)

@v

@y

� �
(8:13)

with Eq. (8.7). Clearly, the PNS form given by Eq. (8.13) has a viscous term that
is missing from the VSL form given by Eq. (8.7).

In summary, the parabolized Navier–Stokes equations are obtained from
the full steady-flow Navier–Stokes equations [given by Eqs. (6.1–6.6) with all
time derivatives set to zero] simply by neglecting all viscous terms that
involve derivatives in the streamwise direction (in the x direction). For conven-
ience, the resulting system of PNS equations is itemized here.

Continuity equation:
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x-Momentum equation:

ru
@u

@x
þ rv

@u

@y
þ rw

@u

@z
¼ �

@p

@x
þ
@

@y
m
@u

@y

� �
þ
@

@z
m
@u

@z

� �
(8:15)

y-Momentum equation:
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z-Momentum equation:
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Energy equation:
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Equations (8.14–8.18) constitute the parabolized Navier–Stokes equations;
with two exceptions they are a mixed system of parabolic-hyperbolic partial
differential equations and hence can be solved by a downstream-marching pro-
cedure starting from an initial data line across the flowfield. The two exceptions
are as follows:

1) The pressure gradient terms @p/@x allow the propagation of information
upstream through the subsonic portion of the viscous flow near the body
surface. Hence, the downstream-marching procedure is not well posed in this
region. To preserve the parabolic nature of the PNS equations, the assumption
is usually made that, in the subsonic region, the pressure is constant in the direc-
tion normal to the surface, equal to its value at the first grid point at which super-
sonic flow exists.
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2) The volumetric heating term in Eq. (8.18), namely, r_q can destroy the para-
bolic behavior of the system. For example, in a three-dimensional radiating flow,
if _q includes radiative energy absorbed at a point from all directions in the flow,
the problem becomes elliptic in nature, and downstream marching is not valid.
For flows where such volumetric heating does not occur, such a problem does
not exist.

Numerical solutions of the PNS equations are usually carried out using an
implicit finite difference method similar to that discussed in Sec. 6.6. Details
concerning the numerical solution are nicely described in [224], hence, no
further elaboration will be made here.

An excellent illustration of solutions obtained with the PNS equations is
found in the work of McWherter et al. [136]. These results also have the advan-
tage of illustrating a modern calculation of flowfields where viscous interaction
effects are important. In [136], the flows over slender blunt-nosed cones at
small angles of attack are calculated by two methods: 1) a classical inviscid
flow/boundary-layer method, where the inviscid flow in the nose region is
computed by means of the time-marching technique described in Sec. 5.3,
the downstream inviscid flow is computed by means of the downstream-march-
ing procedure described in Sec. 5.5, and the boundary-layer solution is an
integral method following the inviscid, three-dimensional streamlines; and 2)
a solution of the PNS equations as described earlier in this section. In the fol-
lowing figures, approach 1 will be labeled as 3DV, and approach 2 will be
labeled PNS. Keep in mind that the 3DV method is a classical inviscid
flow/boundary-layer approach that does not adequately account for strong
viscous interactions; it does, however, contain an estimate of the induced
pressure based on the displacement thickness variation. In contrast, the PNS
method is a fully viscous shock-layer approach wherein strong viscous inter-
actions are automatically accounted for, that is, they essentially “come out in
the wash” during the course of such solutions. Emphasis is again made that,
in the modern world of hypersonics, the proper conceptual treatment of
viscous interactions is to assume the shock layer is fully viscous, such as in
the PNS case.

Results for a relatively low-Mach-number hypersonic flow (M1 ¼ 5.95) with
high Reynolds number (Re ¼ 15.23 � 106) are shown in Fig. 8.7 for the flow
over a blunt-nose 6-deg half-angle cone at an angle of attack a ¼ 4 deg.
For this flow, the parameter M3

1=
ffiffiffiffiffiffi
Re
p

¼ 0:054; hence, viscous interaction
effects should be negligible. In Fig. 8.7, the pressure distribution p/p1 is
plotted vs the nondimensional distance downstream from the nose x/Dn, where
Dn is the nose diameter. Four curves are shown, each corresponding to a circum-
ferential angle f around the cone measured from the windward ray, that is, f ¼ 0
corresponds to the windward ray and f ¼ 180 deg corresponds to the leeward
ray. The 3DV calculations are given by the solid curves and the PNS calculations
by the dotted curves. The solid symbols are experimental data obtained
from [137]. Note the following information from Fig. 8.7:

1) On the windward side, the pressure rapidly expands over the blunt nose,
overexpanding below the cone value, and then gradually recompressing further
downstream. This overexpansion phenomenon is analogous to that shown in
Fig. 5.16. Because of the very low value of M3

1=
ffiffiffiffiffiffi
Re
p

for these data, the actual
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pressure distribution over the blunted cone is mainly governed by inviscid-flow
effects.

2) The 3DV and PNS calculations agree very closely with each other, another
ramification of the negligible viscous interaction effects for the
low-Mach-number and high-Reynolds-number conditions for Fig. 8.7.

3) The calculations agree well with experiment.
In contrast, results for a higher Mach number (M1 ¼ 9:82) and lower

Reynolds number (Re ¼ 0.459 � 106) are shown in Fig. 8.8. Here, a blunted

Fig. 8.7 Pressure distributions over a slightly blunted cone; comparison between

experiment and computations (from McWherter et al. [136]).
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4-deg cone at an angle of attack of 2.97 deg is treated. For these conditions,
M3

1=
ffiffiffiffiffiffi
Re
p
¼ 1:4, a high value which indicates that viscous interactions should

be important. The experimental data shown in Fig. 8.8 are from [138]. Note
the following information from Fig. 8.8:

1) The PNS calculations predict higher pressures than the 3DV calculations.
This is because of the strong viscous interaction effect, which is automatically
taken into account by the PNS method. The sizable difference between the
PNS and 3DV curves is indeed the viscous interaction phenomena.

Fig. 8.8 Pressure distributions (as affected by viscous interaction) over a slightly

blunted cone; comparison between experiment and computations (from [136]).
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2) The PNS results agree favorably with the experimental data, especially on
the leeward side (f ¼ 180 deg), where the local Mach number is higher, the local
Reynolds number is lower, and hence the viscous interaction effect is stronger.

Results for an almost identical case are shown in Fig. 8.9. Here, the axial-force
coefficient CA is plotted vs angle of attack. The experimental data are from [139].
Note that the PNS method predicts a much higher CA than the 3DV method, again
a graphic illustration of the viscous-interaction effect. Also note that the PNS
results agree very well with experiment, thus demonstrating the superiority of
a fully viscous shock-layer calculation in comparison to the classical inviscid
flow/boundary-layer method for conditions where strong viscous interactions
are important.

In summary, Figs. 8.7–8.9 illustrate an application of the PNS method to a
basic hypersonic flow problem, as discussed in [136]. The reader is encouraged
to study [136] closely for more details. Moreover, these figures demonstrate the
value of a fully viscous shock-layer calculation for conditions where viscous

Fig. 8.9 Viscous interaction effects on axial-force coefficient on slightly blunted

cones; comparison between experiment and computations (from [136]).
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interactions are strong; the PNS method is a good example of a such a viscous
shock-layer analysis. However, following the old adage that you “cannot get
something for nothing.” McWherter et al. in [136] point out the following,
taken directly from their paper:

The PNS solution generally requires a large amount of user interaction and
the adjustment of various input parameters in order to obtain an accurate sol-
ution. The inviscid boundary-layer solution is straightforward to obtain and
is, thus, very well suited for a design environment where rapid job turnaround
and low user interaction requirements are significant considerations.

In other words, even though the PNS solutions are more accurate, it takes a lot
more effort to obtain such solutions.

For a moment, let us consider the matter of flow separation. The classical
boundary-layer equations discussed in Chapter 6 do not allow the calculation

Fig. 8.10 Bent and straight biconic configurations for the calculations of Gnoffo

[140].
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of separated flows; such solutions “blow up” on the computer when zones of sep-
arated flow are encountered. Similarly, the VSL equations discussed in Sec. 8.2
do not allow the calculation of separated flow. The basic reason in both cases is
that separated flow involves upstream of feeding of information in the flowfield,
and downstream-marching methods, such as boundary layer and VSL calcu-
lations, do not allow or tolerate such upstream feeding. The same can almost
be said for the PNS method, with one notable exception. Because of the nature
of the z-momentum equation (8.17), the PNS method can predict flow separation
in the crossflow plane; it cannot, however, handle separation in the streamwise
direction. There are many problems where crossflow separation is the dominant
mechanism, such as an axisymmetric body at angle of attack, and for these the
PNS method does a reasonable job of handling the separated flow. For
example, Fig. 8.10 shows a blunt-nose bent biconic body studied by Gnoffo in
[140]. Solving the hypersonic flowfield over the body at x ¼ 20 deg and
M1 ¼ 6 by means of a PNS solution, Gnoffo obtained the crossflow separation
results shown in Fig. 8.11. Here, only a portion of the crossflow plane
at x/Rn ¼ 7 is shown; this portion is on the leeward side, near the top of

Fig. 8.11 Crossflow separation as predicted by the PNS calculations of Gnoffo [140].
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the vehicle. We see the outer crossflow velocity vectors coming around the body
from right to left and crossflow separation with reversed flow taking place near
the surface of the body. This velocity field is the computed result from
Gnoffo’s PNS analysis. The separation lines agree well with experiment, as
seen in Fig. 8.12. Here, we are looking at the top view of the bent biconic.
The crosses represent the separation lines computed from the PNS method, and
the dashed lines are experimental results obtained from surface oil flow visualiza-
tion. Figure 8.12 also shows the computed and measured lines of local minimum
pressure on the leeward surface. In all cases, agreement between experiment and
the PNS calculations is very good. Hence, in Figs. 8.11 and 8.12 we see an
important advantage of the PNS method over both the boundary layer and the
VSL methods, namely, the ability to predict crossflow separation. However,
we are reminded that none of these downstream-marching methods are capable
of solving a separated flow in the streamwise direction.

Fig. 8.12 Separation points and pressure minima for the bent biconic shown

in Fig. 8.10; a 5 20 deg, M¥ 5 6, Re¥,L 5 8.2 3 106; comparison between

experiment and the PNS calculations (from [140]).
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8.4 Full Navier–Stokes Solutions

The ultimate in hypersonic viscous-flow calculations is the solution of com-
plete Navier–Stokes equations, that is, the solution of Eqs. (6.1–6.6) with no
reduction or simplification of any terms. Such full Navier–Stokes solutions
were simply dreams in the minds of aerodynamicists as late as 1970. However,
the modern techniques of computational fluid dynamics in combination with
new supercomputers now allow the numerical solution of the Navier–Stokes
equations; all that is needed for most practical problems is plenty of computer
storage and running time. Such matters are the subject of this section.

Examine Eqs. (6.1–6.6) closely; they are a system of partial differential
equations with a somewhat mixed hyperbolic, parabolic, and elliptic behavior.
The elliptic behavior comes about as a result of the viscous terms in the x direc-
tion, which allow the upstream propagation of information via thermal conduc-
tion and viscosity. These are precisely the terms that are neglected in the PNS
equations. Because of this elliptic nature, the full Navier–Stokes equations
cannot be solved by a downstream-marching philosophy. However, recall that
the problem with the inviscid blunt-body case as discussed in Sec. 5.3 was the
mixed hyperbolic and elliptic behavior of the flowfield, and this problem was
eventually solved by using the time-marching technique, also described in
Sec. 5.3. The same holds true for numerical solutions of the full Navier–
Stokes equations; such solutions must be time-marching solutions in order to
take into account the elliptic behavior.

The time-marching solution of the Navier–Stokes equations is inherently
straightforward and is patterned after the philosophy given in Sec. 5.3. Let us
write Eqs. (6.1–6.5) such that the time derivatives are on the left side and all
spatial derivatives are on the right side of the equations, as follows.

Continuity equation:
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y-Momentum equation:
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z-Momentum equation:
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Energy equation:
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The time-marching solution of these equations is conceptually carried out as
follows:

1) Cover the flowfield with grid points, and assume arbitrary values of all of
the dependent variables at each grid point. This represents the assumed initial
conditions at time t ¼ 0.

2) Calculate the values of r, u, v, w, and (eþ V2/2) from Eqs. (8.19–8.23) as
function of time, using a time-marching finite difference method. One such
method is the explicit predictor-corrector technique of MacCormack described
in detail in Sec. 5.3. (Indeed, the reader should review this technique as described
in Sec. 5.3 before progressing further.)

3) The final steady-state flow is obtained in the asymptotic limit of large
times. In most cases, this is the desired result. However, the time-marching
procedure can also be used to calculate the transient behavior of viscous flows,
as well.

The numerical solution of the full Navier–Stokes equations for hypersonic
flows is a state-of-the-art research problem at present. Many numerical
approaches have been and are being developed and studied, both using explicit
and implicit finite difference methods. See [224] for an organized presentation
of such methods. Our purpose here is not to delve into any of these methods in
detail, but rather to give the flavor of results obtained from such Navier–
Stokes solutions.

At the beginning of this section, we stated that the “ultimate” in hypersonic
viscous-flow calculations is the solution of the complete Navier–Stokes
equations. Let us expand this statement by saying that the ultimate of the ultimate
would be a full Navier–Stokes calculation of the flowfield over a complete,
three-dimensional airplane configuration. Such a calculation has recently been
made, for the first time in the history of aerodynamics, by Joe Shang at the Air
Force Flight Dynamics Laboratory, and is described in [141]. Here, the viscous
flow is calculated over the X-24C hypersonic research vehicle at M1 ¼ 5.95.
A three view of the X-24C is shown in Fig. 8.13. The calculation carried out
by Shang has the following characteristics:

1) The complete Navier–Stokes equations were used in a conservation form
derivable from Eqs. (8.19–8.23).

2) The Baldwin–Lomax turbulence model was employed (see Sec. 6.8).
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3) MacCormack’s explicit predictor-corrector finite difference scheme in pre-
cisely the same form as described in Sec. 5.3 was used for the numerical solution
of the Navier–Stokes equations.

4) The shock-capturing approach was taken (as defined in Sec. 5.5).
5) A mesh system consisting of 475,200 grid points was distributed over the

flowfield.
Sample results from the calculation are shown in Figs. 8.14–8.17. In Figs.

8.14a and 8.14b, peripheral surface-pressure distributions are given as a function
of normalized arc length at various streamwise stations denoted by x/Rn, where
Rn is the nose radius. By peripheral distributions, what is meant is a distribution
along a body surface generator that goes from the top to the bottom of the vehicle
at a given streamwise station; these peripheral directions are clearly shown in
Fig. 8.15, which is a perspective view of the X-24C. In Fig. 8.14, the normalized
arc length is defined as the length measured from the top of the vehicle toward the
bottom, divided by the total arc length of each individual cross section. For
graphical clarity, each peripheral distribution at succeeding axial locations is dis-
placed slightly to the right along the abscissa. Also in Fig. 8.14, the computed
results are compared with the experimental data of [142].

Note that very good agreement is obtained between the calculations and exper-
iment. The pressure distributions in Fig. 8.14a pertain to the front part of the
vehicle, from the nose region to downstream of the canopy. For example, for
x/Rn ¼ 15 and 29.21, the pressures show a relatively constant value along the
side of the vehicle and a compression at the lower corner of the essentially trape-
zoidal cross section (see Fig. 8.13). For x/Rn ¼ 43.25, the initial compression is
caused by the canopy, then a relatively constant pressure along the side and
bottom, with the corner compression occurring again. In Fig. 8.14b, the pressure
distributions pertain to the back part of the vehicle, and the various pressure
spikes correspond to fins or a strake protruding into the oncoming flow. In
Fig. 8.16, pitot-pressure contours are shown at x/Rn ¼ 108. The experimental
data are obtained from [143]. The outer contour corresponds to the shock

Fig. 8.13 Three view of the X-24C hypersonic test vehicle.
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Fig. 8.14 Peripheral surface-pressure distributions around the X-24C, comparison

between experiment [142] and the Navier–Stokes calculations of Shang [141].
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Fig. 8.15 Illustration of the peripheral direction around the X-24C for the data

shown in Fig. 8.14.

Fig. 8.16 Pitot-pressure contours at the longitudinal station x/RN 5 108;

comparison between experiment and calculations (from [141]).
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shape wrapped around the vehicle; reasonable agreement between the measured
and computer cross-sectional shock shape is obtained. Finally, the computed
surface streamline pattern is shown in Fig. 8.17. The overall calculated aero-
dynamic lift and drag coefficients, obtained by integrating the calculated pressure
and shear-stress distributions over the airplane surface, are compared with exper-
imental measurements as shown in Table 8.1.

Note that the errors in CL and CD tend to cancel, giving a reasonably accurate
estimate of lift-to-drag ratio, L/D.

The reader is strongly encouraged to study [141], not only because of its hall-
mark significance in hypersonic viscous flowfield calculations, but also because it
contains some excellent color graphics presentations, which cannot be suitably
reproduced in black and white in the present book.

Fig. 8.17 Computed surface streamlines over the X-24C (from [141]).

Table 8.1 Lift and drag data

Type of data CL CD L/D

Experimental data 3.676 � 1022 3.173 � 1022 1.158

Numerical results 3.503 � 1022 2.960 � 1022 1.183

Percent error 4.71 6.71 2.16
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Finally, here is a word about flow separation. Time-marching solutions of the
complete Navier–Stokes equations allow the calculation of fully separated flows
in any direction, not just the crossflow direction as in the case of the PNS
equations. This is a marked advantage of full Navier–Stokes solutions over the
other methods presented in this chapter. A sample case is shown in Fig. 8.18,
where the supersonic viscous flow over a rearward-facing step is calculated.
The calculations involve a time-marching finite difference solution of the two-
dimensional Navier–Stokes equations, as described in [144]. The freestream
conditions above the step are M1 ¼ 4.08, T1 ¼ 1046 K, g ¼ 1.31 (to partially
simulate dissociated air in a supersonic combustion ramjet environment), and
Re ¼ 849 based on step height. The wall temperature is given by Tw/
T1 ¼ 0.2957. In Fig. 8.18, the calculated pressure contours are given, which
clearly show the expansion wave emanating from the top corner, the relatively
constant pressure region in the recirculating separated flow behind the step,
and the reattachment shock wave. Similar calculations can be found in [145]
and [146]. In all of this work [144–146], the two-dimensional Navier–Stokes
equations are solved using MacCormack’s time-marching, predictor-corrector,
finite difference scheme, as described in Sec. 5.3.

We conclude this section with discussions of two recent sets of calculations,
both numerical solutions of the Navier–Stokes equations, both calculating the
hypersonic viscous flow over a blunt nose, and both examining interesting
but different physical mechanisms for reducing stagnation region heat transfer
and nose wave drag. These calculations have direct relevance to our discussion
in the present section, the aerodynamic heating discussions in Chapter 6, and
the hypersonic blunt-body discussions in Chapter 5—a suitable conclusion to
our presentation in Parts 1 and 2 of this book on hypersonic gas dynamics.
(Part 3 focuses on high-temperature gas dynamics and is a related but self-
contained entity.)

Meyer et al. [260] studied the hypersonic flow over a blunt-nosed two-
dimensional body wherein a small diameter supersonic jet of air exhausted
upstream from the centerline of the nose, penetrating into the shock layer and
greatly altering the blunt-body flowfield. The flowfield was calculated using
the time-marching Navier–Stokes code SPARK developed at the NASA
Langley Research Center by Drummond et al. [261]. The flow was assumed to
be laminar. Some results are shown in Figs. 8.19–8.22. Figure 8.19 shows
pressure contours for the baseline, no-injection case for the nose region of a

Fig. 8.18 Calculated pressure contours for the supersonic, separated flow over

a rearward-facing step. Navier–Stokes calculations of Kuruvila and Anderson [144].
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Fig. 8.19 Nondimensional pressure distribution for the no-injection case (Meyer

et al. [260]).

Fig. 8.20 Nondimensional pressure distribution for the injection case [260].
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Fig. 8.21 Streamlines showing reattachment point for injection diameter ratio of 63

[260].

Fig. 8.22 Streamlines showing reattachment point for injection diameter ratio of 21

[260].
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blunt slab at M1 ¼ 6.5. Each contour is labeled according to its value of p/p1.
The curved bow shock wave and shock detachment distance are nicely
defined. Figure 8.20 shows the pressure contours when a supersonic jet exhausts
into the flow from the centerline of the body; the jet Mach number Mj is 2.5, and
the jet diameter dj is 0.032 of that of the body nose diameter d. Comparing Figs.
8.19 and 8.20, we see that the jet has pushed the bow shock wave much further
from the nose, increasing the shock detachment distance by about a factor of six,
and greatly reducing the surface pressure on the nose. As a result, the nose wave
drag is decreased. The jet itself, facing in the upstream direction, produces thrust
in the downstream direction, thus adding to the force in the drag direction. But the
reduction in wave drag more than compensates for this jet force. Letting D be the
drag per unit span on the body including the added jet force in the drag direction
and Dref be the reference drag per unit span with no injection, for the case shown
in Fig. 8.20, D/Dref ¼ 20.452, a marked reduction in the overall nose drag.
Details of the calculated streamline shapes in the nose region are shown in
Figs. 8.21 and 8.22. Figure 8.21 gives results for the smallest diameter jet; dj/
d ¼ 0.0159, considered in the study, and Fig. 8.22 gives results for the largest
diameter jet, dj/d ¼ 0.0476. For both cases shown, M1 ¼ 6.5, and the jet
Mach number is Mj ¼ 2.5. Examining Fig. 8.21, we see a large region of recircu-
lating separated flow induced by the jet in front of the nose; reattachment occurs
at a point on the body at about y ¼ 0.0038 m as measured in Fig. 8.21. For the
case of the larger diameter jet shown in Fig. 8.22, the region of separated flow
is even larger, and the reattachment point on the body is further downstream at
about y ¼ 0.0051 m, labeled as point B in Fig. 8.22. Reversed flow exists on
the body for a substantial distance centered around point A, with an attendant
reversed shear-stress direction. The low pressure in the separated flow region
is responsible for the decrease in wave drag. It is also partly responsible for a dra-
matic reduction in local heat-transfer rates to the surface. The combined effects of
lower pressure, increased shock detachment distance, and a cooler layer of air
from the jet flowing over the body reduced the overall heat-transfer rate per
meter to virtually zero; indeed, for some cases discussed by Meyer et al. the
heat transfer reversed, with the flow actually cooling the body.

Shang [262] studied the effect of a plasma jet exhausting upstream into a
hypersonic blunt-body flowfield. The study was both experimental and compu-
tational. The computations were made by a time-marching implicit Navier–
Stokes solver. Calculated streamlines of the flow over an axisymmetric blunt
body showing the interaction with a counterflow plasma jet are given in
Fig. 8.23. The freestream Mach number was M1 ¼ 6 and jet exit Mach
number was Mj ¼ 3.28. Note the massive region of separated flow ahead of
the nose and the large increase in the bow shock detachment distance.
Shang’s calculations included not only the aerodynamic effects of the flowfield-
jet interaction, but also nonequilibrium thermodynamic and chemical phenom-
ena (of the type to be discussed in Part 3 of this book), and the
electromagnetic-aerodynamic interaction. Like the results of Meyer et al. dis-
cussed earlier, Shang found a large drag reduction caused by the jet, and that
most of this reduction is caused by the aerodynamic effect of the interacting
flows, with negligible effects caused by nonequilibrium and electromagnetic
phenomena.
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In summary, the results of Meyer et al., and of Shang, are excellent examples
of recent hypersonic Navier–Stokes calculations as applied to an important and
practical hypersonic aerodynamic problem, namely, the reduction of drag and
hear transfer to a blunt-nosed body. In the modern hypersonic aerodynamics of
today, Navier–Stokes calculations are an important tool for accurate flowfield
analyses, and they take their place along with all of the other analytical and
numerical methods discussed in Parts 1 and 2 of this book.

8.5 Summary and Comments

This brings to an end our discussion of various categories of fully viscous
hypersonic flow calculations. In increasing order of accuracy and complexity,
we have examined the following approaches.

1) Viscous-shock-layer (VSL) method: This approach uses a system of
equations which is very much like the classical boundary-layer equations, but

Fig. 8.23 Instantaneous streamlines of a counterflow jet (Shang [262]).
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which allows a finite normal pressure gradient via a more extensive y-momentum
equation. The VSL method is a downstream-marching technique; it does not
allow for any type of flow separation. The VSL method is in widespread use,
and its relatively straightforward calculational procedure is appreciated by
many engineers.

2) Parabolized Navier–Stokes (PNS) method: This approach uses a simplified
version of the Navier–Stokes equations wherein the viscous terms involving
streamwise derivatives are neglected. The PNS method allows a finite normal
pressure gradient via a y-momentum equation, which, unlike the VSL method,
retains some viscous terms. The PNS method is a downstream-marching tech-
nique: it allows for flow separation in the crossflow plane, but not in the stream-
wise direction. The PNS method is in very widespread use; indeed, it forms the
basis of an industry-standard computer program, which is used by virtually all
major aerodynamic laboratories and companies. This PNS code is sophisticated
and requires much user effort to obtain accurate solutions; in this sense, it is a
more demanding method than computer codes based on the VSL method.

3) Full Navier–Stokes method: Here, the complete Navier–Stokes equations
are solved by means of a time-marching approach. This method is the ultimate in
conceptual accuracy allowing for pressure gradients and flow separation to occur
as would be the case in the natural flow problem. Such Navier–Stokes solutions,
especially for three-dimensional flows, although carried out in practice today, are
still state-of-the-art research calculations. Computer storage requirements and
running times can be enormous for such calculations.

Also, this brings to an end our discussion of hypersonic viscous flows in
general and hence an end to Part 2. Return again to our road map in Fig. 1.24.
Looking down the column under the heading “viscous flows,” we see that we
have covered a number of important topics dealing with the combined effect of
high Mach number and the transport phenomena of thermal conduction and vis-
cosity. Recall that in Part 2 our intent has been to examine these effects without
the extra complication of high-temperature effects. However, this is about as far
as we should go along this route. In Part 3 to follow, we will examine such high-
temperature effects, and we will revisit the problem of hypersonic viscous flows,
this time including the chemical reactions and possible radiative-transfer effects
that frequently dominate such flows in real life.
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Part 3
High-Temperature Gas Dynamics

In Part 3, we discuss high-temperature effects in fluid flows. This
is intimately related to hypersonic flow because any high-
velocity flow will have regions where the temperature is high,
and therefore physical–chemical processes can be strong
enough to influence and even dominate the flow characteristics.
In relation to our earlier discussions, recall that in Part 1 we
examined the question: what happens to the fluid dynamics of
an inviscid flow when the Mach number is made very large? In
Part 2 we addressed the next logical question: what happens
in a high-Mach-number flow when the transport, phenomena
of viscosity and thermal conduction are included? Now, in
Part 3, we consider the next logical question: what happens in
a high-Mach-number flow when high temperatures are present?
In this regard we will consider both inviscid and viscous
high-temperature flows. However, the material in Part 3 goes
beyond applications to just hypersonic flow: it is pertinent to
any flow problem where high temperatures, hence physical-
chemical processes, are important. Some examples are com-
bustion phenomena, high-energy lasers, laser-matter inter-
action, flames, and rocket and jet-engine flowfields. Moreover,
much of the basic material presented in Part 3 does not
depend on our discussions in Parts 1 and 2; therefore, in this
sense Part 3 stands as a self-contained presentation of high-
temperature gas dynamics that can be studied in its own right.
However, in the spirit of the present book, we will take many
opportunities to relate the fundamentals of high-temperature
gas dynamics to hypersonic flow.
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9
High-Temperature Gas Dynamics: Some

Introductory Considerations

In teaching, no doubt it is a good general principle ‘to begin
at the beginning’, but to carry out the same it is necessary to
know where that beginning is.

H. Middleton, British mathematician, 1883

Chapter Preview

The preceding quotation wisely states that in order to begin a new subject

from the beginning it is necessary to know where that beginning is. The fun-

damentals of high-temperature effects on gas dynamic flows are generally not

included in most introductory gas dynamics, compressible flow, and aerody-

namics texts and classes. Most practicing engineers have not had the luxury of

formal instruction in the basics of high-temperature gas dynamics. If you

have never studied the physics, chemistry, and gas dynamics of high-tempera-

ture gases, then Part 3 of this book is for you. On the other hand, if you have

studied and/or worked in the discipline, Part 3 is also for you because you

might find new thoughts and new perspectives as you read through the

material. In any event, with the present chapter we start at the very beginning

of the principles of high-temperature gas dynamics. We will assume that you

know nothing about the subject, and our purpose is, by the end of Part 3, to

bring you to a certain degree of understanding and confidence that you will

feel comfortable reading the literature, both classic and modern, in high-

temperature gas dynamics, and that you can more effectively work in the

discipline.
Let us start. We begin at the beginning.
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9.1 Importance of High-Temperature Flows

On 24 July 1969, Apollo 11 successfully entered the atmosphere of the Earth,
returning from the historic first manned flight to the moon. During its return to
Earth, the Apollo vehicle acquired a velocity essentially equal to escape velocity
from the Earth, approximately 11.2 km/s. At this entry velocity, the shock-layer
temperature becomes very large. How large? Let us make an estimate based on
the results of Chapter 2. The temperature ratio across a normal shock wave is
given by Eq. (2.5). Let us assume that the temperature in the nose region of
the Apollo lunar return vehicle is approximately that behind a normal shock
wave, that is, as given by Eq. (2.5). Considering a given point on the entry trajec-
tory, at an altitude of 53 km, the vehicle’s Mach number is 32.5. At this altitude,
the freestream temperature is T1 ¼ 283 K. From Eq. (2.5), this yields a shock-
layer temperature behind the shock of 58,128 K—ungodly high, but also
totally incorrect. It is totally incorrect because Eq. (2.5), as many of the equations
throughout all of the preceding chapters, is based on the assumption that the gas
has constant specific heats. In our preceding calculation we have used for the ratio
of specific heats g ¼ 1:4. In reality, at such high temperatures the gas becomes
chemically reacting, and g no longer equals 1.4 nor is it constant. A more realistic
calculation, assuming the flow to be in local chemical equilibrium (a term to be
defined later), yields a shock-layer temperature of 11,600 K—also a very high
temperature, but considerably lower than the 58,128 K originally predicted.
The major points here are as follows:

1) The temperature in the shock layer of a high-speed entry vehicle can be
very high.

2) If this temperature is not calculated properly, huge errors will result. The
assumption of constant g ¼ 1:4 does not even come close.

One of the functions of Part 3 of this book is to show how to make proper cal-
culations of the temperature and indeed of all of the properties of a high tempera-
ture, chemically reacting flow. Some of the basic physical characteristics of high
temperature hypersonic flows are discussed in Sec. 1.3.4; it is important for you
to review Sec. 1.3.4 before progressing further.

The considerations just discussed are reinforced by the results shown in
Fig. 1.18, taken from [4]. Here we see the temperature behind a normal shock
wave in air plotted vs velocity at a standard altitude of 52 km. This temperature
is indicative of the shock-layer temperature in the nose region of an atmospheric
entry vehicle. Indeed, the entry velocities for various types of vehicles are noted
on the abscissa, varying from the lower speeds of intermediate-range and inter-
continental ballistic missiles (IRBMs and ICBMs), to the very high speed associ-
ated with the return of a space vehicle from Mars. Two curves are shown, one for
a calorically perfect gas with constant g ¼ 1:4 and the other for an equilibrium
chemically reacting gas. The upper curve for a constant g ¼ 1:4 shows an extre-
mely rapid increase in temperature with velocity, leading to extraordinarily high
predicted values of Ts at normal entry velocities. Of course, as described earlier,
these predictions are totally incorrect. In contrast, the lower curve illustrates a
calculation where the chemically reacting effects are properly taken into
account. The temperatures here are still high, but considerably lower than
those predicted on the basis of constant g ¼ 1:4. Note that the lower curve
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predicts, for the entry velocity of Apollo, a shock-layer temperature of about
11,600 K—the realistic temperature mentioned earlier. Figure 1.18 illustrates
two important points that, for emphasis, we reiterate here: 1) at high velocities,
the shock-layer temperatures are high, and 2) it is essential that this temperature
be calculated properly.

The applications of the material to be discussed in Part 3 of this book are wide-
spread. The following are listed as just a few examples.

9.1.1 Atmospheric Entry

We have already discussed this application to some extent. Here, we will just
note the high-temperature regions in the flowfield around a blunt-nosed entry
body, as sketched in Fig. 9.1. The massive amount of flow kinetic energy in a
hypersonic freestream is converted to internal energy of the gas across the
strong bow shock wave, hence creating very high temperatures in the shock
layer near the nose. In addition, downstream of the nose region, where the shock-
layer gas has expanded and cooled around the body, we have a boundary layer
with an outer-edge Mach number that is still high; hence, the intense frictional
dissipation within the hypersonic boundary layer creates high temperatures and
can cause the boundary layer to become chemically reacting. Another aspect
of entry-body flowfields occurs when ionization is present in the shock layer,
hence providing large numbers of free electrons throughout the shock layer.
This is illustrated in Fig. 9.2, where an entry body is sheathed in a flow with
ions and free electrons. For air, the principle ionized species are NOþ, Oþ,
and Nþ, along with the associated free electrons. The free electrons absorb

Fig. 9.1 Schematic of the high-temperature regions in an entry-body flowfield.
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radio-frequency radiation and can cause a communications blackout to and from
the vehicle during parts of the entry trajectory. In practice today, because of the
availability of communications satellites in orbit around the Earth, radio trans-
missions from an entering space vehicle can be transmitted upward to a satellite

Fig. 9.2 Schematic of the plasma sheath around an entry body.

Fig. 9.3 Schematic of the nonadiabatic, radiating flowfield around a body.
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through a less ionized part of the flowfield, and then relayed to the Earth. There-
fore, the communications blackout is not quite the problem it used to be. Never-
theless, it is still a problem to be dealt with, and therefore the accurate prediction
of the electron number density in the plasma sheath around the vehicle is fre-
quently of high priority. Yet another aspect of entry-body flowfields is sketched
in Fig. 9.3. If the shock-layer temperature is high enough, the fluid elements in the
flow will emit and absorb radiation. This causes the flowfield to become nonadia-
batic. Recall that throughout all of our inviscid flow considerations in Part 1, we
assume the flow to be adiabatic. However, radiating shock layers will be nonadia-
batic, and in such a case we lose some of the conceptual advantages we enjoyed
in Part 1.

9.1.2 Rocket Engines

A schematic of a rocket engine is shown in Fig. 9.4. Here, a fuel and oxidizer
are burned in a combustion chamber, and a chemically reacting gas subsequently
expands through the nozzle of the engine. For the proper design of the engine, and
the accurate prediction of rocket thrust and specific impulse, we need to know the
properties of the products of combustion in the combustion chamber and the
details of the chemically reacting flow through the nozzle. One question we
can immediately ask is this: because the contours of supersonic nozzles are
usually designed by the method of characteristics, what happens to the method
of characteristics when the flow is chemically reacting? This question will be
addressed in Chapters 14 and 15. The answers impact the proper design of
rocket engine nozzles.

9.1.3 High-Enthalpy Wind Tunnels

For hypersonic wind-tunnel testing wherein the simulation of high-
temperature flows over bodies is desired, a conventional hypersonic wind
tunnel is not sufficient. Such conventional tunnels frequently use electrical resis-
tance heaters to heat the reservoir air to just enough temperature (typically

Fig. 9.4 Schematic of a rocket engine.
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1500 K) to avoid liquefaction of the air in the nozzle expansion and test section.
To simulate shock-layer temperatures in the range of 5000 to 11,000 K, special-
ized high-enthalpy facilities are required. One such example is sketched in
Fig. 9.5. Here we see an arc tunnel, wherein air is heated to high temperatures
by an electric arc discharge in the reservoir and then the chemically reacting
air expands through a hypersonic nozzle into the test section, exiting through a
hypersonic diffuser. Another high-enthalpy device is the shock tunnel sketched
in Fig. 9.6. Here, an incident shock moves from left to right in a shock tube,
hitting the end wall and reflecting back from right to left. (See [4] for a basic
description of shock tubes and their associated flow phenomena.) The reflected
shock wave is shown in Fig. 9.6. Behind the reflected shock wave, the gas is at
high pressure and temperature. A diaphragm mounted in the end wall is
broken by the high pressure (or broken by some independent mechanical or elec-
trical device), thus allowing the high-pressure, high-temperature chemically
reacting gas to expand through the nozzle and pass through the test section and
diffuser. Very high enthalpy and temperature levels (T as high as 11,000 K)
can be produced in such shock tunnels; however, this is an impulse device
with useful test times in the test section only on the order of a few milliseconds.

9.1.4 High-Power Lasers

We are familiar with small, desktop lasers that produce powers on the order of
milliwatts. However, if we wish to have a laser that produces megawatts of
power, we simply cannot scale such conventional lasers to large enough

Fig. 9.5 Schematic of an arc tunnel.

Fig. 9.6 Schematic of a shock tunnel.
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sizes—the physics works against us. Therefore, since the late 1960s, several
different classes of lasers, which can potentially produce megawatts of power,
have been developed. Such high-power lasers have obvious applications in the
commercial world (welding, for example) and in the military world as laser
weapons (antiaircraft and antisatellite defense, for example). These high-power
lasers are essentially high-temperature flow devices and hence are excellent
applications of high-temperature gas dynamics. For example, Fig. 9.7 illustrates
the concept of a gas dynamic laser. Here, a mixture of CO2, N2, and H2O is
heated to temperatures on the order of 1500 K in the reservoir. This temperature
is high enough to vibrationally excite the molecules, but not high enough to cause
chemical reactions. The vibrationally excited mixture expands rapidy through
one or more supersonic nozzles; in this rapid expansion, the natural vibrational
nonequilibrium processes turn the flow into a laser gas (with a population inver-
sion). If reflecting mirrors are put on both sides of the test section (here called a
laser cavity), an intense laser beam will be produced in a direction perpendicular
to the page. Such a device is called a gas dynamic laser and it is a very interesting
application of some of the principles of high-temperature gas dynamics. A gas
dynamic laser is essentially a specialized supersonic wind tunnel that produces
a high-power laser beam. For more details on gas dynamic lasers, see [147]. A
second type of high-power laser, called the electric discharge laser, is sketched
in Fig. 9.8. Here, a flow of CO2, N2, and He is passed through a duct, usually at
subsonic speeds. An intense electric discharge is established across the flow,
creating a vibrational nonequilibrium gas with laser properties. If mirrors are
placed on both sides of the flow, a high-power laser beam will be produced in
a direction perpendicular to the page. Such an electric discharge laser is

Fig. 9.7 Schematic of a gas dynamic laser.

Fig. 9.8 Schematic of an electric discharge laser.
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essentially a specialized subsonic wind tunnel that produces a laser beam.
Finally, a third type of high-power laser, a chemical laser, is sketched in
Fig. 9.9. Here, a supersonic stream containing atomic fluorine F is mixed with
a supersonic flow of H2. Downstream of the nozzles, in the chemically reacting
zone, HF is produced in a vibrationally excited form via the chemical reaction
H2 þ F! HF� þ H, where the asterisk denotes a vibrationally excited
species. The HF� might have a population inversion and hence is a laser
medium. If mirrors are placed on both sides of the flow, a high-power laser
beam can be produced. Such a chemical laser is again a special type of “super-
sonic wind tunnel” that produces a laser beam. Other types of chemical lasers
exist today using other gases as the laser medium. The physical and gas
dynamic aspects of these high-power lasers are an excellent application of
some of the fundamental material to be discussed in Part 3.

9.1.5 Ramjet and Scramjet Engines

A conventional ramjet engine is sketched in Fig. 9.10. Here, the engine is
essentially an open duct wherein freestream air at high subsonic or supersonic

Fig. 9.9 Schematic of a chemical laser.

Fig. 9.10 Schematic of a conventional ramjet engine.
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speeds is compressed and slowed to a low subsonic Mach number at the
entrance to a combustor. Fuel is injected into the combustor, and burning
takes place in a subsonic stream. Such conventional ramjets have propulsion
advantages over the standard gas turbine engines in the Mach-number range
from 2 to 5. However, they have a serious drawback at hypersonic speeds.
To see this, consider a freestream at M1 ¼ 10 and T1 ¼ 300 K. Assume this
stream is slowed adiabatically to a low subsonic velocity just in front of the
combustor. We can make a crude estimate of the temperature of the air entering
the combustor by using the adiabatic energy equation and assuming constant
g ¼ 1:4, that is, T0=T1 ¼ 1þ ½(g� 1)=2�M2

1 (for example, see [1], [4], and [5]).
From this, we calculate an air temperature T0 ¼ 6300 K entering the combustor.
This is far above the adiabatic flame temperature of the fuel/air burning process
in the combustor. Therefore, under these conditions, when the fuel is injected, it
will simply decompose rather than burn, and the engine will be a drag device
rather than a thrust device. To overcome this problem, the freestream air is
not slowed to a low subsonic speed in the combustor: rather, it must be kept
flowing at some supersonic speed where the temperature increase is not so
great. Hence, the combustion process takes place in a supersonic stream. This
is the essence of the supersonic combustion ramjet (scramjet), sketched in
Fig. 9.11. Here, a hypersonic freestream is slowed to supersonic speeds by an
inlet compression. Fuel (usually H2) is injected into the supersonic stream,
where it mixes and burns in a combustion region downstream of the
fuel-injector strut. The mixture of burned gases subsequently expands through
a supersonic nozzle at the back end of the engine, producing thrust. It is vir-
tually certain that hypersonic cruise aircraft flying above Mach 5 or 6 will
have to be powered by scramjet engines. The X-43 Hyper-X shown in

Fig. 9.11 Schematic of a supersonic combustion ramjet engine (scramjet).
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Fig. 1.9 is such a vehicle. It is an example of a major, ongoing technology
development program to create such vehicles.

Note: All of the sketches shown in Figs. 9.1–9.11 are conceptual only, com-
pletely devoid of detail. Their purpose is to convey the general principle being
discussed, and actual machines and devices will in reality be more complex.
Our purpose in this discussion has been to describe some applications of high-
temperature gas dynamics. The intent is essentially motivational; as we
proceed through Part 3, keep in mind that everything we discuss, no matter
how obtuse and unrelated it might seem, is in reality absolutely necessary for
the understanding of such applications. Also, the applications just discussed
are just a small sample of the problems that demand an understanding of high-
temperature gas dynamics. By the time you finish Part 3, you will have a much
better understanding of the physical and gas dynamic processes that are the
foundation of all of these applications—this, indeed, is our purpose here.

9.2 Nature of High-Temperature Flows

In the following chapters, we will delve into the details of high-temperature
effects in gas dynamics. However, at this stage, let us address the question:
what, in general, makes high-temperature flows any different to study than the
flow of a gas with constant g? The answer is as follows:

1) The thermodynamic properties (e, h, p, T , r, s, etc.) are completely
different.

2) The transport properties (m and k) are completely different. Moreover, the
additional transport mechanism of diffusion becomes important, with the associ-
ated diffusion coefficients Di, j:

3) High heat-transfer rates are usually a dominant aspect of any high-
temperature application.

4) The ratio of specific heats, g ¼ cp=cv, is a variable. In fact, for the analysis
of high-temperature flows, g loses the importance it has for the classical constant
g flows, such as studied in Parts 1 and 2. From this point of view, all equations
derived in Parts 1 and 2 under the assumption of a constant g are not valid for a
high-temperature gas. Such equations represent the vast majority of our results in
Parts 1 and 2. In the process, we lose the ability for closed-form analyses using
such equations.

5) In view of the preceding, virtually all analyses of high-temperature gas
flows require some type of numerical, rather than closed-form, solutions.

6) If the temperature is high enough to cause ionization, the gas becomes a
partially ionized plasma, which has a finite electrical conductivity. In turn, if
the flow is in the presence of an exterior electric or magnetic field, then electro-
magnetic body forces act on the fluid elements. This is the purview of an area
called magnetohydrodynamics (MHD).

7) If the gas temperature is high enough, there will be nonadiabatic effects
caused by radiation to or from the gas.

For these reasons, a study of high-temperature flow is quite different from our
previous considerations in Parts 1 and 2. A major purpose of Part 3 is to discuss
how high-temperature effects are properly accounted for in gas dynamic analysis
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and to point out the differences in comparison to our previous work in Parts 1
and 2.

9.3 Chemical Effects in Air: The Velocity-Altitude Map

From the applications discussed in Sec. 9.1, it is clear that we are frequently
concerned with air as the working gas. In future chapters, we will have frequent
occasion to examine the chemical properties of high-temperature air in detail.
However, in this section we simply ask the question: at what temperatures do
chemically reacting effects become important in air? An answer is given in
Fig. 9.12, which illustrates the ranges of dissociation and ionization in air at a
pressure of 1 atm. Let us go through the following thought experiment.
Imagine that we take the air in the room around us and progressively increase
the temperature, holding the pressure constant at 1 atm. At about a temperature
of 800 K, the vibrational energy of the molecules becomes significant (as
noted on the right of Fig. 9.12). This is not a chemical reaction, but it does
have some impact on the properties of the gas, as we will see in subsequent chap-
ters. When the temperature reaches about 2000 K, the dissociation of O2 begins.
At 4000 K, the O2 dissociation is essentially complete; most of the oxygen is in
the form of atomic oxygen O. Moreover, by an interesting quirk of nature, 4000 K
is the temperature at which N2 begins to dissociate, as shown in Fig. 9.12. When

Fig. 9.12 Ranges of vibrational excitation, dissociation, and ionization for air at

1 atm pressure.
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the temperature reaches 9000 K, most of the N2 has dissociated. Coincidentally,
this is the temperature at which both oxygen and nitrogen ionization occurs, and
above 9000 K we have a partially ionized plasma consisting mainly of O, Oþ, N,
Nþ, and electrons. Not shown in Fig. 9.12 (because it would become too clut-
tered) is a region of mild ionization that occurs around 4000 to 6000 K; here,
small amounts of NO are formed, some of which ionize to form NOþ and free
electrons. In terms of the overall chemical composition of the gas, these are
small concentrations; however, the electron number density as a result of NO ion-
ization can be sufficient to cause the communications blackout discussed in
Sec. 9.1. Reflecting upon Fig. 9.12, it is very useful to fix in your mind the
“onset” temperatures: 800 K for vibrational excitation, 2500 K for O2 dis-
sociation, 4000 K for N2 dissociation, and 9000 K for ionization. With the excep-
tion of vibrational excitation, which is not affected by pressure, if the air pressure
is lowered, these onset temperatures decrease; conversely, if the air pressure is
increased these onset temperatures are raised.

The information on Fig. 9.12 leads directly to the velocity-altitude map shown
in Fig. 9.13. (Recall that we have led off Parts 1 and 2 with pertinent information
on a velocity-altitude map; we do the same here.) In Fig. 9.13, we once again
show the flight paths of lifting entry vehicles with different values of the lift
parameters, m=CLS. Superimposed on this velocity-altitude map are the flight
regions associated with various chemical effects in air. The 10 and 90% labels
at the top of Fig. 9.13 denote the effective beginning and end of various
regions where these effects are important. Imagine that we start in the lower-left
corner, and mentally “ride up” the flight path in reverse. As the velocity becomes

Fig. 9.13 Velocity-amplitude map with superimposed regions of vibrational

excitation, dissociation, and ionization (from [79]).
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larger, vibrational excitation is first encountered in the flowfield, at about
V ¼ 1 km/s. At the higher velocity of about 2.5 km/s, the vibrational mode is
essentially fully excited, and oxygen dissociation begins. This effect covers the
shaded region labeled “oxygen dissociation.” The O2 dissociation is essentially
complete at about 5 km/s, wherein N2 dissociation commences. This effect
covers the shaded region labeled “nitrogen dissociation.” Finally, above
10 km/s, the N2 dissociation is complete, and ionization begins. It is most inter-
esting that regions of various dissociations and ionization are so separate on the
velocity-altitude map, with very little overlap. This is, of course, consistent with
the physical data shown in Fig. 9.12. In a sense, this is a situation when nature is
helping to simplify things for us. Finally, we can make the following general
observation from Fig. 9.13. The entry flight paths slash across major sections
of the velocity-altitude map where chemical reactions and vibrational excitation
are important. Indeed, the vast majority of any given flight path is in such regions.
From this, we can clearly understand why high-temperature effects are so impor-
tant to entry-body flows.

9.4 Summary and Comments

In this chapter we have discussed the importance of high-temperature gas
dynamics by illustrating various practical engineering problems that are domi-
nated by high-temperature effects. Moreover, we have examined in a very pre-
liminary manner the basic nature of these effects. For air in particular, we have
delineated various regions that are associated with different physical-chemical
effects. The basic purpose of this chapter is simply to get the reader thinking
about high-temperature flows and to give some appreciation for the nature of
the problem.

At this stage in our discussion, it is worthwhile to return to our road map in
Fig. 1.24, and chart our course. For the next few chapters, we will be dealing
with the basic fundamentals of physical chemistry, statistical thermodynamics,
and kinetic theory, all under the general heading of high-temperature flows in
Fig. 1.24. However, these early discussions will not deal with flow problems at
all; rather, they will lay the physical fundamentals that will be necessary to under-
stand high-temperature effects in gases. Then, with these fundamentals in
hand, we will tackle the analysis of high-temperature flows, both inviscid and
viscous, that is, be prepared to study some chemistry and physics in the next
few chapters, because it is absolutely necessary for our later applications to high-
temperature flow problems. However, as we delve into this chemistry and
physics, never lose sight of the fact that our ultimate purpose is to apply such
chemical and physical aspects to flows associated with practical problems such
as described in this chapter.
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10
Some Aspects of the Thermodynamics of

Chemically Reacting Gases
(Classical Physical Chemistry)

Thermodynamics provides laws that govern the transfer of
energy from one system to another, the transformation of
energy from one form to another, the utilization of energy
for useful work, and the transformation of matter from
one molecular, atomic, or nuclear species to another.

Frederick D. Rossini, physical chemist, 1995

Chapter Preview

The thermodynamics and chemistry of high-temperature gases is the chassis

on which high-temperature gas dynamics moves. So we start here at the

beginning. Historically, this is not a new subject. It is rooted in the develop-

ment of classical physical chemistry that has taken place over the past one-

and-a-half centuries. But it is just as applicable today as it was then. In this

chapter we discuss only those aspects of classical physical chemistry that

we need to apply for our study of high-temperature gas dynamics. In sub-

sequent chapters these classical results will be embellished by concepts

from modern 20th century physics.

A warning—parts of this chapter are not necessarily easygoing. But

expecting this, if you slow down, reread, and think the thoughts, you will

master these parts and forge ahead. In this chapter you will begin to learn

how to handle the thermodynamics of a high-temperature gas, to begin to

appreciate what is meant by equilibrium and nonequilibrium conditions,

and to calculate the chemical composition of an equilibrium chemically react-

ing mixture. Then we will expand on these concepts in subsequent chapters,

where your understanding will gradually mature. So this chapter constitutes

an essential part of our beginning. Read on, and visit the world of classical

thermodynamics and chemistry.
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10.1 Introduction: Definition of Real Gases and Perfect Gases

In this chapter, we will deal with chemical thermodynamics from a classical
point of view, that is, we will deal, for the most part, with macroscopic properties
of a system without appealing to the individual molecular and atomic particles
that make up the system. This will be in contrast to Chapters 11 and 12, where
we will consider the microscopic picture, dealing with the system made up of
individual particles, with the macroscopic properties of the system being given
by suitable averages over the particles.

To begin our chemical thermodynamic discussion, we have to distinguish
between a real gas and perfect gas. These are defined as follows. Consider
the air around you as made up of molecules that are in random motion,
frequently colliding with neighboring molecules. Imagine that you pluck one
of these molecules out of the air around you. Examine it closely. You will
find that a force field surrounds this molecule, as a result of the electromagnetic
action of the electrons and nuclei of the molecule. In general, this force field will
reach out from the given molecule and will be felt by neighboring molecules,
and vice versa. Thus, the force field is called an intermolecular force. A sche-
matic of a typical intermolecular force field caused by a single particle is shown
in Fig. 10.1. Here, the intermolecular force is sketched as a function of distance
away from the particle. Note that at small distances, the force is strongly repul-
sive, tending to push the two molecules away from each other. However, as we
move further away from the molecule, the intermolecular force rapidly
decreases and becomes a weak attractive force, tending to attract molecules

Fig. 10.1 Sketch of the intermolecular force variation.
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together. At distances approximately 10 molecular diameters away from the
molecule, the magnitude of the intermolecular force is negligible. Because
the molecules are in constant motion, and this motion is what generates the
macroscopic thermodynamic properties of the system, then the intermolecular
force should affect these macroscopic properties. This leads to the following
definition:

Real gas is a gas where intermolecular forces are important and must be accounted
for.

On the other hand, if the molecules are spaced, on the average, more than 10
moleculear diameters apart, the magnitude of the intermolecular force is very
small (see Fig. 10.1) and can be neglected. This, for example, is the case for
air at standard conditions. This leads to the next definition:

Perfect gas is a gas where intermolecular forces are negligible.

For most problems in aerodynamics, the assumption of a perfect gas is very
reasonable. We have made this assumption throughout Parts 1 and 2 of this
book. (The quantitative ramifications of a perfect gas are discussed in the next
section.) Conditions that require the assumption of a real gas are very high pres-
sures (p � 1000 atm) and/or low temperatures (T � 30 K). Under these con-
ditions the molecules in the system will be packed closely together and will be
moving slowly with consequent low inertia. Thus, the intermolecular force has
every opportunity to act on the molecules in the system and in turn to modify
the macroscopic properties of the system. In contrast, at lower pressures ( p �
10 atm, for example) and higher temperatures (T ¼ 300 K, for example), the
molecules are widely spaced apart and are moving more rapidly with consequent
higher inertia. Thus, on the average, the intermolecular force has little effect on
the particle motion and therefore on the macroscopic properties of the system.
Repeating again, we can assume such a gas to be a perfect gas, where the inter-
molecular force can be ignored. Deviations from perfect-gas behavior tend to be
proportional to p=T3, which makes qualitative sense based on the preceding
discussion. Unless otherwise stated, in the present book, we will always deal
with a perfect gas as defined herein; this is compatible with about 99% of all
practical aerodynamic problems.

The road map for this chapter is given in Fig. 10.2. We will start with the left-
hand column and discuss the equation of state, identify various types (classifi-
cations) of gases, and discuss their ramifications. Then we move to the center
column and discuss some classical thermodynamics of chemically reacting
gases, concentrating on the first and second laws of thermodynamics. Finally,
we move to the right-hand column where we break the ice on how you can
approach the calculation of the composition of a chemically reacting mixture
in equilibrium. We begin to address the question: if you have a mixture of chemi-
cally reacting gases at a given pressure and temperature, how do you calculate the
amount of each individual chemical species in the mixture when the mixture is in
chemical equilibrium? In the process, we will begin to understand just what is
meant by the term equilibrium in this context.
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10.2 Various Forms of the Perfect-Gas Equation of State

Consider a thermodynamic system of a given volume V, as sketched in
Fig. 10.3. Denote the total mass of the system by M, the total number of gas par-
ticles by N, and the total number of moles by N. (Recall from chemistry that one
mole of a substance is an amount of mass of that substance equal to its molecular
weight, i.e., if we were dealing with O2 which has a molecular weight of 32, then
32 kg of O2 would constitute one kg . mole, 32 g of O2 would constitute
one gm . mole, and 32 slugs of O2 would constitute one slug �mole. Note that
the kg, g, and slug just used as identifiers of what type of mole is being considered
are simple adjectives in front of the word “mole”; they are not separate units and
in a numerical calculation cannot be separately canceled, i.e., a kg . mole is one

Fig. 10.2 Road map for Chapter 10.

Fig. 10.3 Thermodynamic system.
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single entity, not a kg multiplying a mole.) The pressure and temperature of the
system in Fig. 10.3 are p and T, respectively.

The equation of state relates the quantities shown in Fig. 10.3. This equation
cannot be derived from the principles of classical macroscopic thermodynamics;
it must be considered as a given result—a postulate. Historically, it was first syn-
thesized from laboratory measurements by Robert Boyle in the 17th century,
Jacques Charles in the 18th century, and Joseph Gay-Lussac and John Dalton
around 1800. The empirical result that unfolded from these observations was

pV ¼ MRT (10:1)

where R is the specific gas constant, which has different values for different gases.
In macroscopic thermodynamics, we take Eq. (10.1) as a given result. Moreover,
because the empirical data on which Eq. (10.1) is based were obtained with gases
at near standard conditions, where intermolecular forces are negligible, then
Eq. (10.1) is called the perfect-gas equation of state. In Chapters 11 and 12, we
will see the perfect-gas equation of state can be derived from first principles,
using the concepts of either statistical mechanics or kinetic theory, both disci-
plines being developed in the late 19th century and early 20th century. These
theories take a microscopic approach to the gas, in contrast to the macroscopic
approach of classical thermodynamics, which we are discussing in this chapter.

Several forms of Eq. (10.1) can be obtained as follows. Divide Eq. (10.1) by
M, yielding

pv ¼ RT (10:2)

where v is the specific volume, defined as the volume per unit mass. Divide
Eq. (10.1) by V, obtaining

p ¼ rRT (10:3)

where r is the density. Now consider the molecular weight of the gas denoted by
M. From Eq. (10.1) we have

pV ¼
M

M
(MR)T (10:4)

Keeping in mind that M is the mass per mole, then M=M is N, the total number
of moles in the system. Also, MR is the universal gas constant R. Note that

R ¼
R

M
(10:5)

Hence, Eq. (10.4) becomes

pV ¼NRT (10:6)

THERMODYNAMICS OF CHEMICALLY REACTING GASES 467



Divide Eq. (10.6) by N. We obtain

pV ¼ RT (10:6a)

where V is the molar volume, or volume per mole. Dividing Eq. (10.6) by V, we
have

p ¼ CRT (10:7)

where C is the concentration, or moles per unit volume. If we divide Eq. (10.6) by
the total mass M, we have

pv ¼ hRT (10:8)

where h is the mole-mass ratio, or number of moles per unit mass. Finally, let NA

denote Avagadro’s number, which is the number of particles per mole; for a
kg . mole, NA ¼ 6:02� 1026 particles per kg . mole. Using Eq. (10.6), we have

pV ¼ (NNA)
R

NA

T (10:8a)

In Eq. (10.8a), NNA is physically the number of particles in the system N. Also,
R=NA is the gas constant per particle, which is defined as the Boltzmann constant
k. Thus, Eq. (10.8a) becomes

pV ¼ NkT (10:9)

Dividing Eq. (10.9) by V, we have

p ¼ nkT (10:10)

where n is the number density, or number of particles per unit volume.
Starting with Eq. (10.1), review all of the preceding equations that are in

boxes. They represent nine different forms of the perfect-gas equation of state.
They all mean the same thing; the different forms are just expressed in terms
of different quantities. Make certain that you feel comfortable with these
equations and with all of the defined terms (such as mole-mass ratio, concen-
tration, etc.) before progressing further. These equations are good for a perfect
gas consisting of a single chemical species, and they are also valid for a chemi-
cally reacting mixture of perfect gases. Equations (10.1–10.10) hold whether or
not the gas is chemically reacting. For a nonreacting gas M, hence R from
Eq. (10.5), is constant. In contrast, for a reacting gas M is a variable; hence,

R ¼
R

M
(10:11)
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is also a variable. However, even though R is a variable, Eqs. (10.1), (10.2), and
(10.3) involving R are still valid as long as we are dealing with a chemically
reacting mixture of perfect gases, that is, a mixture where intermolecular
forces are negligible.

Do not be confused by the variety of gas constants that are associated with the
preceding equations. They are easily sorted out as follows.

1) When the equation deals with moles, use the universal gas constant R,
which is the gas constant per mole. It is the same for all gases and equal to the
following in the SI and English engineering systems of units respectively:

R ¼ 8314 J=(kg �mol K)

R ¼ 4:97� 104 ( ft lb)=(slug �mol 8R)

2) When the equation deals with mass, use the specific gas constant R, which
is the gas constant per unit mass. It is different for different gases and is related to
the universal gas constant through Eq. (10.11). Because air is of special import-
ance to many high-temperature applications, we give the following data for air at
standard conditions:

R ¼ 287 J=(kg K)

R ¼ 1716 (ft lb)=(slug 8R)

3) When the equation deals with particles, use the Boltzmann constant k, which
is the gas constant per particle. Values for k in the two systems of units are

k ¼ 1:38� 10�23 J=K

k ¼ 0:565� 10�23 ( ft lb)=8R

In all of the preceding relations, p is the pressure of the gas mixture, which can
consist of a number of different chemical species. Let us now introduce the
concept of partial pressure by means of the following thought experiment.
Imagine that you go to a store and buy a special vacuum cleaner that selectively
“vacuums up” oxygen in the air. You come home, seal all of the doors and
windows in a given room (which is at an air pressure of 1 atm), and turn on
the special vacuum. After all of the O2 has been vacuumed up, only N2

remains in the room (assuming air to consist of 20% O2 and 80% N2).

Question: What is the gas pressure in the room?

Answer: Because 20% of the gas molecules have been taken out, the resulting
pressure is 0.8 atm.

Moreover, because the gas now consists of only N2, this 0.8 atm is defined as
the partial pressure of N2, designated by pN2

. Now, assume that you go to a differ-
ent store, and buy a special vacuum cleaner that selectively vacuums up only N2.
Assume that you go back to a sealed room containing air at 1 atm, and turn on this
vacuum cleaner. After all of the N2 has been removed, only O2 remains in the
room, and the pressure will be 0.2 atm. This is defined as the partial pressure
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of O2, designated by pO2
. This very simplistic thought experiment, which, of

course, could never be carried out in real life, is given only to introduce the
general concept of partial pressure, which can be stated as follows. Consider a
system of volume V consisting of a mixture of n different chemical species,
each with a different number of particles, N1, N2, . . . , Nn, as sketched on the
left of Fig. 10.4. Now consider a single species in the mixture, say, the ith
species. By definition, the partial pressure of species i, pi is the pressure that
would exist in the system if all of the other species were removed, and the Ni par-
ticles were the only ones occupying the whole system at the volume V and temp-
erature T. This is illustrated on the right of Fig. 10.4. Returning to the left side of
Fig. 10.4, we now construe p to be the “total” pressure of the gas mixture, made
up of the individual partial pressures of the n species. Indeed, for a perfect gas (no
intermolecular forces), we have

p ¼
X

i

pi (10:12)

where the summation is carried out over all of the chemical species in the
mixture. Equation (10.12) is called Dalton’s law of partial pressures.

For a perfect gas, pi also obeys various equations of state, analogous to those
discussed earlier for a gas mixture. For example, analogous to Eq. (10.1), we have

piV ¼ MiRiT (10:13)

where Ri is the specific gas constant for species i, Mi is the mass of species i in the
system, and V is the volume of the system, as usual. Dividing Eq. (10.13) by Mi,
we have

pivi ¼ RiT (10:14)

where vi is the specific volume based on species i, that is, the volume per unit
mass of species i; vi ¼ V=Mi. Dividing Eq. (10.13) by V, we obtain

pi ¼ riRiT (10:15)

where ri is the density of species i, that is, the mass of species i per unit volume
of mixture. Let Mi be the molecular weight of species i, that is, the mass of i per

Fig. 10.4 Systems for the definition of partial pressure.
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mole of i. Then, from Eq. (10.13),

piV ¼
Mi

Mi

(MiRi)T

or

piV ¼NiRT (10:16)

where

Ri ¼
R

Mi

(10:17)

and Ni is the number of moles of species i in the mixture. Dividing Eq. (10.16)
by Ni, we have

piVi ¼ RT (10:18)

where Vi is the volume per mole of species i. Dividing Eq. (10.16) by V, we obtain

pi ¼ CiRT (10:19)

where Ci is the concentration of species i, that is, the number of moles of species i
per unit volume of mixture. Dividing Eq. (10.16) by the total mass of the system
M, we have

piv ¼ hiRT (10:20)

where hi is the mole-mass ratio of species i, that is, the number of moles of i
per unit mass of mixture. Recalling that NA is the number of particles per mole
(Avogadro’s number), Eq. (10.16) can be written as

piV ¼ (NiNA)
R

NA

� �
T

or

piV ¼ NikT (10:21)

Finally, dividing Eq. (10.21) by V, we have

pi ¼ nikT (10:22)

where ni is the number density of species i, that is, the number of i particles
per unit volume of the mixture.

As tedious as it might seem, it is necessary for you to feel comfortable with
all of the different forms of the equation of state as already obtained. Also
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it is important to have a clear understanding of the defined terms such as
Ci, Mi, hi, etc. These equations and terms are used throughout the literature
in high-temperature reacting gases. They are presented in the detail just shown
for your convenience and ease of understanding.

10.3 Various Descriptions of the Composition of a Gas Mixture

How do we describe the composition of a chemical reacting gas mixture? In
other words, what terms are used to describe how much of each species i is
present in the mixture? The most useful and frequently used terms are itemized
here.

1) The partial pressures pi: If we know all of the partial pressures of the
mixture, the chemical composition is uniquely defined.

2) The concentrations Ci: If we know all of the values of Ci, the chemical
composition is uniquely defined.

3) The mole-mass ratio hi: If we know all the values of hi, the chemical
composition is uniquely defined.

4) The mole fraction Xi, defined as the number of moles of species i per mole
of mixture. If we know all of the values of Xi, the chemical composition is
uniquely defined.

5) The mass fraction ci, defined as the mass of i per unit mass of mixture:
From the definition, we can write

ci ¼
ri

r

If we know all of the values of ci, the chemical composition is uniquely defined.
All of the quantities just listed are intensive variables, that is, they do not depend
on the extent of the system. Also, for gas dynamic problems, variables based on
per unit mass are particularly useful. Thus, in our considerations to follow, we
will be particularly interested in mass fraction ci and mole-mass ratio hi.
However, if the chemical composition is given in terms of any of the preceding
variables, we can always calculate directly the values of the other variables. For
example, assume that the composition is described in terms of pi. The mole frac-
tions Xi are obtained directly by dividing Eq. (10.16) by Eq. (10.6):

piV

pV
¼

NiRT

NRT

or

pi

p
¼

Ni

N
; Xi (10:23)

where p ¼
P

i pi. The mass fraction can be obtained from Xi as

ci ¼ Xi

Mi

M

� �
(10:24)
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Equation (10.24) is based just on the physical meanings of ci, Xi, Mi, and M.
(Work this through in your mind.) Equation (10.24) can also be formally obtained
by dividing Eq. (10.15) by Eq. (10.3), and using the relations given in Eqs. (10.11)
and (10.17). Other relations are the subject of homework problem 10.1.

Note that, based on the definitions of ci and Xi, the following relations hold:X
i

ci ¼ 1

and X
i

Xi ¼ 1

Before leaving this section, let us examine two related questions. First, how
are R and Ri related; the former is the specific gas constant for the mixture,
and the latter is the specific gas constant for the species i. From Eqs. (10.12),
(10.3), and (10.15), we have

p ¼
X

i

pi

rRT ¼
X

i

riRiT

R ¼
X

i

ri

r
Ri

R ¼
X

i

ciRi (10:25)

Hence, for a chemically reacting mixture, the value of R for the mixture can be
obtained from a simple summation of the Ri multiplied by their respective mass
fractions. Secondly, how do we obtain the mixture molecular weight M. For
example, this is needed in Eq. (10.24), and it also represents an alternate
calculation of R through the relation R ¼ R=M. An answer is obtained from Eq.
(10.25) written as

R

M
¼
X

i

ci

R

Mi

Solving for M, we have

M ¼
1P

i

ci=Mi
(10:26)

Equation (10.26) allows the calculation of M from the composition of the gas
mixture given in terms of mass fraction ci. An alternative relation in terms of
the mole fraction is

M ¼
X

i

XiMi (10:27)
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Equation (10.27) is based simply on the physical meaning of the terms involved;
work it through yourself.

10.4 Classification of Gases

For the analysis of gas dynamic problems, we can identify four categories of
gases, as follows.

10.4.1 Calorically Perfect Gas

By definition, a calorically perfect gas is one with constant specific heats cp

and cv. In turn, the ratio of specific heats g ¼ cp=cv is constant. For this gas,
the enthalpy and internal energy are functions of temperature, given explicity by

h ¼ cpT

and

e ¼ cvT

The perfect-gas equation of state holds, for example,

pv ¼ RT

where R is a constant. In the introductory study of compressible flow, the assump-
tion of a calorically perfect gas is almost always made (for example, see [4] and
[5]); hence, the thermodynamics of a calorically perfect gas is probably quite
familiar to you. Indeed, for the hypersonic analyses contained in Parts 1 and 2
of this book, the assumption of a calorically perfect gas was almost universally
made, and many of the detailed formulas and results were obtained under the
assumption of constant g.

10.4.2 Thermally Perfect Gas

By definition, a thermally perfect gas is one where cp and cv are variables and
specifically are functions of temperature only.

cp ¼ f1(T)

cv ¼ f2(T)

Differential changes in the h and e are related to differential changes in T via

dh ¼ cp dT

de ¼ cv dT

Hence, h and e are functions of T only, that is,

h ¼ h(T)

e ¼ e(T)
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The perfect-gas equation of state holds, for example,

pv ¼ RT

where R is a constant. In Chapter 11 we will demonstrate that the temperature
variation of specific heats, hence the whole nature of a thermally perfect gas, is
caused by the excitation of vibrational energy within the molecules of the gas
and to the electronic energy associated with electron motion within the atoms
and molecules.

10.4.3 Chemically Reacting Mixture of Perfect Gases

Here we are dealing with a multispecies, chemically reacting gas where
intermolecular forces are neglected; hence, each individual species obeys the
perfect-gas equation of state in such forms as given by Eqs. (10.13–10.22).
At this stage, we need to make a distinction between equilibrium and
nonequilibrium chemically reacting gases. Our discussion here will be prelimi-
nary; a more fundamental understanding of the meaning of equilibrium and
nonequilibrium systems will evolve in subsequent chapters. For the time
being, imagine that you take the air in the room around you, and instantly
increase the temperature to 5000 K, holding the pressure constant at 1 atm.
We know from Fig. 9.12 that dissociation will occur. Indeed, let us allow
some time (maybe several hundred milliseconds) for the gas properties to
“settle out,” and come to some steady state at 5000 K and 1 atm. The chemical
composition that finally evolves in the limit of “large” times (milliseconds) is
the equilibrium composition at 5000 K and 1 atm. In contrast, during the first
few milliseconds immediately after we instantly increase the temperature to
5000 K, the dissociation reactions are just beginning to take place, and the vari-
ation of the amount of O2, O, N2, N, etc. in the gas is changing as a function of
time. This is a nonequilibrium system. After the lapse of a sufficient time, the
amounts of O2, O, N2, etc. will approach some steady values, and these steady
values are the equilibrium values. It is inferred from the preceding that, once
the system is in equilibrium, then the equilibrium values of cO2

, cN2
, cO, cN,

etc. will depend only on the pressure and temperature, that is, at 5000 K and
1 atm, the equilibrium chemical composition is uniquely defined. We will
prove this later in the present chapter. In contrast, for the nonequilibrium
system, cO2

, cN2
, cO, etc. depend not only on p and T, but also on time. If

the nonequilibrium system were a fluid element rapidly expanding through a
shock-tunnel nozzle, another way of stating this effect is to say that cO2

, cN2
,

etc. depend on the “history” of the flow.
With these thoughts in mind, we can define a chemically reacting mixture of

perfect gases as follows. Consider a system at pressure p and temperature T. For
convenience, assume a unit mass for the system. The number of particles of each
different chemical species per unit mass of mixture are given by N1, N2, . . . , Nn.
For each individual chemical species present in the mixture (assuming a perfect
gas), the enthalpy and internal energy per unit mass of i, hi, and ei, respectively,
will be functions of T (i.e., each individual species, by itself, behaves as a ther-
mally perfect gas). However, h and e for the chemically reacting mixture
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depend not only on hi and ei, but also on how much of each species is present.
Therefore, for a chemically reacting mixture of perfect gases, in the general
nonequilibrium case, we write

h ¼ h(T , N1, N2, N3, . . . , Nn)

e ¼ e(T , N1, N2, N3, . . . , Nn)

cr ¼ f1(T , N1, N2, N3, . . . , Nn)

r ¼ f2(T , N1, N2, N3, . . . , Nn)

where, in general, N1, N2, N3, . . . , Nn depend on p, T, and the “history of the gas
flow.” The perfect-gas equation of state still holds:

pv ¼ RT

However, here R is a variable because in a chemically reacting gas the molecular
weight of the mixture M is a variable, and R ¼ R=M.

For the special case of an equilibrium gas, the chemical composition is a
unique function of p and T; hence, N1 ¼ f1( p, T), N2 ¼ f2( p, T ), etc. Therefore,
the preceding results for h, e, cp, and cv become

h ¼ h(T , p)

e ¼ e1(T , p) ¼ e2(T , v)

cp ¼ f1(T , p)

cv ¼ f2(T , p) ¼ f3(T , v)

In the preceding, it is frequently convenient to think of e and cv as functions of T and v
rather than T and p. It does not make any difference, however, because for a themo-
dynamic system in equilibrium (including an equilibrium chemically reacting
system) the state of the system is uniquely defined by any two state variables. The
choice of T and p, or T and v, in the preceding, is somewhat arbitrary in this sense.

10.4.4 Real Gas

Here, we must take into account the effect of intermolecular forces. We could
formally consider a chemically reacting gas as well as a nonreacting real gas.
However, in practice, a gas behaves as a real gas under conditions of very high
pressure and low temperature—conditions that accentuate the influence of inter-
molecular forces on the gas. For these conditions, the gas is rarely chemically
reacting. Therefore, for simplicity, we will consider a nonreacting gas here.
Recall that for both the cases of a calorically perfect gas and a thermally
perfect gas, h and e were functions of T only. For a real gas, with intermolecular
forces, h and e depend on p (or v) as well:

h ¼ h(T , p)

e ¼ e(T , v)

cp ¼ f1(T , p)

cv ¼ f2(T , v)
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Moreover, the perfect-gas equation of state is no longer valid here. Instead, we
must use a real-gas equation of state, of which there are many versions.
Perhaps the most familiar is the Van der Waals equation, given by

pþ
a

v2

� �
(v� b) ¼ RT (10:28)

where a and b are constants that depend on the type of gas. Note that Eq. (10.28)
reduces to the perfect-gas equation of state when a ¼ b ¼ 0. In Eq. (10.28) the
terms a=v2 take into account the intermolecular force effects, and b takes into
account the actual volume of the system occupied by the volume of the gas
particles themselves.

In summary, the preceding discussion has presented four different categories
of gases. Any existing analyses of thermodynamic and gas dynamic problems
will fall in one of these categories; they are presented here so that you can estab-
lish an inventory of such gases in your mind. It is extremely helpful to keep these
categories in mind while performing any study of gas dynamics.

Also, to equate these different categories to a practical situation, let us once
again take the case of air. Imagine that you take the air in the room around you
and begin to increase its temperature. At room temperature, air is essentially a
calorically perfect gas, and it continues to act as a calorically perfect gas until
the temperature reaches approximately 800 K. Then, as the temperature
increases further, we see from Fig. 9.12 that vibrational excitation becomes
important. When this happens, air acts as a thermally perfect gas. Finally,
above 2500 K, chemical reactions occur, and air becomes a chemically reacting
mixture of perfect gases. If we were to go in the opposite direction, that is,
reduce the air temperature considerably below room temperature, and/or
increase the pressure to a very high value, say, 1000 atm, then the air would
behave as a real gas.

Finally, it is important to note a matter of nomenclature. We have followed
classical physical chemistry in defining a gas where intermolecular forces are
important as a real gas. Unfortunately, an ambiguous term has evolved in the aero-
dynamic literature that means something quite different. In the 1950s, aerodynami-
cists were suddenly confronted with hypersonic entry vehicles at velocities as
high as 26,000 ft/s (8 km/s). As discussed in Chapter 9, the shock layers around
such vehicles were hot enough to cause vibrational excitation, dissociation, and
even ionization (see Fig. 9.13). These were “real” effects that happened in air in
“real life.” Hence, it became fashionable in the aerodynamic literature to denote
such conditions as real-gas effects. For example, the categories just itemized as
a thermally perfect gas, and as a chemically reacting mixture of perfect gases,
would come under the classification of real-gas effects in some of the aerodynamic
literature. But in light of classical physical chemistry, this is truly a misnomer.
A real gas is truly one in which intermolecular forces are important, and this has
nothing to do with vibrational excitation or chemical reactions. Therefore, in
this book we will talk about high-temperature effects and will discourage the
use of the incorrect term real-gas effects.

With this, we have completely navigated the left column of our chapter road
map in Fig. 10.2. We now move on to the center column and concentrate on some
thermodynamics.
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10.5 First Law of Thermodynamics

Classical thermodynamics is based on two fundamental laws, the first of which
is described here. Consider a system of gas as sketched in Fig. 10.5. The system is
separated from its surroundings by a boundary. The gas in the system is com-
posed of molecules, each of which has a particular energy (to be discussed in
Chapter 11). The internal energy E of the system is equal to this molecular
energy summed over all of the molecules in the system. A change in this internal
energy dE can be brought about by 1) adding heat dQ across the boundary of the
system and 2) doing work on this system dW . This is sketched in Fig. 10.5. Here
dE is an infinitesimally small change in internal energy, and dQ and dW are small
increments in heat and work. As you may recall from thermodynamics, dE is an
exact differential, related just to the change in state of the system, whereas dQ and
dW are not exact differentials because they depend on the process by which
heat is added or work is done. With these items in mind, the first law of thermo-
dynamics is written as

dQþ dW ¼ dE (10:29)

Equation (10.29) holds for any type of gas, nonreacting or reacting, perfect or real.
If we have no shaft work done on the system (no mechanical device sticking

through the boundary of the system and performing work, such as a paddle wheel
or turbine), then the work done on or by the system is caused by the compression
(dV negative) or expansion (dV positive) of the volume of the system. For
example, imagine the system is the air inside an inflated balloon. Grab hold of
the balloon, and squeeze it with your hands. You are doing work on the air in
the balloon, and in the process you are decreasing its volume. The amount of
work associated with an infinitesimally small volume change dV is

dW ¼ �p dV (10:30)

The derivation of Eq. (10.30) can be found in any good thermodynamics text
and is also given in Chapter 4 of [1]. Equation (10.30) is based on purely

Fig. 10.5 System to illustrate the first law of thermodynamics.
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mechanical reasoning; it is good for any type of gas, reacting or nonreacting,
perfect or real.

Combining Eqs. (10.29) and (10.30), we have

dQ ¼ dE þ p dV (10:31)

In gas dynamics, we like to deal in terms of per unit mass, hence, considering
Eq. (10.31) in terms of per unit mass, we write

dq ¼ deþ p dv (10:32)

where dq is the heat added per unit mass. Also, the definition of enthalpy is

h ¼ eþ pv

Hence,

dh ¼ deþ p dvþ v d p

or

de ¼ dh� p dv� v d p (10:33)

Substituting Eq. (10.33) into (10.32), we obtain

dq ¼ dh� v dp (10:34)

Equations (10.32) and (10.34) are very useful alternate forms of the first law
of thermodynamics. We will have many occasions to refer to these forms.
Also, in the spirit of distinguishing the fundamentals of chemical thermo-
dynamics from the reader’s prior experience in classical thermodynamics, we
will be constantly reminding the reader about what does, and what does not,
apply to a chemically reacting gas. For example, the entire development in this
section is based on a general thermodynamic system; hence, everything in this
section applies to any type of gas.

A large number of basic thermodynamic relations can be obtained from the
first law. We will obtain one of them here because it bears on the difference
between reacting and nonreacting gases. Specifically, we consider the relation

cp � cv ¼ R (10:35)

Equation (10.35) is a familiar relation from elementary thermodynamics dealing
with calorically perfect gases.

Question: Does Eq. (10.35) hold for a thermally perfect gas? A chemically reacting gas?
A real gas?
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To answer this question, let us obtain a general expression for the difference in
specific heats, cp � cv, using the first law. Assuming an equilibrium system, we
can write

e ¼ e(T , v)

or, from the definition of a perfect differential

de ¼
@e

@T

� �
dT þ

@e

@v

� �
T

dv (10:36)

Recall from thermodynamics that cv is defined as

cv ¼
@e

@T

� �
v

(10:37)

Substituting Eq. (10.37) into (10.36), we have

de ¼ cv dT þ
@e

@v

� �
T

dv (10:38)

Substituting Eq. (10.38) into the first law in the form given by Eq. (10.32), we
have

dq ¼ cv dT þ
@e

@v

� �
T

þ p

� �
dv (10:39)

Now recall the definition of cp. In analogy with Eq. (10.37), we usually write

cp ;
@h

@T

� �
p

(10:40)

However, more fundamentally, we recall the basic definition of specific heat as
the heat added per unit change in temperature, that is, dq=dT . Because @q can
be added in an infinite number of different ways (different processes), the
dq=dT is not unique. However, if we stipulate that dq is added at constant
pressure, (dq=dT )p, then we have a unique quantity, and it is defined as cp. Thus,

cp ;
dq

dT

� �
p

(10:41)

Considering a constant-pressure process, Eq. (10.39) can be written as

dq

dT

� �
p

¼ cv þ
@e

@v

� �
T

þ p

� �
@v

@T

� �
p

(10:42)

From the relation given by Eq. (10.41), we can then express Eq. (10.42) as

cp � cv ¼
@e

@v

� �
T

þ p

� �
@v

@T

� �
p

(10:43)
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Equation (10.43) is a general relation for the difference cp � cv for any type of
gas, real or perfect, reacting or nonreacting. Specializing Eq. (10.43) we have,
from the perfect-gas equation of state,

v ¼
RT

p

For a nonreacting gas, where R is constant, this yields

@v

@T

� �
p

¼
R

p
(10:44)

Substitute Eq. (10.44) into (10.43), obtaining

cp � cv ¼ Rþ
R

p

@e

@v

� �
T

(10:45)

For both cases of a calorically perfect gas and a thermally perfect gas, where e is a
function of T only, (@e=@v)T ¼ 0, and Eq. (10.45) yields

cp � cv ¼ R

which is Eq. (10.35). However, for a chemically reacting gas, e is a function of
both T and v, e ¼ e(T , v), and therefore (@e=@v)T has a finite value. Thus, Eq.
(10.43) must be used to obtain cp � cv for a chemically reacting mixture. For a
real gas, because Eq. (10.44) does not hold, we also have to use Eq. (10.43) to
obtain the difference in specific heats. Thus, we have answered our question,
namely, that the familiar relation given in Eq. (10.35) holds for a calorically
perfect or a thermally perfect gas, but it does not hold for a chemically reacting
gas or a real gas.

10.6 Second Law of Thermodynamics

The second law of thermodynamics is involved with the concept of entropy s,
conventionally defined as

ds ;
dqrev

T
(10:46)

Here, we are considering a system originally in state 1 where the entropy is s1,
undergoing an infinitesimal change to state 2, where the entropy is s2 ¼ s1 þ ds.
The process by which this change is taking place can be reversible or irrever-
sible. (An irreversible process is one that involves the dissipative effects of
viscosity, thermal conduction, or mass diffusion, and/or where the system is in
nonequilibrium. A reversible process is one that involves none of the above.)
This change from state 1 to state 2 is illustrated in Fig. 10.6. Here we see two poss-
ible paths by which the system can change from state 1 to state 2. State 1 is the
same in both cases, and state 2 is the same in both cases. Because s is a state
variable, then ds is the same in both cases. At the top of Fig. 10.6, the change in
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state of the system is imagined as taking place as a result of the reversible addition
of heat dqrev, and ds is given by Eq. (10.46). If the process were truly reversible,
then dqrev would be the actual heat added. However, if the process is irreversible,
the dqrev is not the actual heat added; rather, dqrev is an “artificial” number con-
trived to satisfy Eq. (10.46). Thus, if the process shown at the top of Fig. 10.6 is
irreversible, then dqrev is a number that is chosen to satisfy Eq. (10.46) for the
given ds. A more satisfactory way of looking at this situation is sketched at the
bottom of Fig. 10.6. Here we see the same two states, with the same entropy
change ds as the upper sketch. However, now dq denotes the actual heat added,
no matter whether the process is reversible or irreversible. If the process were
reversible, the change in entropy ds would be caused totally by dq, which would
be given by dq ¼ Tds from Eq. (10.46). However if the process is irreversible,
then ds is caused only in part by dq and is also caused by the effect of any irrever-
sibilities taking place in the system (because of friction, thermal conduction, diffu-
sion, and/or nonequilibrium). For an irreversible process, the value of dq is less
than it would be for a reversible process, the difference being supplied by the irre-
versibilities. Thus, in contrast to Eq. (10.46), it is more satisfying to write the
change of entropy as follows:

ds ¼
dq

T
þ dsirrev (10:46a)

In Eq. (10.46a), dq is the actual amount of heat added during the process, and dsirrev

is the generation of entropy caused by the dissipative phenomena itemized earlier.
These dissipative phenomena always increase the entropy; hence,

dsirrev . 0

Fig. 10.6 Systems to illustrate the second law of thermodynamics.
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Therefore, from Eq. (10.46a),

ds .
dq

T
(10:47)

If the process is adiabatic, where by definition dq ¼ 0, then

ds . 0 (10:48)

Equations (10.47) and (10.48) are statements of the second law of thermo-
dynamics. Moreover, all of the statements and equations in the section are
very fundamental; they apply in general for nonreacting or reacting gases and
for perfect or real gases. The second law dictates that, no matter what process
is acting on the system, the inequalities given in Eqs. (10.47) or (10.48) must
be satisfied.

10.7 Calculation of Entropy

Because entropy is a state variable, it must be uniquely related to other state
variables. The purpose of this section is to obtain such a relationship.

For a system in equilibrium, entropy can be expressed as a function of T and p.
This is true for all of the categories of gases discussed in Sec. 10.4. For example,
even for calorically or thermally perfect gases, where enthalpy and internal
energy are functions of temperature only, the entropy still depends on both T
and p. Indeed, a familiar expression for the entropy change between two states,
s2 � s1, for a calorically perfect gas is

s2 � s1 ¼ cp ln
T2

T1

� R ln
p2

p1

(10:49)

[The reader should check his or her memory bank or standard texts such as
[1] and [5] for Eq. (10.49).] If s2 represents the entropy s at a given temperature
T ¼ T2 and p ¼ p2, and if s1 represents a reference value of entropy sref at temp-
erature T1 ¼ Tref and pressure p1 ¼ pref , then Eq. (10.49) can be written as

s ¼ cp ln
T

Tref

� R ln
p

pref

þ sref (10:50)

Keep in mind that Eq. (10.50) holds for a calorically perfect gas only.
Let us obtain an expression somewhat analogous to Eq. (10.50) that holds for

an equilibrium chemically reacting mixture. In the following, we will denote
quantities per mole by capital letters, that is, S, H, E, etc. will hereafter denote
the entropy, enthalpy, internal energy, etc. per mole. Let Si be the entropy of
species i per mole of species i. Then we can write for the mixture,

S ¼
X

i

XiSi (10:51)
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where S is the entropy per mole of mixture, Si is the entropy of species i per mole
of i, and Xi is the mole fraction. Let us obtain an expression for Si and insert it into
Eq. (10.51) to obtain the entropy of the reacting mixture.

To begin with, consider a system with just the pure species i at the temperature
T and pressure pi. Assume there is one mole of species i in the system, so that the
entropy is Si and the enthalpy is Hi. From the first law in the form of Eq. (10.34),
but written per mole,

dQ ¼ dHi �Vi dpi (10:52)

From Eq. (10.46) written per mole,

T dSi ¼ dQrev (10:53)

We can assume a reversible process, and combine Eqs. (10.52) and (10.53),
obtaining

dSi ¼
dHi

T
�
Vi

T
dpi (10:54)

From Eq. (10.18), we have

Vi

T
¼

R

pi

(10:55)

Substituting Eq. (10.55) into (10.54), we have

dSi ¼
dHi

T
�R

dpi

pi

(10:56)

Species i by itself is a thermally perfect gas, where by definition Cpi ¼ f (T).
From Sec. 10.4, we can write

dHi ¼ C pi dT (10:57)

where Cpi is the specific heat at constant pressure for one mole of species i.
Substituting Eq. (10.57) into (10.56), we have

dSi ¼ C pi

dT

T
�R

dpi

pi

(10:58)

Integrating Eq. (10.58) between a reference condition with entropy Si, ref at refer-
ence temperature Tref and reference pressure pref , and a state where the entropy is
Si at a temperature and pressure of T and pi, respectively, we have

ðSi

Si;ref

dSi ¼

ðT

Tref

C pi

dT

T
�R

ð pi

pref

dpi

pi
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or

Si ¼

ðT

Tref

C pi

dT

T
�R ln

pi

pref

þ Si, ref (10:59)

Equation (l0.59) is an expression for the entropy per mole of the pure species i.
The entropy of the mixture is obtained by combining Eqs. (10.51) and (10.59)

S ¼
X

i

Xi

ðT

Tref

C pi

dT

T
�R ln

pi

pref

� �
þ
X

i

XiSi, ref

or

S ¼
X

i

Xi

ðT

Tref

Cpi

dT

T
�R ln

pi

pref

� �
þ Sref (10:60)

where Sref is the reference entropy level for the mixture, given by Sref ¼P
i XiSi, ref . Equation (10.60) gives the entropy per mole of mixture for an equili-

brium chemically reacting mixture, as a function of the temperature T, and the
individual partial pressures pi. In turn, as we will see in Sec. 10.9, the individual
pi are functions of the temperature T and the total mixture pressure p. Hence
Eq. (10.60) for an equilibrium chemically reacting gas gives S ¼ S( p, T) and
is the direct analog of Eq. (10.50) for a catorically perfect gas.

10.8 Gibbs Free Energy and the Entropy Produced

by Chemical Nonequilibrium

In Sec. 10.7, we obtained an expression for the entropy of an equilibrium chemi-
cally reacting mixture. Now consider two different equilibrium states of this
mixture, where the temperatures and pressures are T2, p2, and T1, p1, respectively.
The corresponding change in entropy S2 � S1 can be found by using Eq. (10.60).
Because entropy is a state variable, S2 ¼ S(T2, p2) and S1 ¼ S(T1, p1). Once two
states are specified, S2 � S1 is totally independent of any possible process by
which state 1 is changed into state 2. However, we do know from Eq. (10.46a)
that, no matter what the process might be, in general part of the entropy change
is caused by heat exchange and the other part caused by irreversibilities:

dS ¼
dQ

T
þ dSirrev (10:61)

Although S2 � S1 is independent of the process between the two specified equili-
brium states, it is sometimes very useful to know, for a specific process connecting
states 1 and 2, how much of the S2 � S1 is caused by irreversibilities during the
process. This is particularly true when the irreversibilities are caused by chemical
nonequilibrium during the process. Therefore, the purpose of this section is to
calculate the change in entropy as a result of a chemical nonequilibrium process.
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To accomplish this, let us introduce a new, defined thermodynamic variable,
namely, the Gibbs free energy per mole of mixture, denoted by G. By definition

G ; H � TS (10:62)

Hence,

dG ¼ dH � T dS� S dT

or

dH ¼ dGþ T dSþ S dT (10:63)

Putting Eq. (10.63) “on hold” for a moment, return to Eq. (10.61). For dQ in this
equation, we have from the first law [Eq. (10.34)]

dQ ¼ dH �Vdp

Hence, Eq. (10.61) is written as

dS ¼
dH

T
�
V

T
dpþ dSirrev

or

T dS ¼ dH �Vdpþ T dSirrev (10:64)

Now, combine Eqs. (10.63) and (10.64):

T dS ¼ dGþ T dSþ S dT �Vdpþ T dSirrev

The terms involving T dS cancel, leaving

dG ¼ �S dT þVdp� T dSirrev (10:65)

Before examining Eq. (10.65), further note that, if we had an equilibrium
mixture, because G is a state variable we could write G ¼ G( p, T ). However,
because we are treating a chemical nonequilibrium process here, where the
number of particles of species i per mole of mixture Ni is a function of not
only T and p but also the timewise history of the process, we must write

G ¼ G(T , p, N1, N2, . . . , Ni, . . . , Nn) (10:66)

The total differential of Eq. (10.66) is

dG ¼
@G

@T

� �
p

dT þ
@G

@p

� �
T

dpþ
X

i

@G

@Ni

dNi (10:67)

Comparing Eqs. (10.65) and (10.67) term by term, we see that

S ¼ �
@G

@T

� �
p

V ¼
@G

@p

� �
T

(10:67a)
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and

�T dSirrev ¼
X

i

@G

@Ni

dNi (10:68)

Equation (10.67a) expresses two basic thermodynamic relations, and Eq. (10.68)
gives the change in entropy caused by the irreversible effect of nonequilibrium
chemical reactions. Let us cast Eq. (10.68) in slightly different form. For a chemi-
cally reacting mixture, the value of G per mole of mixture is related to g0i, which is
defined as the Gibbs free energy of species i per particle through

G ¼
X

i

Nig
0
i (10:69)

where, again, Ni is the number of i particles per mole of mixture. Equation
(10.69) is based on simple physical definitions, that is, g0i is the Gibbs free
energy of species i per particle of i, Nig

0
i is then the Gibbs free energy caused

by species i per mole of mixture, and the summation over all of the species
gives the Gibbs free energy of the mixture per mole of mixture. Noting that
Eq. (10.69) can be expanded as

G ¼ N1g01 þ N2g02 þ � � � þ Nig
0
i þ � � � þ Nng0n

then,

@G

@Ni

¼ g0i (10:70)

Substituting Eq. (10.70) into (10.68), we have

dSirrev ¼ �
1

T

X
i

g0i dNi (10:71)

Letting NA denote Avogadro’s number (number of particles per mole),
Eq. (10.71) becomes

dSirrev ¼ �
1

T

X
i

(NAg0i)
dNi

NA

� �
(10:71a)

However,

NAg0i ¼ Gi (Gibbs free energy of species i per mole of i)

dNi

NA

¼ dNi (change in the number of moles of i)

Then, Eq. (10.71a) becomes

aSirrev ¼ �
1

T

X
i

Gi dNi (10:72)
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Equation (10.72) is the final result expressing the infinitesimal increase in entropy
caused by a nonequilibrium chemically reacting process to the corresponding
infinitesimal nonequilibrium changes in the number of moles dNi. From the
second law (see Sec. 10.6)

dSirrev . 0

On the other hand, if the change in thermodynamic state is taking place
through an infinite number of local equilibrium states, the process is reversible,
and we have

dSirrev ¼ 0 (10:73)

From Eq. (10.72) this implies an equilibrium relation between the Ni such thatP
i GidNi is zero for an equilibrium mixture. This provides a mechanism for

calculating the equilibrium chemical composition of the mixture, as discussed
in the next section.

With this, we have completely navigated the center column of our chapter
road map in Fig. 10.2. We now move on to the right-hand column.

10.9 Composition of Equilibrium Chemically Reacting

Mixtures: The Equilibrium Constant

Let us review what we have stated about an equilibrium chemically reacting
mixture:

1) For any equilibrium thermodynamic system, any thermodynamic state
variable is a function of any other two state variables, for example,

H ¼ H(T , p)

E ¼ E(T , v)

etc:

2) For an equilibrium chemically reacting mixture, the chemical composition
is also a unique function of any two state variables, for example,

Ni ¼ f1(T , p) ¼ f2(T , v) ¼ f3(T , S )

Xi ¼ f3(T , p) ¼ f4(T , v) ¼ f5(T , S )

etc:

The second statement is certainly inferred by our discussion surrounding
Fig. 9.12, where the ranges of dissociation and ionization are given in terms of
temperature for a fixed pressure of 1 atm. In chemically reacting flows, it is par-
ticularly convenient to think in terms of the equilibrium chemical composition as
given by the local T and p. Hence, the purpose of the present section is to answer
the following question: for an equilibrium chemically reacting mixture at a given
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p and T, what is the equilibrium chemical composition? The answer is derived
from Eq. (10.72) applied to an equilibrium system where by definition
dSirrev ¼ 0. Hence, for an equilibrium chemically reacting mixture,

X
i

GidNi ¼ 0 (10:74)

To solve for the equilibrium composition, we will use Eq. (10.74) in a slightly
different form, as developed next. A general statement of a chemical reaction is
given by the following chemical equation:

n0iA1 þ n02A2 þ � � � þ n0kAk �! n0kþ1Akþ1 þ n0kþ2Akþ2 þ � � � þ n0jAj (10:75)

where A1, A2, etc. denote different chemical species and n01, n02, etc. are the stoi-
chiometric mole numbers for each chemical species. By definition, the chemical
species, A1, A2, . . . , Ak on the left side of Eq. (10.75) are called the reactants, and
Akþ1, Akþ2, . . . , Aj on the right side are called the products. Another convention
is to write Eq. (10.75) in the form

0 ¼
Xj

i¼1

niAi (10:76)

where ni is the stoichiometric mole number associated with species Ai and where
ni is negative for the reactants and positive for the products. The symbol Ai is
simply a symbol for the chemical species i. For example, consider the following
chemical equation:

H2 þ O �! OHþ H (10:77)

In the terms of the convention set by Eq. (10.76), for this chemical equation
we have

A1 ¼ H2 n1 ¼ �1

A2 ¼ O n2 ¼ �1

A3 ¼ OH n3 ¼ 1

A4 ¼ H n4 ¼ 1

Another example is

1
2

O2 �! O (10:78)

where

A1 ¼ O2 n1 ¼ �
1
2

A2 ¼ O n2 ¼ 1
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In this section, we will adopt the convention of writing a general chemical
equation in the form of Eq. (10.76). Examine Eq. (10.76) more closely. Note
that any change in the number of moles of species i, denoted by dNi, as a
result of a specific chemical equation as represented by Eq. (10.76), must be pro-
portional to ni. For example, if we had a chemically reacting mixture where
Eq. (10.78) was the only reaction, then a 0.1 mole increase in O is accompanied
by a 0.05 mole decrease in O2; the changes in molar composition are in the ratio
of n2 : n1 ¼ 1:�1

2
. In general, for a system governed by Eq. (10.76), we can write

dN1 : dN2 : � � � dNj ¼ n1 : n2 � � � nj

Let the common proportionality constant be denoted by dj, such that

dN1

n1

¼
dN2

n2

¼ � � �
dNj

n j

¼ dj

or

dN1 ¼ n1 dj

dN2 ¼ n2 dj

..

.

dNj ¼ nj dj (10:79)

A physical interpretation of j can be obtained as follows. Integrate Eq. (10.79)
from a reference condition where j ¼ 0 and Ni ¼Ni, ref , to the condition
where the corresponding quantities are j and Ni,

ðNi

Ni, ref

dNi ¼

ðj
0

ni dj

or

Ni �Ni, ref ¼ nij (10:80)

From Eq. (10.80), j can be seen as an index that describes the degree to which the
chemical reaction has advanced from the reference condition. For example, when
j ¼ 0 the chemical composition is at the reference condition. When j is greater
than zero, the reaction has taken place to the extent that Ni has changed from
Ni, ref to its current value Ni. Hence, we can properly define j as the degree of
advancement because it is an index of the advancement of the mole fractions
caused by the chemical reaction given by Eq. (10.76) and where the quantitative
amount of advancement is given by Eq. (10.80). In turn, the differential dj
is simply an infinitesimal change in the degree of advancement. Returning to
Eq. (10.79), we can write for any species i,

dNi ¼ ni dj (10:81)

where for a given reaction dj is the same common factor for all species appear-
ing in the reaction. Also, please note that our discussion from Eq. (10.75) to here
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does not depend in any way on the system being in equilibrium; the preceding
relations and concepts apply in general to both equilibrium and nonequilibrium
systems.

Let us now return to our discussion of equilibrium chemically reacting
systems and to Eq. (10.74), which describes such systems. Substituting Eq.
(10.81) into (10.74), we have X

i

Gini dj ¼ 0 (10:82)

Because dj is the same for all species in a given chemical reaction, it is a constant
value in Eq. (10.82). Hence, from Eq. (10.82),

dj
X

i

Gini

 !
¼ 0

or

X
i

niGi ¼ 0 (10:83)

Equation (10.83) is an alternate form of Eq. (10.74) and is therefore also a
condition for equilibrium. Moreover, j has dropped out of Eq. (10.83); the
concept of the degree of advancement was useful for the derivation of
Eq. (10.83), but we will have no need for it in our future discussions.

The purpose of this section is to obtain a procedure for calculating the compo-
sition of an equilibrium chemically reacting mixture. Equation (10.83) leads to
that procedure, after the following development. From the definition given in
Eq. (10.62) we write, for species i,

Gi ¼ Hi � TSi (10:84)

where Gi, Hi, and Si are the Gibbs free energy, enthalpy, and entropy of species i
per mole of i. Substituting Eq. (10.59) for Si into Eq. (10.84), we have

Gi ¼ Hi � T

ðT

Tref

C pi

dT

T
�R ln

pi

pref

þ Si, ref

� �
(10:85)

For a moment, assume that pi in Eq. (10.85) is one atmosphere, and let G
pi¼1
i be

the value of Gi evaluated at pi ¼ 1 atm. Then, from Eq. (10.85),

G
pi¼1
i ¼ Hi � T

ðT

Tref

C pi

dT

T
þR ln pref þ Si, ref

� �
(10:86)

Combining Eqs. (10.85) and (10.86), we have

Gi ¼ G
pi¼1
i þRT ln pi (10:87)
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Substituting Eq. (10.87) into the condition for equilibrium given by Eq. (10.83),
we have X

i

niGi ¼
X

i

ni(G
pi¼1
i þRT ln pi) ¼ 0

X
i

niG
pi¼1
i þRT

X
i

ni ln pi ¼
X

i

niG
pi¼1
i þRT

X
i

ln pni

i ¼ 0

or

X
i

ln pni

i ¼ �
X

i

ni

G
pi¼1
i

RT

or

Y
i

pni

i ¼ exp �
X

i

ni

G
pi¼1
i

RT

 !
(10:88)

Consider the physical meaning of
P

i niG
pi¼1
i , with Eq. (10.76) in mind. With ni

negative for the reactants and positive for the products,
P

i niG
pi¼1
i is simply the

Gibbs free energy of the products minus the Gibbs free energy of the reactants for
the given chemical equation, with all species evaluated at 1 atm pressure. Denote
this difference by DG p¼1 where, by definition,

DG p¼1 ;
X

i

niG
pi¼1
i ¼ (G p¼1 for products)� (G p¼1 for reactants) (10:89)

For example, for the reaction

OHþ H2 �! H3Oþ H

the change in Gibbs free energy at 1 atm is given by

DG p¼1 ¼ G
p¼1
H2O þ G

p¼1
H � G

p¼1
OH � G

p¼1
H2

and for the reaction

1
2

O2 �! O

we have

DG p¼1 ¼ G
p¼1
O � 1

2
G

p¼1
O2

Inserting the definition given by Eq. (10.89) into (10.88), we have

Y
i

pni

i ¼ e�DGp¼1=RT
(10:90)
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In Eq. (10.90), DG p¼1 depends only on T. Hence,

e�DG p¼1=RT ¼ f (T) ; Kp(T) (10:91)

where Kp(T) is defined as the equilibrium constant for the given chemical reac-
tion. Hence, Eq. (10.90) becomes

Y
i

pni

i ¼ Kp(T) (10:91a)

Emphasis is made that the equilibrium constant in Eq. (10.91) is strictly a func-
tion of temperature only. For a given chemical reaction, Kp(T) can sometimes be
obtained from experiment and can always be calculated from statistical thermo-
dynamics, as discussed in Chapter 11.

Equation (10.91a) is the crux of the present section. It is a form of a general
principle called the law of mass action, which essentially ensures the preservation
of total mass during a chemical reaction. With it, we can establish a method for
the calculation of the equilibrium composition of a chemically reacting mixture,
as follows.

Assume that we have a system of chemically reacting gases in equilibrium at a
given p and T. For clarity, it is best to consider a specific case. Let us consider the
combustion chamber of a rocket engine, where H2 is injected as the fuel and O2 is
injected as the oxidizer. The H2 and O2 are injected at a given ratio to each other,
that is, at a given fuel/oxidizer ratio. In the combustion chamber, the H2 and
O2 will chemically react through numerous different chemical equations.
Assume that the products of combustion finally form an equilibrium chemically
reacting system at a specific p and T. Assume that we know p and T by some inde-
pendent means. Furthermore, assume that the products of combustion form an
equilibrium chemically reacting mixture containing the following species:
H2, H, O2, O, OH, and H2O.

Question: What amounts of these species are present in the system in equilibrium at
the given p and T?

To answer this question, consider the following chemical equations involving
the mixture species, along with the definitions of the respective equilibrium
constants from Eq. (10.91).

1
2

H2 �! H:
pHffiffiffiffiffiffiffiffi
pH2

p ¼ K p, 1 (10:92)

1
2

O2 �! O:
pOffiffiffiffiffiffiffiffi
pO2

p ¼ K p, 2 (10:93)

H2 þ O �! OHþ H
pOH pH

pH2
pO

¼ K p, 3 (10:94)

OHþ H �! H2O
pH2O

pOH pH

¼ K p, 4 (10:95)
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Equations (10.92–l0.95) are relations for the partial pressures that must be satis-
fied for this mixture. These equations constitute a set of four equations with six
unknowns. To close the system, it is initially tempting to add two more chemical
equations, with their associated equilibrium constant expressions. However, this
would be inappropriate because the chemically reacting system, in addition to
obeying Eqs. (10.92–10.95), must satisfy two constraints. The first of these is
Dalton’s law of partial pressures, expressed by Eq. (10.12), that is, p ¼

P
i pi.

For the given system, this is

pH2
þ pH þ pO2

þ pO þ pOH þ pH2O ¼ p (10:96)

where p is the given pressure of the mixture, that is, the total pressure of the
mixture. The second constraint is associated with the number of hydrogen and
oxygen nuclei in the mixture, denoted by NH and NO, respectively. Because we
are not dealing with nuclear reactions, NH and NO remain constant in the
mixture, and their ratio NH=NO is a known quantity, fixed by the given fuel/oxi-
dizer ratio at which the hydrogen and oxygen are being pumped into the combus-
tion chamber. For convenience, let us assume a unit mass for the equilibrium
chemically reacting mixture; hence, NH and NO represent the number of nuclei
per unit mass of mixture. Also, note that each H2 molecule contributes two hydro-
gen nuclei to the mixture, each H2O molecule contributes two hydrogen nuclei,
and the OH molecule and H atom contribute one hydrogen nucleus each. There-
fore, to count the total number of hydrogen nuclei per unit mass of mixture, we
write

NH ¼ NA(2hH2
þ hH þ 2hH2O þ hOH)

where NA is Avogadro’s number (number of particles per mole) and hi is the fam-
iliar mole-mass ratio defined in Eq. (10.20), that is, the number of moles of
species i per unit mass of mixture. Similarly, to count the total number of
oxygen nuclei per unit mass of mixture, we have

NO ¼ NA(2hO2
þ hO þ hH2O þ hOH)

Hence, the ratio NH=NO is given by

NH

NO

¼
NA(2hH2

þ hH þ 2hH2O þ hOH)

NA(2hO2
þ hO þ hH2O þ hOH)

(10:97)

However, when Eq. (10.20) in the form of

hi ¼
piv

RT

is substituted into Eq. (10.97), we obtain

NH

NO

¼
NA(2pH2

þ pH þ 2pH2O þ pOH)

NA(2pO2
þ pO þ 2pH2O þ pOH)

(10:98)
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Important: Equations (10.92–10.96) and (10.98) constitute six algebraic

equations for the six unknown partial pressures. This determines the chemical

composition of the equilibrium chemically reacting mixture at the given T and

p, which was the objective of this section.

In Eqs. (10.92–10.95), the values of Kp(T) for the given temperature can be
obtained from the literature; [148] and [149] are excellent sources for such
data. Moreover, Kp(T) can be calculated directly from the results of statistical
thermodynamics, to be discussed in Chapter 11. As a reminder, in Eq.
(10.96), p is the given pressure of the mixture, and in Eq. (10.98) NH=NO is a
known ratio determined from the fuel/oxidizer ratio. Also, the chemical
equations chosen in Eqs. (10.92–10.95) must be independent, that is, one
cannot be obtained by adding or subtracting the others; this is to ensure that
the system of the algebraic equations is an independent system. Outside of
this consideration, the choice of the chemical reactions used for Eqs. (10.92–
10.95) is rather arbitrary, just as long as they involve the relevant species,
and the associated equilibrium constants can be obtained. Implicit in the preced-
ing calculation is the proper choice of the relevant chemical species present in
the mixture. In the preceding example, we assumed that the products of combus-
tion were primarily H2, H, O2, O, OH, and H2O. In such an equilibrium cal-
culation, we must be certain to assume all of the relevant species that might
be present; for example, if we had not included OH in the preceding calculation,
the results would be different, and they would be deficient. There is no routine
method that allows you to choose all of the relevant species automatically.
You have to make a good educated guess, based on prior knowledge of
the system. A safe approach is to assume all species that are made up of all
possible combinations of the various elements present; if many of these
assumed species are negligible, then they will show up in the calculation as
trace species only.

In summary, in the present section, we have done the following:
1) We have developed a method for calculating the chemical composition

of an equilibrium chemically reacting mixture. (Note that we have obtained the
equilibrium composition in terms of the partial pressures pi; however, once the
pi are known, we can obtain the composition in whatever other terms we wish,
as explained in Sec. 10.3.)

2) We have demonstrated that this equilibrium composition is a unique
function of p and T because a) Eqs. (10.92–10.95) require a knowledge of
the Kp, which are functions of T only, and b) Eq. (10.96) requires a knowledge
of p.

We will defer further considerations of the calculation of equilibrium
chemical compositions until Chapter 11.

10.10 Heat of Reaction

An important term in chemical thermodynamics is the heat of reaction, to be
defined in the present section. To introduce this concept, let us consider a specific
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example, as follows. Consider the chemical reaction given by

H2 þ
1
2

O2 �! OH þ H (10:99)

Assume that we have a system made up of one mole of H2 and a half-mole of
O2, at a reference temperature Tref . These are the reactants. The enthalpy of
the reactants is

(HH2
þ 1

2
HO2

)Tref ¼ enthalpy of the reactants at Tref

Now allow the reactants to form the products OH and H as shown in Eq. (10.99);
these represent the products of the reaction. Furthermore, carry out the reaction at
constant pressure. Finally, extract or add enough heat from or to the system so
that the products are also at the reference temperature Tref . Then, the enthalpy
of the products is given as

(HOH þ HH)Tref ¼ enthalpy of the products at Tref

By definition, the heat that was added to or subtracted from the preceding system
is called the heat of reaction for the chemical reaction at the reference tempera-
ture Tref . In turn, for the assumed constant pressure, from the first law in the form
of Eq. (10.34), we know that the heat added or subtracted is equal to the change in
enthalpy. Therefore, we will consider the heat of reaction at a given reference
temperature Tref for a given chemical reaction to be denoted by DHTref

R and to
be defined by

DHTref

R ¼ (enthalpy of the products at Tref )

� (enthalpy of the reactants at Tref)

For the chemical reaction given by Eq. (10.99),

DHTref

R ¼ (HOH þ HH � HH2
� 1

2
HO2

)Tref (10:100)

(Note: Keep in mind in the preceding discussion that Hi denotes the enthalpy of
species i per mole of i.)

In general, consider the generic chemical reaction given by Eq. (10.76),
repeated here:

0 ¼
Xj

i¼1

niAi

The heat of reaction for this chemical equation at the reference temperature is, by
definition,

DHTref

R ¼
X

i

niH
Tref

Ai (10:101)
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The values of DHTref

R for various chemical reactions can be constructed from the
data given in [148] and [149] and can also be calculated from the results of stat-
istical thermodynamics discussed in Chapter 11. The concept of the heat of
reaction is very important in evaluating the chemical energy changes that
take place in chemically reacting flowfields, as we will see in subsequent
chapters.

10.11 Summary and Comments

Referring to our road map in Fig. 1.24, the present chapter represents just a
start to our introduction to some basic effects from physical chemistry. In particu-
lar, we have discussed the macroscopic picture painted by classical thermo-
dynamics. We have examined the different categories of gases: 1) calorically
perfect gases, 2) thermally perfect gases, 3) chemically reacting mixtures of
perfect gases, and 4) real gases. We have presented a number of different
forms for the perfect-gas equation of state, applicable to chemically reacting mix-
tures as well as to individual species. Make certain to review carefully the earlier
sections of this chapter so that you have these details well in mind.

The two basic laws from classical thermodynamics are as follows.

1) First law of thermodynamics, with alternative forms:

dqþ dw ¼ de (10:29)

dq ¼ deþ p dv (10:32)

dq ¼ dhþ v dp (10:34)

2) Second law of thermodynamics:

ds ¼
dq

T
þ dsirrev (10:46)

where dsirrev . 0. Hence,

ds .
dq

T
(10:47)

or, for an adiabatic process,

ds . 0 (10:48)

All of the preceding results apply to any general gas, real or perfect, reacting or
nonreacting.

For a chemically reacting mixture of perfect gases, we have the following
results:

S ¼
X

i

Xi

ðT

Tref

C pi

dT

T
�Rln

pi

pref

� �
þ Sref (10:60)
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and

dSirrev ¼ �
1

T

X
i

Gi dNi (10:72)

where Gi ¼ Hi � TSi. Using the fact that dSirrev ¼ 0 for an equilibrium system,
we obtained Y

i

pni

i ¼ Kp(T) (10:91)

where Kp(T) is the equilibrium constant, a function of T only, where Kp is
given by

Kp(T) ¼ e�DG p¼1=RT (10:90)

Along with other relations, the equilibrium constant allows the calculation of the
equilibrium chemical composition. We have seen that the equilibrium compo-
sition is a unique function of T and p for the mixture.

The heat of formation at a reference temperature Tref is defined for a given
chemical reaction as

DHTref

R ¼ (enthalpy of products at Tref)� (enthalpy reactants at Tref )

For the generic chemical reactions given by

0 ¼
X

i

niAi

we have

DHTref

R ;
X

i

niH
Tref

Ai
(10:101)

Finally, we note that classical thermodynamics must treat the equation of state
as an empirically defined relation, or as a postulate; it cannot be derived from first
principles in classical thermodynamics. Moreover, classical thermodynamics
cannot provide values of Kp from first principles; they must be obtained from
measurement. In contrast, statistical thermodynamics can provide both the
equation of state and values of Kp from first principles; this is the subject of
the next chapter.

Note also that in the present chapter we have derived an expression for entropy
of a chemically reacting mixture, given by Eq. (10.60). However, we have not
obtained analogous expressions for enthalpy H or internal energy E for a chemi-
cally reacting mixture. This is intentional because for a proper interpretation of H
and E we need to examine the principles of statistical thermodynamics. Hence,
the calculation of H and E are deferred until Chapter 11.
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Problems

10.1 At a given T and p, the composition of high-temperature air is
given by pO ¼ 0:163 atm, pO2

¼ 0:002 atm, pN2
¼ 0:33 atm, and pN ¼

0:005 atm. Calculate for each species: (a) mole fraction, (b) mass fraction,
and (c) mole-mass ratio. Also, obtain the molecular weight and the specific
gas constant for the mixture.

10.2 Consider the combustion chamber of a rocket engine using liquid H2 and
liquid O2 as the fuel and oxidizer. For a fuel/oxidizer ratio of 0.1 by mass
and p ¼ 10 atm and T ¼ 3500 K, calculate the equilibrium chemical com-
position of the gas in the combustion chamber. Assume the following
species are present: H2, H, O2, O, OH, and H2O. (The equilibrium con-
stants are intentionally not given here in order to give you the opportunity
to look them up in any of the standard references and thus become familiar
with such references.)

10.3 Derive the following relation between the equilibrium constant and the
heat of reaction:

d lnK p

dT
¼

DHR

RT2

This equation is called Van’t Hoff’s equation.

10.4 Consider a chemically reacting mixture. Let Ni and N denote the number
of particles of species i and the total number of particles, respectively.
The definition of mole fraction is then xi ¼ Ni=N. Now let the mixture
be perturbed slightly (say, by a slight change in p and/or T ). There will
be corresponding changes in Ni and N, given by dNi and dN, respectively.
Prove that, although Ni=N ¼ xi,

dNi

N
= dxi

Hence, there must be some mathematical caution in using relations invol-
ving dNi and dxi for a chemically reacting gas.

10.5 There is a standard NASA computer program that uses a Gibbs free
energy minimization technique for the calculation of equilibrium chemi-
cal compositions. Just on the basis of this label, how would you think
such a technique is related to our calculation described in the present
chapter?
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11
Elements of Statistical Thermodynamics

S ¼ k log W

Inscription on the tombstone for Ludwig Boltzmann,
Vienna, Austria

Chapter Preview

Once again we use the phrase: This is where the rubber meets the road. This

time it is for the calculation of the thermodynamic properties of an equili-

brium chemically reacting mixture from first principles. Using some of the

basic fundamentals from the previous chapter, we now heavily overlay

some important results from quantum mechanics and quantum statistical

mechanics, and we obtain equations from which we can directly calculate

the internal energy, enthalpy, entropy, and any other thermodynamic variable

for an equilibrium high-temperature gas. This is the essence of the discipline

of statistical thermodynamics. These equations are the basis of modern com-

puter subroutines that generate from scratch the equilibrium high-temperature

thermodynamic properties and chemical composition used for numerical sol-

utions of high-temperature chemically reacting flow. So this is important

stuff. It is also intellectually beautiful stuff, put together by powerful

minds. One of those powerful minds was that of Ludwig Boltzmann, a

famous physicist and mathematician from the late 19th century. The simple

inscription on Boltzmann’s tombstone, given in the preceding quotation, is

an equation that is the kingpin of statistical thermodynamics. You will find

this equation in the middle of this chapter. The fact that it is the only inscrip-

tion on the tombstone of such an important human being attests to its import-

ance and to the importance of statistical thermodynamics in the physics of the

modern world. It also attests to the reason why you should give this chapter

your closest attention. In the process, allow yourself to enjoy the intellectual

beauty of the flow of ideas and ingenious mental constructions in this chapter.

Then you will be ready to take the next steps into high-temperature gas

dynamics in the following chapters.
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11.1 Introduction

In Chapter 10 we discussed some aspects of the thermodynamics of chemi-
cally reacting gases from a classical point of view. Note that in Chapter 10 we
obtained relations between various thermodynamic properties; we did not expli-
citly calculate values of these properties from first principles. For example, Eq.
(10.43) is a general relationship between cp, cv, and R for a chemically reacting
mixture of perfect gases; it does not enable us to calculate a value for either cp or
cv. Similarly, Eq. (10.60) is an expression for S as a function of T and the pi.
However, to obtain an actual number for S, we need the values of Cpi

, which
cannot be obtained from classical thermodynamic theory. For such properties,
classical thermodynamics must rely on experimental data.

In contrast, the results of statistical thermodynamics do allow the calculation
of thermodynamic properties from first principles, as long as we are dealing with
equilibrium systems. The purpose of this chapter is to develop such results. In
turn, we will see that these results are very accurate and extremely practical in
the analysis of high-temperature flows.

To elaborate, an essential ingredient of any high-temperature flowfield analy-
sis is the knowledge of the thermodynamic properties of the gas. For example,
consider again the flowfield over the X-24 shown in Fig. 8.17. Assume that the
gas is in local thermodynamic and chemical equilibrium (concepts to be more
fully examined later). The unknown flowfield variables, and how they can be
obtained, are itemized as follows:

r¼density
V¼velocity

h¼enthalpy

)
Obtained from a simultaneous solution

of the continuity, momentum,
and energy equations

T ¼Tðr, hÞ

p¼pðr, hÞ

)
Obtained from the equilibrium thermodynamic

properties of high-temperature air

In the preceding, conceptually see that two thermodynamic variables r and h
are obtained from the flowfield conservation equations and that the remaining
thermodynamic variables T, p, e, s, etc., can be obtained from a knowledge of
r and h. In general, for a gas in equilibrium, any two thermodynamic state vari-
ables uniquely define the complete thermodynamic state of the gas. The question
posed here is that, given two thermodynamic state variables in an equilibrium
high-temperature gas, how do we obtain values of the remaining state variables?
There are two answers. One is to measure these properties from experiment.
However, it is very difficult to carry out accurate experiments on gases at temp-
eratures above a few thousand degrees; such temperatures are usually achieved in
the laboratory for only short periods of time in devices such as shock tubes or by
pulsed laser radiation absorption. The other answer is to calculate these proper-
ties. Fortunately, the powerful discipline of statistical mechanics developed over
the last century, along with the advent of quantum mechanics in the early 20th
century, gives us a relatively quick and extremely accurate method of calculating
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equilibrium thermodynamic properties of high-temperature gases. These con-
cepts form the basis of statistical thermodynamics, the elements of which will
be developed and used in the following sections.

The road map for this chapter is given in Fig. 11.1. Our journey consists of two
roads that ultimately come together at the end. First, we proceed down the
left-hand column, developing the statistical thermodynamics of a single-species
gas, culminating in practical equations for the thermodynamic properties of a
single-species gas. Then we move to the right-hand column and develop the
statistical thermodynamic expressions for equilibrium constants that allow the cal-
culation of the chemical composition of an equilibrium reacting mixture. Finally,
we combine the results of both columns to obtain the thermodynamic properties an
equilibrium chemically reacting mixture.

11.2 Microscopic Description of Gases

In the development of statistical thermodynamics, we concentrate on the
microscopic picture of a gas, that is, we assume the gas consists of a large
number of individual molecules, and we examine the nature of these molecules.
For example, a molecule is a collection of atoms bound together by a rather

Fig. 11.1 Road map for Chapter 11.
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complex intramolecular force. A simple concept of a diatomic molecule (two
atoms) is the “dumbbell” model sketched in Fig. 11.2a. The molecule has
several modes (forms) of energy, as follows:

1) It is moving through space, and hence it has translational energy 10trans, as
sketched in Fig. 11.2b. The source of this energy is the translational kinetic
energy of the center of mass of the molecule. Because molecular translational vel-
ocity can be resolved into three components (such as Vx, Vy, and Vz in the xyz
Cartesian space shown in Fig. 11.2b), the molecule is said to have three geometric
degrees of freedom in translation. Because motion along each coordinate direc-
tion contributes to the total kinetic energy, the molecule is also said to have
three thermal degrees of freedom.

Fig. 11.2 Modes of molecular energy.
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2) It is rotating about the three orthogonal axes in space, and hence it has
rotational energy 10rot, as sketched in Fig. 11.2c. The source of this energy is
the rotational kinetic energy associated with the molecule’s rotational velocity
and its moment of inertia. However, for the diatomic molecule shown in
Fig. 11.2c, the moment of inertia about the internuclear axis (the z axis) is very
small, and therefore the rotational kinetic energy about the z axis is negligible
in comparison to rotation about the x and y axes. Therefore, the diatomic mol-
ecule is said to have only two geometric as well as two thermal degrees of
freedom. The same is true for a linear polyatomic molecule such as CO2

shown in Fig. 11.2d. However, for nonlinear molecules, such as H2O, also
shown in Fig. 11.2d, the number of geometric (and thermal) degrees of
freedom in rotation are three.

3) The atoms of the molecule are vibrating with respect to an equilibrium
location within the molecule. For a diatomic molecule, this vibration is
modeled by a spring connecting the two atoms, as illustrated in Fig. 11.2e.
Hence the molecule has vibrational energy 10vib. There are two sources of this
vibrational energy: the kinetic energy of the linear motion of the atoms as they
vibrate back and forth, and the potential energy associated with the intramolecular
force (symbolized by the spring). Hence, although the diatomic molecule has only
one geometric degree of freedom (it vibrates along one direction only, namely,
that of the internuclear axis), it has two thermal degrees of freedom because of
the contribution of both kinetic and potential energy. For polyatomic molecules,
the vibrational motion is more complex, and numerous fundamental vibrational
modes can occur, with a consequent large number of degrees of freedom.

4) The electrons are in motion about the nucleus of each atom constituting the
molecule, as sketched in Fig. 11.2f. Hence, the molecule has electronic energy
10el. There are two sources of electronic energy associated with each electron:
kinetic energy because of its translational motion throughout its orbit about the
nucleus, and potential energy because of its location in the electromagnetic
force field established principally by the nucleus. Because the overall electron
motion is rather complex, the concepts of geometric and thermal degrees of
freedom are usually not useful for describing electronic energy.

Therefore, we see that the total energy of a molecule 10 is the sum of its trans-
lational, rotational, vibrational, and electronic energies.

For molecules:

10 ¼ 10trans þ 10rot þ 10vib þ 10el

For a single atom, only the translational and electronic energies exist.
For atoms:

10 ¼ 10trans þ 10el

The results of quantum mechanics have shown that each of the preceding ener-
gies is quantized, that is, they can exist only at certain discrete values, as schema-
tically shown in Fig. 11.3. This is a dramatic result. Intuition, based on our
personal observations of nature, would tell us that at least the translational and
rotational energies could be any value chosen from a continuous range of
values (i.e., the complete real number system). However, our daily experience
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deals with the macroscopic, not the microscopic world, and we should not always
trust our intuition when extrapolated to the microscopic scale of molecules. A
major benefit of quantum mechanics is that it correctly describes microscopic
properties, some of which are contrary to intuition. In the case of molecular
energy, all modes are quantized, even the translational mode. These quantized
energy levels are symbolized by the ladder-type diagram shown in Fig. 11.3,
with the vertical height of each level as a measure of its energy. Taking the
vibrational mode for example, the lowest possible vibrational energy is symbo-
lized by 100vib

. The next allowed quantized value is 101vib
, then 102vib

, . . . , 10ivib
, . . . .

The energy of the ith vibrational energy level is 10ivib
, and so forth. Note that, as

illustrated in Fig. 11.3, the spacing between the translational energy levels is
very small, and if we were to look at this translational energy level diagram
from across the room, it would look almost continuous. The spacings between
rotational energy levels are much larger than between the translational energies;
moreover, the spacing between two adjacent rotational levels increases as the
energy increases (as we go up the ladder in Fig. 11.3). The spacings between
vibrational levels are much larger than between rotational levels; also, contrary
to rotation, adjacent vibrational energy levels become more closely spaced as
the energy increases. Finally, the spacings between electronic levels are consider-
ably larger than between vibrational levels and the difference between adjacent
electronic levels decreases at higher electronic energies. The quantitative calcu-
lation of all of these energies will be given in Sec. 11.7.

Again, examining Fig. 11.3, note that the lowest allowable energies are denoted
by 100trans

, 100rot
, 100vib

, and 100el
. These levels are defined as the ground state for the

Fig. 11.3 Schematic of energy levels for the different molecular energy modes.
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molecule. They correspond to the energy that the molecule would have if the gas
were theoretically at a temperature of absolute zero; hence, the values are also
called the zero-point energies for the translational, rotational, vibrational, and
electronic modes, respectively. It will be shown in Sec. 11.7 that the rotational
zero-point energy is precisely zero, whereas the zero-point energies for translation,
vibration, and electronic motion are not. This says that, if the gas were theoretically
at absolute zero, the molecules would still have some finite translational motion
(albeit very small) as well as some finite vibrational motion. Moreover, it only
makes common sense that some electronic motion should theoretically exist at
absolute zero, or otherwise the electrons would fall into the nucleus and the
atom would collapse. Therefore, the total zero-point energy for a molecule is
denoted by 100, where

100 ¼ 100trans
þ 100vib

þ 100el

recalling that 100rot
¼ 0.

It is common to consider the energy of a molecule as measured above its zero-
point energy. That is, we can define the translational, rotational, vibrational, and
electronic energies all measured above the zero-point energy as 1jtrans

, 1krot
, 1lvib

,
and 1mel

, respectively, where

1 jtrans
¼ 10jtrans

� 100trans

1krot
¼ 10krot

1lvib
¼ 10lvib

� 100vib

1mel
¼ 10mel

� 100el

(Note that the unprimed values denote energy measured above the zero-point value.)
In light of the preceding, we can write the total energy of a molecule as 1i

0, where

10i ¼ 1jtrans
þ 1krot

þ 1lvib
þ 1mel|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

All are measured above the
zero-point energy; thus, all

are equal to zero at T = 0 K.

þ 100|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
This represents zero-point
energy, a fixed quantity for
a given molecular species that
is equal to the energy of the
molecule at absolute zero.

For an atom, the total energy can be written as

10i ¼ 1 jtrans
þ 1mel

þ 100

If we examine a single molecule at some given instant in time, we would see that
it simultaneously has a zero-point energy 100 (a fixed value for a given molecular
species), a quantized electronic energy measured above the zero-point 1mel

, a
quantized vibrational energy measured above the zero point 1lvib

, and so forth for
rotation and translation. The total energy of the molecule at this given instant is
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10i. Because 10i is the sum of individually quantized energy levels, then 10i itself is
quantized. Hence, the allowable total energies can be given on a single energy
level diagram, where 100, 1

0
1, 102, . . . , 10i . . . are the quantized values of the total

energy of the molecule.
In the preceding paragraphs, we have gone to some length to define and

explain the significance of molecular energy levels. In addition to the concept
of an energy level, we now introduce the idea of an energy state. For example,
quantum mechanics identifies molecules not only with regard to their energies,
but also with regard to angular momentum. Angular momentum is a vector quan-
tity and therefore has an associated direction. For example, consider the rotating
molecule shown in Fig. 11.4. Three different orientations of the angular momen-
tum vector are shown; in each orientation, assume the energy of the molecule is
the same. Quantum mechanics shows that molecular orientation is also quantized,
that is, it can point only in certain directions. In all three cases shown in Fig. 11.4,
the rotational energy is the same, but the rotational momentum has different
directions. Quantum mechanics sees these cases as different and distinguishable
states. Different states associated with the same energy can also be defined for
electron angular momentum, electron, and nuclear spin, and the rather arbitrary
lumping together of a number of closely spaced translational levels into one
approximate level with many states.

In summary we see that, for any given energy level 10i, there can be a number of
different states that all have the same energy. This number of states is called the
degeneracy or statistical weight of the given level 10i and is denoted by gi. This
concept is exemplified in Fig. 11.5, which shows energy levels in the vertical

Fig. 11.4 Illustration of different energy states for the same energy level.

Fig. 11.5 Illustration of statistical weights.

508 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



direction, with the corresponding states as individual horizontal lines arrayed to
the right at the proper energy value. For example, the second energy level is
shown with five states, all with an energy value equal to 102; hence, g2 ¼ 5.
The values of gi for a given molecule are obtained from quantum theory
and/or spectroscopic measurements.

Now consider a system consisting of a fixed number of molecules N. Let Nj be
the number of molecules in a given energy level 10j. The value Nj is defined as the
population of the energy level. Obviously,

N ¼
X

j

Nj (11:1)

where the summation is taken over all energy levels. The different values of Nj

associated with the different energy levels 10j form a set of numbers, which is
defined as the population distribution. If we look at our system of molecules at
one instant in time, we will see a given set of Nj, that is, a certain population dis-
tribution over the energy levels. Another term for this set of numbers, synon-
ymous with population distribution, is macrostate. Because of molecular
collisions, some molecules will change from one energy level to another.
Hence, when we look at our system at some later instant in time, there might
be a different set of Nj and hence a different population distribution or macrostate.
Finally, let us denote the total energy of the system as E, where

E ¼
X

j

10jNj (11:2)

The schematic in Fig. 11.6 reinforces the preceding definitions. For a system
of N molecules and energy E, we have a series of quantized energy levels, 100,
101, . . . , 10j, . . . , with corresponding statistical weights, g0, g1, . . . , gj, . . . . At some
given instant, the molecules are distributed over the energy levels in a distinct
way N0, N1, . . . , Nj, . . . , constituting a distinct macrostate. In the next instant,
because of molecular collisions, the populations of some levels can change, creat-
ing a different set of Nj and hence a different macrostate.

Over a period of time, one particular macrostate, that is, one specific set of Nj,
will occur much more frequently than any other. This particular macrostate is

Fig. 11.6 Illustration of macrostates.
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called the most probable macrostate (or most probable distribution). It is the
macrostate that occurs when the system is in thermodynamic equilibrium. In
fact, this is the definition of thermodynamic equilibrium within the framework
of statistical mechanics. The central problem of statistical thermodynamics,
and the one to which we will now address ourselves, is as follows.

Given a system with a fixed number of identical particles,

N ¼
X

j
Nj, and a fixed energy

E ¼
X

j
10jNj, find the most probable macrostate

To solve the preceding problem, we need one additional definition, namely
that of a microstate. Consider the schematic shown in Fig. 11.7, which illustrates
a given macrostate. (For purposes of illustration, we choose N0 ¼ 2, N1 ¼ 5,
N2 ¼ 3, etc.) Here, we display each statistical weight for each energy level as
a vertical array of boxes. For example, under 101, we have g1 ¼ 6, and hence
six boxes, one for each different energy state with the same energy 101. In the
energy level 101, we have five molecules (N1 ¼ 5). At some instant in time,
these five molecules individually occupy the top three and lower two boxes
under g1, with the fourth box left vacant (i.e., no molecules at that instant have
the energy state represented by the fourth box). The way that the molecules
are distributed over the available boxes defines a microstate of the system,
say, microstate I as shown in Fig. 11.7. At some later instant, the N1 ¼ 5
molecules can be distributed differently over the g1 ¼ six states, say leaving

Fig. 11.7 Illustration of microstates.
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the second box vacant. This represents another, different microstate, labeled
microstate II in Fig. 11.7. Shifts over the other vertical arrays of boxes
between microstates I and II are shown in Fig. 11.7. However, in both cases,
N0 still equals 2, N1 still equals 5, etc.—that is, the macrostate is still the
same. Thus, any one macrostate can have a number of different microstates,
depending on which of the degenerate states (the boxes in Fig. 11.7) are occu-
pied by the molecules. In any given system of molecules, the microstates are
constantly changing because of molecular collisions. Indeed, it is a central
assumption of statistical thermodynamics that each microstate of a system
occurs with equal probability. Therefore, it is easy to reason that the most
probable macrostate is that macrostate which has the maximum number of
microstates. If each microstate appears in the system with equal probability,
and there is one particular macrostate that has considerably more microstates
than any other, then that is the macrostate we will see in the system most of
the time. This is indeed the situation in most real thermodynamic systems.
Figure 11.8 is a schematic that plots the number of microstates in different
macrostates. Note there is one particular macrostate, namely, macrostate D,
that stands out as having by far the largest number of microstates. This is the
most probable macrostate; this is the macrostate that is usually seen and
constitutes the situation of thermodynamic equilibrium in the system. There-
fore, if we can count the number of microstates in any given macrostate, we

Fig. 11.8 Illustration of most probable macrostate as that macrostate that has the

maximum number of microstates.
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can easily identify the most probable macrostate. This counting of microstates
is the subject of Sec. 11.3. In turn, after the most probable macrostate is
identified, the equilibrium thermodynamic properties of the system can be com-
puted. Such thermodynamic computations will be discussed in subsequent
sections.

11.3 Counting the Number of Microstates

for a Given Macrostate

Molecules and atoms are constituted from elementary particles—electrons,
protons, and neutrons. Quantum mechanics makes a distinction between two
different classes of molecules and atoms, depending on their number of elemen-
tary particles, as follows:

1) Molecules and atoms with an even number of elementary particles obey a
certain statistical distribution called Bose–Einstein statistics. Let us call such
molecules or atoms bosons.

2) Molecules and atoms with an odd number of elementary particles obey a
different statistical distribution called Fermi–Dirac statistics. Let us call such
molecules or atoms fermions.

There is an important distinction between the preceding two classes, as
follows:

1) For bosons the number of molecules that can be in any one degenerate state
(in any one of the boxes in Fig. 11.7) is unlimited (except, of course, that it must
be less than or equal to Nj).

2) For fermions only one molecule can be in any given degenerate state at any
instant.
This distinction has a major impact on the counting of microstates in a gas.

First, let us consider Bose–Einstein statistics. For the time being, consider one
energy level by itself, say, 10j. This energy level has gj degenerate states and Nj

molecules. Consider the gj states as the gj containers diagrammed here:

x x x
zffl}|ffl{1

j x x
zfflfflffl}|fflfflffl{2

j
zfflffl}|fflffl{3

j x
zfflfflffl}|fflfflffl{4

j : : : j x x
zfflfflffl}|fflfflffl{gj

Distribute the Nj molecules among the containers, such as three molecules in the
first container, two molecules in the second, etc., where the molecules are
denoted by x in the preceding diagram. The vertical bars are partitions that sep-
arate one container from another. The distribution of molecules over these con-
tainers represents a distinct microstate. If a molecule is moved from container 1
to container 2, a different microstate is formed. To count the total number of
different microstates possible, first note that the number of permutations
between the symbols x and j is

½Nj þ (gj � 1)�!

This is the number of distinct ways that the Nj molecules and the gj 2 1 partitions
can be arranged. However, the partitions are indistinguishable; we have counted
them too many times. The gj 2 1 partitions can be permuted (gj 2 1)! different
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ways. The molecules are also indistinguishable. They can be permuted Nj! differ-
ent ways without changing the picture just drawn. Therefore, there are (gi 2 1)!
Nj! different permutations that yield the identical picture drawn above, that is, the
same microstate. Thus, the number of different ways that Nj indistinguishable
molecules can be distributed over gj states is

(Nj þ gj � 1)!

(gj � 1)! Nj!

This expression applies to one energy level 10j with population Nj and gives the
number of different microstates just caused by the different arrangements
within 10j. Consider now the whole set of Nj distributed over the complete set
of energy levels. (Keep in mind that the given set of Nj defines a particular
macrostate.) Letting W denote the total number of microstates for a given
macrostate, the preceding expression, multiplied over all of the energy levels,
yields

W ¼
Y

j

(Nj þ gj � 1)!

(gj � 1)! Nj!
(11:3)

Note that W is a function of all the Nj values, W ¼ W(N1, N2, . . . , Nj, . . . ). The
quantity W is called the thermodynamic probability and is a measure of the
“disorder” of the system (as will be discussed later). In summary, Eq. (11.3)
is the way to count the number of microstates in a given macrostate as long
as the molecules are bosons.

Next, let us consider Fermi–Dirac statistics. Recall that, for fermions only one
molecule can be in any given degenerate state at any instant, that is, there can be
no more than one molecule per container. This implicitly requires that gj � Nj.
Consider the gj containers. Take one of the molecules, and put it in one of the
containers. There will be gj choices, or ways of doing this. Take the next particle,
and put it in one of the remaining containers. However, there are now only gi 2 1
choices because one of the containers is already occupied. Finally, placing the
remaining molecules over the remaining containers, we find that the number of
ways Nj particles can be distributed over gj containers, with only one particle
(or less) per container, is

gj(gj � 1)(gj � 2) � � � ½gj � (Nj � 1)� ;
gj!

(gj � Nj)!

However, the Nj molecules are indistinguishable; they can be permuted Nj! differ-
ent ways without changing the preceding picture. Therefore, the number of differ-
ent microstates just caused by the different arrangements with 10j is

gj!

(gj � Nj)! Nj!
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Considering all energy levels, the total number of microstates for a given macro-
state for fermions is

W ¼
Y

j

gj!

(gj � Nj)! Nj!
(11:4)

In summary, if we are given a specific population distribution over the energy
levels of a gas, that is, a specific set of Nj that is, a specific macrostate, Eq. (11.3)
or (11.4) allows us to calculate the number of microstates for that given macro-
state for bosons or fermions, respectively. It is again emphasized that W is a func-
tion of the Nj and hence is a different number for different macrostates. Moreover,
as sketched in Fig. 11.8, there will in general be a certain macrostate, that is, a
certain distribution for Nj, for which W will be considerably larger than for any
other macrostate. This, by definition, will be the most probable macrostate.
The precise solution for these Nj associated with the most probable macrostate
is the subject of Sec. 11.4.

11.4 Most Probable Macrostate

The most probable macrostate is defined as that macrostate which contains the
maximum number of microstates, that is, which has Wmax. Let us solve for the
most probable macrostate, that is, let us find the specific set of Nj, which
allows the maximum W.

First consider the case for bosons. From Eq. (11.3) we can write

lnW ¼
X

j

½ln (Nj þ gj � 1)!� ln (gj � 1)!� lnNj!� (11:5)

Recall that we are dealing with the combined translational, rotational, vibrational,
and electronic energies of a molecule, and that the closely spaced translational
levels can be grouped into a number of degenerate states with essentially the
same energy. Therefore, in Eq. (11.5), we can assume that Nj� 1 and gj� 1,
and hence that Njþ gj 2 1 � Njþ gj and gj 2 1 � gj. Moreover, we can employ
Sterling’s formula

ln a! ¼ a ln a� a (11:6)

for the factorial terms in Eq. (11.5). Consequently, Eq. (11.5) becomes

lnW ¼
X

j

½(Nj þ gj) ln (Nj þ gj)� (Nj þ gj)� gj ln gj þ gj � Nj lnNj þ Nj�

Combining terms, this becomes

lnW ¼
X

j

Nj ln 1þ
gj

Nj

� �
þ gj ln

Nj

gj

þ 1

� �� �
(11:7)
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Recall that ln W ¼ f(Nj) ¼ f(N0, N1, N2, . . . , Nj, . . .). Also, to find the maximum
value of W,

d(lnW) ¼ 0 (11:8)

From the chain rule of differentiation,

d(lnW) ¼
@(lnW)

@N0

d N0 þ
@(lnW)

@N1

d N1 þ � � � þ
@(lnW)

@Nj

d Nj þ � � � (11:9)

Combining Eqs. (11.8) and (11.9),

d(lnW) ¼
X

j

@(lnW)

@Nj

d Nj ¼ 0 (11:10)

From Eq. (11.7)

@(lnW)

@Nj

¼ ln 1þ
gj

Nj

� �
(11:11)

Substituting Eq. (11.11) into (11.10)

d(lnW) ¼
X

j

ln 1þ
gj

Nj

� �� �
d Nj ¼ 0 (11:12)

In Eq. (11.12), the variation of Nj is not totally independent; dNj is subject to two
physical constraints, namely, the following:

1) N ¼
P

jNj ¼ const, and hence

X
j

d Nj ¼ 0 (11:13)

2) E ¼
P

j1
0
j Nj ¼ const, and hence

X
j

10j dNj ¼ 0 (11:14)

Letting a and b be two Lagrange multipliers (two constants to be determined
later), Eqs. (11.13) and (11.14) can be written as

�
X

j

a d Nj ¼ 0 (11:15)

�
X

j

b10j d Nj ¼ 0 (11:16)
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Adding Eqs. (11.12), (11.15), and (11.16), we have

X
j

ln 1þ
gj

Nj

� �
� a� b10j

� �
d Nj ¼ 0 (11:17)

From the standard method of Lagrange multipliers, a and b are defined such that
each term in brackets in Eq. (11.17) is zero, that is,

ln 1þ
gj

Nj

� �
� a� b10j ¼ 0

or

1þ
gj

Nj

¼ eaeb1
0
j

or

N�j ¼
gj

eaeb1
0
j � 1

(11:18)

The asterisk has been added to emphasize that Nj
� corresponds to the maximum

value of W via Eq. (11.8), that is, Nj
� corresponds to the most probable distri-

bution of particles over the energy levels 10j. Equation (11.18) gives the most
probable macrostate for bosons. That is, the set of values obtained from Eq.
(11.18) for all energy levels

N�0 , N�1 , N�2 , . . . , N�j , . . .

is the most probable macrostate.
An analogous derivation for fermions, starting from Eq. (11.4), yields for the

most probable distribution

N�j ¼
gj

eaeb1
0
j þ 1

(11:19)

which differs from the result for bosons [Eq. (11.l8)] only by the sign in the
denominator. The details of that derivation are left to the reader.

11.5 Limiting Case: Boltzmann Distribution

At very low temperature, say, less than 5 K, the molecules of the system are
jammed together at or near the ground energy levels, and therefore the degenerate
states of these low-lying levels are highly populated. As a result, the differences
between Bose–Einstein statistics [Eq. (11.18)] and Fermi–Dirac statistics
[Eq. (11.19)] are important. In contrast, at higher temperatures the molecules
are distributed over many energy levels, and therefore the states are generally
sparsely populated, that is, Nj	 gj. For this case, the denominators of
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Eqs. (11.18) and (11.19) must be very large

eaeb1
0
j � 1� 1

and

eaeb1
0
j þ 1� 1

Hence, in the high-temperature limit the unity term in these denominators can be
neglected, and both Eqs. (13.18) and (13.19) reduce to

N�j ¼ gje
�aeb1

0
j (11:20)

This limiting case is called the Boltzmann limit, and Eq. (11.20) is termed the
Boltzmann distribution, named after the famous 19th-century physicist,
Ludwig Boltzmann (1844–1906). Because all gas dynamics problems generally
deal with temperatures far above 5 K, the Boltzmann distribution is appropriate
for all of our future considerations. That is, in our future discussions we will deal
with Eq. (11.20) rather than Eqs. (11.18) or (11.19).

We still have two items of unfinished business with regard to the Boltzmann
distribution, namely, a and b in Eq. (11.20). The link between classical and stat-
istical thermodynamics is b. It can readily be shown (for example, see. p. 118 of
[150] that

b ¼
1

kT

where k is the Boltzmann constant [see Eq. (10.9)] and T is the temperature of the
system. We will prove this relation in Sec. 11.6. Hence, Eq. (11.20) can be
written as

N�j ¼ gje
�ae�1

0
j=kT (11:21)

To obtain an expression for a, recall that N ¼
P

j Nj
�. Hence, from Eq. (11.21),

N ¼
X

j

gje
�ae�1

0
j=kT
¼ e�a

X
j

gje
�10j=kT

Here

e�a ¼
NP

j

gje
�10

j
=kT

(11:22)

Substituting Eq. (11.22) into (11.21), we obtain

N�j ¼ N
gje
�10j=kT

P
j

gje
�10

j
=kT (11:23)
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The Boltzmann distribution, given by Eq. (11.23), is important. It is the most
probable distribution of the molecules over all of the energy levels 10j of the
system. Also, recall from Sec. 11.2 that 10j is the total energy, including the zero-
point energy. However, Eq. (11.23) can also be written in terms of 1j, the energy
measured above the zero point, as follows. Because 10j ¼ 1jþ 10, then

e�1
0
j=kT

P
j

gje
�10

j
=kT
¼

e�(1jþ10)=kTP
j

gje�(1jþ10)=kT
¼

e�10=kT e�1j=kT

e�10=kT
P

j

gje� 1j=kT
¼

e�1j=kTP
j

gje�1j=kT

Hence, Eq. (11.23) becomes

N�j ¼ N
gje
�1j=kTP

j

gje�1j=kT (11:24)

where the energies are measured above the zero point. Finally, the partition func-
tion Q (or sometimes called the “state sum”) is defined as

Q ;
X

j

gje
�1j=kT

and the Boltzmann distribution, from Eq. (11.24), can be written as

N�j ¼ N
gje
�1j=kT

Q
(11:25)

The partition function is a very useful quantity in statistical thermodynamics, as
we will soon appreciate. Moreover, it is a function of the volume as well as the
temperature of the system, as will be demonstrated later:

Q ¼ f (T , V)

In summary, the Boltzmann distribution given, for example, by Eq. (11.25), is
extremely important. Equation (11.25) should be interpreted as follows. For
molecules or atoms of a given species, quantum mechanics says that a set of well-
defined energy levels 1j exists, over which the molecules or atoms can be distrib-
uted at any given instant, and that each energy level has a certain number of
degenerate states gj. For a system of N molecules or atoms at a given T and V,
Eq. (11.25) tells us how many such molecules or atoms Nj

� are in each energy
level 1j when the system is in thermodynamic equilibrium.

11.6 Evaluation of Thermodynamic Properties in Terms

of the Partition Function

The preceding formalism will now be cast in a form to yield practical thermo-
dynamic properties for a high-temperature gas. In this section, properties such as
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internal energy will be expressed in terms of the partition function. In turn, in
Sec. 11.7 the partition function will be developed in terms of T and V. Finally,
in Sec. 11.8, the results will be combined to give practical expressions for the
thermodynamic properties.

First consider the internal energy E, which is one of the most fundamental and
important thermodynamic variables. From the microscopic viewpoint, for a
system in equilibrium

E ¼
X

j

1jN
�
j (11:26)

Note that in Eq. (11.26) E is measured above the zero-point energy. Combining
Eq. (11.26) with the Boltzmann distribution given by Eq. (11.25), we have

E ¼
X

j

1jN
gje
�1j=kT

Q
¼

N

Q

X
j

gj1je
�1j=kT (11:27)

Recall from the preceding section that

Q ;
X

j

gje
�1j=kT ¼ f (V , T)

Hence

@Q

@T

� �
v

¼
1

kT 2

X
j

gj1je
�1j=kT

or

X
j

gj1je
�1j=kT ¼ kT2 @Q

@T

� �
v

(11:28)

Substituting Eq. (11.28) into (11.27),

E ¼
N

Q
kT2 @Q

@T

� �
v

or

E ¼ NkT2 @ lnQ

@T

� �
v

(11:29)

This is the internal energy for a system of N molecules or atoms.
If we have 1 mol of atoms or molecules, then N ¼ NA, Avogadro’s number.

Also, NAk ¼ R, the universal gas constant. Consequently, for the internal
energy per mole, Eq. (11.29) becomes

E ¼ RT2 @ lnQ

@T

� �
v

(11:30)

ELEMENTS OF STATISTICAL THERMODYNAMICS 519



In gas dynamics, a unit mass is a more fundamental quantity than a unit mole.
Let M be the mass of the system of N molecules and m be the mass of an individual
molecule. Then M ¼ Nm. From Eq. (11.29), the internal energy per unit mass e is

e ¼
E

M
¼

NkT2

Nm

@ lnQ

@T

� �
v

(11:31)

However, k/m ¼ R, the specific gas constant, and therefore Eq. (11.31) becomes

e ¼ RT2 @ lnQ

@T

� �
v

(11:32)

The specific enthalpy is defined as

h ¼ eþ pv ¼ eþ RT

Hence, from Eq. (11.32)

h ¼ RT þ RT2 @ lnQ

@T

� �
v

(11:33)

Note that Eqs. (11.32) and (11.33) are “hybrid” equations, that is, they contain
a mixture of thermodynamic variables such as e, h, and T, and a statistical vari-
able Q.

Similar expressions for other thermodynamic variables can be obtained.
Indeed, at this point we introduce the major link between classical thermodyn-
amics and statistical thermodynamics, as follows. In Chapter 10 we introduced
entropy in the classical sense, defined by Eqs. (10.46) or (10.46a). Now, we
broaden the concept of entropy by considering S as a measure of the disorder
of a system. The word “disorder” is used in a somewhat qualitative sense. We
know that nature, when left to her own desires, always tends toward a state of
maximum disorder. (Parents know that childrens’ bedrooms, when left to them-
selves, tend to a state of maximum disorder, and it takes work to put the rooms
back in order. The average child’s room is a “high-entropy” system.) What do
we mean by disorder in a thermodynamic system? Consider the following
examples. First, examine the air around you. At atmospheric pressure, the mean
distance between molecules is about 10 molecular diameters. If you are searching
for some specific molecules, say those with a velocity near 300 m/s, you have to
search a certain volume of the system before finding them. Now, increase the
pressure to 10 atm. Because of the higher pressure, the molecules are packed
more closely together; the average spacing between the molecules in this case
is reduced to about five molecular diameters. Now, when you search for a
certain number of molecules with a velocity near 300 m/s, you only have to
search a smaller volume before finding them—an easier task than before. In
this sense, the higher-pressure system with its molecules packed more closely
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together has a higher state of order or a lower state of disorder. Connecting
entropy with disorder, this implies that, as p increases, S decreases. This is
indeed confirmed by Eqs. (10.50) and (10.60). As a second example, imagine
that we take the air around us and simply increase the temperature. The molecules
will move faster. Once again, if we are searching for some specific molecules,
they become harder to find as they move faster. Hence, the higher-temperature
system has more “disorder” to it. Once again, associating S with disorder, this
implies that S increases with an increase in temperature. This is confirmed by
Eqs. (10.50) and (10.60). So we have a case for associating the classically
defined entropy with the amount of disorder in the system. With this in mind,
we ask the question: what represents an index of disorder in terms of statistical
thermodynamics. The answer lies in the concept of microstates; a system with
a certain number of microstates has a certain amount of disorder. The larger the
number of microstates, the more is the disorder. Therefore, it makes sense to pos-
tulate a functional relationship between S and the maximum number of micro-
states, as given by the thermodynamic probability Wmax, defined in Sec. 11.3

S ¼ S(Wmax) (11:34)

Moreover, if we have two systems with S1, W1, and S2, W2, respectively, and we
add these systems, the entropy is additive, S1þ S2, but the thermodynamic prob-
ability of the combined systems is the product of the two individual systems,
W1W2 (because each microstate of the first system can exist in the combined
system with each one of the microstates of the second system). This suggests
that Eq. (11.34) should be of the form

S ¼ (const) lnWmax (11:35)

Equation (11.35) was first postulated by Ludwig Boltzmann, and the constant is
named in his honor, namely,

S ¼ k lnWmax (11:36)

where k is the familiar Boltzmann constant. Equation (11.36) is the bridge
between classical thermodynamics (represented by S) and statistical thermo-
dynamics (represented by W). It is so important to the modern world of
physics that it is inscribed on Boltzmann’s tombstone in Vienna, as indicated
by the quotation given just below the title of this chapter. (Return to p. 501
and take note.)

Let us insert into Eq. (11.36) an expression for the thermodynamic probability
obtained in the Boltzmann limit, defined in Sec. 11.5 as the case where Nj	 gj.
Using the approximate result that ln(1þ x) � x for x	 1, Eq. (11.7) becomes, in
the Boltzmann limit,

lnW ¼
X

j

Nj ln
gj

Nj

þ Nj

� �
¼
X

j

Nj ln
gj

Nj

þ 1

� �
(11:37)

ELEMENTS OF STATISTICAL THERMODYNAMICS 521



Considering the maximum value of W, namely, Wmax, Nj is given by Nj
� obtained

from the Boltzmann distribution derived in Sec. 11.5. In particular, from
Eq. (11.25), and reverting to the use of b as given in Eq. (11.20), we have

N�j ¼
N

Q
gje
�b1j

or

gj

N�j
¼

Q

N
eb1j (11:38)

Substituting Eq. (11.38) into (11.37), we have

lnWmax ¼
X

j

N�j ln
Q

N
þ
X

j

N�j þ
X

j

Njb1j

or

lnWmax ¼
X

j

N�j ln
Q

N
þ N þ bE

or

lnWmax ¼ N ln
Q

N
þ 1

� �
þ bE (11:39)

Substituting Eq. (11.39) into (11.36), we have

S ¼ kN ln
Q

N
þ 1

� �
þ kbE (11:40)

Note that, in our reversion to b, we are treating b as an unknown. We are now
at a point where we can prove that b ¼ 1/kT, which was just stated in Sec. 11.5.
Consider the classical relation given in Eq. (10.31), combined with Eq, (10.46):

T dS ¼ dE þ p dV (11:41)

From Eq. (11.41), we can form the partial derivative

@S

@E

� �
v

¼
1

T
(11:42)

Similarly, from Eq. (11.40), we have

@S

@E

� �
v

¼ kb (11:43)
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Equation (11.42) is from classical thermodynamics; Eq. (11.43) is from statistical
thermodynamics. Equating the right-hand sides of Eqs. (11.42) and (11.43), we find

b ¼
1

kT
(11:44)

which was stated without proof in Sec. 11.5.
With this result, Eq. (11.40) can be written as

S ¼ kN ln
Q

N
þ 1

� �
þ

E

T
(11:45)

Combining Eqs. (11.45) and (11.29), we have

S ¼ Nk ln
Q

N
þ 1

� �
þ NkT

@ lnQ

@T

� �
v

(11:46)

Equation (11.46) is the statistical thermodynamic result for entropy in terms of Q.
Returning to Eq. (11.41), we form the partial derivatives

T
@S

@V

� �
T

¼
@E

@V

� �
T

þ p (11:47)

Note that we are dealing with a single chemical species and that the gas is ther-
mally perfect. Thus (@E/@V)T ¼ 0, and from Eq. (11.47)

p ¼ T
@S

@V

� �
T

(11:48)

From Eq. (11.45),

@S

@V

� �
T

¼ Nk
@ lnQ

@V

� �
T

þ
1

T

@E

@V

� �
T

¼ Nk
@ lnQ

@V

� �
T

(11:49)

Combining Eqs. (11.48) and (11.49), we have

p ¼ NkT
@ lnQ

@V

� �
T

(11:50)

Equation (11.50) is the statistical thermodynamic result for pressure in terms
of Q.

In all of the preceding equations, Q is the key factor. If Q can be evaluated as a
function of V and T, the thermodynamic state variables can then be calculated.
This is the subject of Sec. 11.7.
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11.7 Evaluation of the Partition Function in Terms of T and V

Because the partition function is defined as

Q ;
X

j

gje
�1j=kT

we need expressions for the energy levels 1j in order to further evaluate Q. The
quantized levels for translational, rotational vibrational, and electronic energies
are given by quantum mechanics. We state these results without proof here;
see the classic books by Herzberg [151] and [152] for details.

Recall that the total energy of a molecule is

10 ¼ 10trans þ 10rot þ 10vib þ 10el

In the preceding, from quantum mechanics,

10trans ¼
h2

8m

n2
1

a2
1

þ
n2

2

a2
2

þ
n2

3

a2
3

� �

where n1, n2, n3 are quantum numbers that can take the integral values 1, 2, 3, etc.,
and a1, a2, and a3 are linear dimensions that describe the size of the system. The
values of a1, a2, and a3 can be thought of as the lengths of three sides of a rec-
tangular box. (Also note in the preceding that h denotes Planck’s constant, not
enthalpy as before. To preserve standard nomenclature in both gas dynamics
and quantum mechanics, we will live with this duplication. It will be clear
which quantity is being used in our future expressions.) Also,

10rot ¼
h2

8p2I
J(J þ 1)

where J is the rotational quantum number, J ¼ 0, 1, 2, etc., and I is the moment of
inertia of the molecule. For vibration,

10vib ¼ hv(nþ 1
2
)

where n is the vibrational quantum number, n ¼ 0, 1, 2, etc., and v is the funda-
mental vibrational frequency of the molecule. For the electronic energy, no
simple expression can be written, and hence it will continue to be expressed
simply as 10el.

In the preceding, I and v for a given molecule are usually obtained from spec-
troscopic measurements; values for numerous different molecules are tabulated
in [152] among other sources. Also note that 10trans depends on the size of the
system through a1, a2, and a3, whereas 10rot, 1

0
vib, and 10el do not. Because of

this spatial dependence of 10trans, Q depends on V as well as T. Finally, note
that the lowest quantum number defines the zero-point energy for each mode,
and from the preceding expressions, the zero-point energy for rotation is
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precisely zero, whereas it is a finite value for the other modes. For example,

10trans0
¼

h2

8m

1

a2
1

þ
1

a2
2

þ
1

a2
3

� �

10rot0
¼ 0

10vib0
¼

1

2
hv

In the preceding, 10trans0
is very small, but it is finite. In contrast, 10vib0

is a larger
finite value, and 10el0

, although we do not have an expression for it, is larger yet.
Let us now consider the energy measured above the zero point:

1trans ¼ 10trans � 1trans0
�

h2

8m

n2
1

a2
1

þ
n2

2

a2
2

þ
n2

3

a2
3

� �

(Here, we are neglecting the small but finite value of 1trans0
.)

1rot ¼ 10rot � 1rot0 ¼
h2

8p2I
J(J þ 1)

1vib ¼ 10vib � 1vib0
¼ nhv

1el ¼ 10el � 1el0

Therefore, the total energy is

10 ¼ 1trans þ 1rot þ 1vib þ 1el þ 10

Now, let us consider the total energy measured above the zero point 1, where

1 ¼ 10 � 10|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sensible energy, that is,

energy measured above

zero-point energy

¼ 1trans þ 1rot þ 1vib þ 1el|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
All measured above the zero-point

energy. Thus, all are equal to zero

at T ¼ 0 K.

Recall from Eqs. (11.24) and (11.25) that Q is defined in terms of the sensible
energy, that is, the energy measured above the zero point:

Q ;
X

l

gje
�1 j=kT

where

1j ¼ 1 itrans
þ 1 jrot

þ 1nvib
þ 1lel
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Hence,

Q ¼
X

i

X
j

X
n

X
l

gigjgngl exp �
1

kT
(1itrans

þ 1 jrot
þ 1nvib

þ 1lel
)

� �

or

Q ¼
X

i

gi exp �
1itrans

kT

� �" # X
i

gi exp �
1 jrot

kT

� �" #



X

n

gn exp �
1nvib

kT

� �" # X
l

gl exp �
1lel

kT

� �" #
(11:51)

Note that the sums in each of the parentheses in Eq. (11.51) are partition functions
of each mode of energy. Thus, Eq. (11.51) can be written as

Q ¼ Qtrans Qrot Qvib Qel

The evaluation of Q now becomes a matter of evaluating individually Qtrans, Qrot,
Qvib, and Qel.

First, consider Qtrans:

Qtrans ¼
X

i

gitrans
exp �

1itrans

kT

� �

In the preceding, the summation is over all energy levels, each with gi states.
Therefore, the sum can just as well be taken over all energy states and written as

Qtrans ¼
X

j

exp �
1 jtrans

kT

� �

¼
X1
n1¼1

X1
n2¼1

X1
n3¼1

exp �
h2

8mkT

n2
1

a2
1

þ
n2

2

a2
2

þ
n2

3

a2
3

� �� �

¼
X1
n1¼1

exp �
h2

8mkT

n2
1

a2
1

� �" # X1
n2¼1

exp �
h2

8mkT

n2
2

a2
2

� �" #



X1
n3¼1

exp �
h2

8mkT

n2
3

a2
3

� �" #
(11:52)

If each of the terms in each preceding summation were plotted vs n, an
almost continuous curve would be obtained because of the close spacings
between the translational energies. As a result, each summation can be replaced
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by an integral, resulting in

Qtrans ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p

h
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p

h
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p

h

or

Qtrans ¼
2pmkT

h2

� �3=2

V (11:53)

where V ¼ a1a2a3 ¼ volume of the system.
To evaluate the rotational partition function, we use the quantum mechanical

results gJ ¼ 2Jþ 1. Therefore,

Qrot ¼
X

J

gJ exp �
1J

kT

� �
¼
X1
J¼0

ð2J þ 1Þ exp �
h2

8p2IkT
J(J þ 1)

� �

Again, if the summation is replaced by an integral,

Qrot ¼
8p2IkT

h2
(11:54)

To evaluate the vibrational partition function, results from quantum mech-
anics give gn ¼ 1 for all energy levels of a diatomic molecule. Hence,

Qvib ¼
X

n

gne�1n=kT ¼
X1
n¼0

e�nhv=kT

This is a simple geometric series, with a closed-form expression for the sum:

Qvib ¼
1

1� e�hv=kT
(11:55)

To evaluate the electronic partition function, no closed-form expression ana-
logous to the preceding results is possible. Rather, the definition is used, namely,

Qel ;
X1
l¼0

gle
�1l=kT ¼ g0 þ g1e�11=kT þ g2e�12=kT þ � � � (11:56)

where spectroscopic data for the electronic energy levels, 11, 12, etc., are inserted
directly in the preceding terms. Usually 1l for the higher electronic energy levels
is so large that terms beyond the first three shown in Eq. (11.56) can be neglected
for T � 15,000 K.
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Many results have been packed into this section, and the reader without pre-
vious exposure to quantum mechanics might feel somewhat uncomfortable.
However, the purpose of this section has been to establish results for the partition
function in terms of T and V: Eqs. (11.53–11.56) are those results. The discussion
surrounding these equations removes, we hope, some of the mystery about their
origin.

11.8 Practical Evaluation of Thermodynamic Properties

for a Single Chemical Species

We now arrive at the focus of all of the preceding discussion in the chapter,
namely, the evaluation of the high-temperature thermodynamic properties of a
single-species gas. We will emphasize the specific internal energy e; other prop-
erties are obtained in an analogous manner.

First, consider the translational energy. From Eq. (11.53),

lnQtrans ¼
3

2
ln T þ

3

2
ln

2pmk

h2
þ lnV

Therefore,

@ lnQtrans

@T

� �
V

¼
3

2

1

T
(11:57)

Substituting Eq. (11.57) into (11.32), we have

etrans ¼ RT2 3

2

1

T

etrans ¼
3

2
RT (11:57a)

Considering the rotational energy, we have from Eq. (11.54)

lnQrot ¼ lnT þ ln
8p2Ik

h2

Thus,

@ lnQrot

@T
¼

1

T
(11:58)

Substituting Eq. (11.58) into (11.32), we obtain

erot ¼ RT (11:59)

lnQvib ¼ �ln (1� e�hv=kT )

528 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



Thus,

@ lnQvib

@T
¼

hv=kT2

ehv=kT � 1
(11:60)

Substituting Eq. (11.60) into (11.32), we obtain

evib ¼
hv=kT

ehv=kT � 1
RT (11:61)

Let us examine the preceding results in light of a classical theorem from
kinetic theory, the theorem of equipartition of energy. Established before the
turn of the century, this theorem states that each thermal degree of freedom of
the molecule contributes 1

2
kT to the energy of each molecule or 1

2
RT to the

energy per unit mass of gas. For example, in Sec. 11.2, we demonstrated that
the translational motion of a molecule or atom contributes three thermal
degrees of freedom; hence, because of equipartition of energy, the translational
energy per unit mass should be 3ð1

2
RTÞ ¼ 3

2
RT . This is precisely the result

obtained in Eq. (11.57a) from the modern principles of statistical thermodyn-
amics. Similarly, for a diatomic molecule the rotational motion contributes two
thermal degrees of freedom; therefore, classically erot ¼ 2ð1

2
RTÞ ¼ RT , which

is in precise agreement with Eq. (11.59).
At this stage, you might be wondering why we have gone to all of the trouble

of the preceding section if the principle of equipartition of energy will give us the
results so simply. Indeed, extending this idea of the vibrational motion of a dia-
tomic molecule, we recognize that the two vibrational thermal degrees of
freedom should result in evib ¼ 2ð1

2
RTÞ ¼ RT . However, this is not confirmed

by Eq. (11.61). Indeed the factor (hv/kT)(ehv/kT 2 1) is less than unity except
when T! 1 when it approaches unity; thus, in general, evib , RT, in conflict
with classical theory. This conflict was recognized by scientists at the turn of
the century, but it required the development of quantum mechanics in the
1920s to resolve the problem. Classical results are based on our macroscopic
observations of the physical world, and they do not necessarily describe phenom-
ena in the microscopic world of molecules. This is a major distinction between
classical and quantum mechanics. As a result, the equipartition of energy prin-
ciple is misleading. Instead, Eq. (11.61), obtained from quantum considerations,
is the proper expression for vibrational energy.

In summary we have, for atoms,

e|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Internal energy per unit
mass measured above

zero-point energy
(sensible energyÞ

¼ 3
2

RT|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Translational

energy

þ eel|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Electronic energy
obtained directly
from spectroscopic

measurement

(11:62)
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and for molecules

e|fflfflfflfflffl{zfflfflfflfflffl}
Sensible

energy

¼ 3
2

RT|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Translational

energy

þ RT|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Rotational

energy

þ

hv=kT

ehv=kT � 1
RT|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Vibrational
energy

þ eel|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Electronic

energy

(11:63)

In addition, recalling the specific heat at constant volume, cv ; (@e/@T)v, Eq.
(11.62) yields for atoms

cv ¼
3
2
Rþ

@eel

@T
(11:64)

and Eq. (11.63) yields for molecules

cv ¼
3
2
Rþ Rþ

(hv=kT)2ehv=kT

(ehv=kT � 1)2
Rþ

@eel

@T
(11:65)

In light of the preceding results, we are led to the following important
conclusions:

1) From Eqs. (11.62–11.65), we note that both e and cv are functions of T
only. This is the case for a thermally perfect, nonreacting gas, as defined in
Sec. 10.4, that is,

e ¼ f1ðTÞ and cv ¼ f ðTÞ

This result, obtained from statistical thermodynamics, is a consequence of our
assumption that the molecules are independent (no intermolecular forces)
during the counting of microstates and that each microstate occurs with equal
probability. If we included intermolecular forces, such would not be the case.

2) For a gas with only translational and rotational energy, we have the
following.

For atoms:

cv ¼
3
2
R

For diatomic molecules:

cv ¼
5
2
R

That is, cv is constant. This is the case of calorically perfect gas, as also defined in
Sec. 10.4. For air at or around room temperature, cv ¼

5
2
R; cp ¼ cv þ R ¼ 7

2
R,

and hence g ¼ cp=cv ¼
7
5
¼ 1:4 ¼ const. So we see that air under normal

conditions has translational and rotational energy, but no significant vibra-
tional energy, and that the results of statistical thermodynamics predict
g ¼ 1.4 ¼ const—which we have assumed in all of the preceding chapters.
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However, when the air temperature reaches 600 K or higher, vibrational energy is
no longer negligible. Under these conditions, we say that “vibration is excited”;
consequently, cv ¼ f (T) from Eq. (11.65) and g is no longer constant. For air at
such temperatures, the constant g results from the preceding chapters are no
longer strictly valid. Instead, we have to redevelop our gas dynamics using
results for a thermally perfect gas such as Eq. (11.65). This will be the subject
of subsequent chapters.

3) In the theoretical limit of T! 1, Eq. (11.65) predicts cv!
7
2
R, and again

we would expect cv to be a constant. However, long before this would occur, the
gas would dissociate and ionize as a result of the high temperature, and cv would
vary as a result of chemical reactions. This case will be addressed in subsequent
sections.

4) Note that Eqs. (11.62) and (11.63) give the internal energy measured
above the zero point. Indeed, statistical thermodynamics can only calculate the
sensible energy or enthalpy; an absolute calculation of the total energy is not
possible because we cannot in general calculate values for the zero-point
energy. The zero-point energy remains a useful theoretical concept especially
for chemically reacting gases, but not one for which we can obtain an absolute
numerical value. This will also be elaborated upon in subsequent sections.

5) The theoretical variation of cv for air as a function of temperature is
sketched in Fig. 11.9. This sketch is qualitative only and is intended to show
that, at very low temperatures (below 1K), only translation is fully excited,
and hence cv ¼

3
2
R. (We are assuming here that the gas does not liquify at low

temperatures.) Between 1 and 3 K, rotation comes into play, and above 3 K
rotation and translation are fully excited, where cv ¼

5
2
R. Then, above 600 K,

vibration comes into play, and cv is a variable until approximately 2000 K.

Fig. 11.9 Schematic of the temperature variation of the specific heat for a

diatomic gas.
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Above that temperature, chemical reactions begin to occur, and cv experiences
large variations, as will be discussed later. The shaded region in Fig. 11.9 illus-
trates the regime where all of our previous gas dynamic results assuming a calori-
cally perfect gas are valid. The purpose of Part 3 of this book is to explore the
high-temperature regime where g is no longer constant and where vibrational
and chemical reactions effects become important.

Consider again the perfect-gas equation of state, discussed in Sec. 10.2.
In Chapter 10, we emphasized that, within the framework of classical thermo-
dynamics, the equation of state had to be postulated—it could not be obtained
from first principles. However, within the framework of statistical thermo-
dynamics, the equation of state can be obtained from first principles, as
follows. Consider Eq. (11.50) repeated here:

p ¼ NkT
@ lnQ

@V

� �
T

(11:50)

Examining the partition functions in Sec. 11.7, the only one that depends on V is
Qtrans. Hence, from Eq. (11.53)

@ lnQ

@V

� �
T

¼
@ lnQtrans

@V

� �
T

¼
1

V

Substituting this result into Eq. (11.35), we have

p ¼ NkT
1

V

� �

or

pV ¼ NkT

However, this is precisely the perfect-gas equation of state given by Eq. (10.9).
Hence, the formalism of statistical thermodynamics leads directly to a derivation
of the perfect-gas equation of state.

Question: Because the perfect-gas equation of state holds for a gas where intermole-
cular forces are negligible, where have we made such an assumption within our
development of statistical thermodynamics?

The answer is in the implicit assumption that the particles in our statistical
thermodynamic system are independent and indistinguishable. If there were
intermolecular forces acting on the particles, they could not be treated as indepen-
dent, and, for example, the quantum mechanical expressions for energy in Sec.
11.7 would not be valid. Indeed, our assumption of specific energy states for
each particle, unperturbed by outside influences, is analogous to ignoring inter-
molecular forces.

11.9 Calculation of the Equilibrium Constant

The concept of the equilibrium constant was introduced in Sec. 10.9 from
a classical thermodynamic point of view. However, classical thermo-
dynamics does not provide a theoretical calculation of values for Kp from first
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principles; statistical thermodynamics, on the other hand, does. The purpose of
this section is to develop such a calculation. Also, with this section we move
to the right-hand column of our chapter road map in Fig. 11.1, and we begin
our consideration of mixtures of chemically reacting gases.

Note that the theory and results obtained in the preceding sections apply to a
single chemical species. However, most high-temperature gases of interest are
mixtures of several species. Let us now consider the statistical thermodynamics
of a mixture of gases; the results obtained in this section represent an important
ingredient for our subsequent discussions on equilibrium chemically reacting gases.

First, consider a gas mixture composed of three arbitrary chemical species A,
B, and AB. The chemical equation governing a reaction between these species is

ABN Aþ B

Assume that the mixture is confined in a given volume at a given constant
pressure and temperature. (We have already seen from Chapter 10 that p and
T are important variables in dealing with chemically reacting mixtures.) We
assume that the system has existed long enough for the composition to become
fixed, that is, the preceding reaction is taking place an equal number of times
to both the right and left. (The forward and reverse reactions are balanced.)
This is the case of chemical equilibrium. Therefore, let NAB, NA, and NB be the
number of AB, A, and B particles, respectively, in the mixture at chemical equili-
brium. Moreover, the A, B, and AB particles each have their own set of energy
levels, populations, and degeneracies:

100, 10A1 , 10A2 , . . . , 10Aj , . . .

NA
0 , NA

1 , NA
2 , . . . , NA

j , . . .

gA
0 , gA

1 , gA
2 , . . . , gA

j , . . .

100, 10B1 , 10B2 , . . . , 10Bj , . . .

NB
0 , NB

1 , NB
2 , . . . , NB

j , . . .

gB
0 , gB

1 , gB
2 , . . . , gB

j , . . .

10AB
0 , 10AB

1 , 10AB
2 , . . . , 10AB

j , . . .

NAB
0 , NAB

1 , NAB
2 , . . . , NAB

j , . . .

gAB
0 , gAB

1 , gAB
2 , . . . , gAB

j , . . .

A schematic of the energy levels is given in Fig. 11.10. Recall that, in most cases,
we do not know the absolute values of the zero-point energies, but, in general, we
know that 10A0 = 10B0 = 10AB

0 . Therefore, the three energy level ladders shown in
Fig. 11.10 are at different heights. However, it is possible to find the change in
zero-point energy for the reaction

AB|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Reactant

�! Aþ B|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Products

Change in zero
point energy

� �
; zero-point energy

of products

� �
�

zero-point energy
of reactants

� �

D10 ¼ ð10A0 þ 10B0 Þ � 10AB
0

This relationship is illustrated in Fig. 11.11.
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The equilibrium mixture of A, B, and AB particles has two constraints.
1) The total energy E is constant:

EA ¼
X

j

NA
j 1
0A
j ¼

X
j

NA
j (1A

j þ 1A
0 )

EB ¼
X

j

NB
j 1
0B
j ¼

X
j

NB
j (1B

j þ 1B
0 )

EAB ¼
X

j

NAB
j 10AB

j ¼
X

j

NAB
j (1AB

j þ 1AB
0 )

E ¼ EA þ EB þ EAB ¼ const (11:66)

Fig. 11.10 Schematic of energy levels for three different chemical species.

Fig. 11.11 Illustration of the meaning of change in zero-point energy.
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2) Total number of A particles NA, both free and combined (such as in AB),
must be constant. This is essentially the same as saying that the total number
of A nuclei stays the same, whether it is in the form of pure A or combined in
AB. We are not considering nuclear reactions here—only chemical reactions
that rearrange the electron structure. Similarly, the total number of B particles
NB, both free and combined, must also be constant:

X
j

NA
j þ

X
j

NAB
j ¼ NA ¼ const

X
j

NB
j þ

X
j

NAB
j ¼ NB ¼ const (11:67)

To obtain the properties of the system in chemical equilibrium, we must find
the most probable macrostate of the system, much the same way as we proceeded
in Secs. 11.3 and 11.4 for a single species. The theme is the same; only the details
are different. Consult [150] and [153] for those details. From this statistical ther-
modynamic treatment of the mixture, we find

NA
j ¼ NA

gA
j e�1jA=kT

QA
(11:68a)

NB
j ¼ NB

gB
j e�1jB=kT

QB
(11:68b)

NAB
j ¼ NAB

gAB
j e�1jAB=kT

QAB
(11:68c)

and

NANB

NAB
¼ e�D10=kT QAQB

QAB
(11:69)

Recall that NA, NB, and NAB are the actual number of A, B, and AB particles
present in the mixture; do not confuse these with NA and NB, which were
defined as the number of A and B nuclei.

Equations (11.68a–11.68c) demonstrate that a Boltzmann distribution exists
independently for each one of the three chemical species. More important,
however, Eq. (11.69) gives some information on the relative amounts of A, B,
and AB in the mixture. Equation (11.69) is called the law of mass action, and
it relates the amounts of different species to the change in zero-point energy
D10 and to the ratio of partition functions for each species.

ELEMENTS OF STATISTICAL THERMODYNAMICS 535



For gas dynamic calculations, there is a more useful form of Eq. (11.69) as
follows: From Sec. 10.2, we can write the perfect-gas equation of state for the
mixture as

pV ¼ NkT (11:70)

For each species i, the partial pressure pi can be written as

piV ¼ NikT (11:71)

The partial pressure is discussed at length in Sec. 10.2; it is the pressure that
would exist if Ni particles of species i were the only matter filling the volume V.
Letting Ni equal NA, NB, and NAB, respectively, and defining the corresponding
partial pressures, pA, pB, and pAB, Eq. (11.71) yields

NANB

NAB
¼

pApB

pAB

V

kT
(11:72)

Combining Eqs. (11.72) and (11.69), we have

pApB

pAB

¼
kT

V
e�D10=kT QAQB

QAB
(11:73)

Recall from Eqs. (11.52) and (11.53) that Q is proportional to the volume V. There-
fore, in Eq. (11.73) the V cancel, and we obtain

pA pB

pAB

¼ f (T )

This function of temperature is the equilibrium constant for the reaction
AB N Aþ B, Kp(T), as defined in Eqs. (10.90) and (10.91).

pApB

pAB

¼ Kp(T ) (11:74)

In Eq. (10.90), Kp is given in terms of DGp¼1, which from classical thermo-
dynamics must be treated as a measured quantity. In contrast, in Eq. (11.73),
Kp is given in terms of the partition functions and the change in zero-point
energy D10. Theoretical expressions for the partition functions are given in
Sec. 11.7. The treatment of D10 will be discussed in Sec. 11.12.

Generalizing the preceding results, consider the chemical equation

0 ¼
X

i

viAi (11:75)

as first discussed in Sec. 10.9. Recall that vi is the stoichiometric mole number for
species i and Ai is the chemical symbol for species i. In Eq. (11.75) vi is positive
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for products and negative for reactants. Then the equilibrium constant is obtained
from Eqs. (11.73) and (11.74) as

Kp(T) ;
Y

i

rvi

i ¼
kT

V

� �Svi

e�D10=kT
Y

i

Qvi

i (11:76)

Equation (11.76) is another form of the law of mass action, and it is extremely
useful in the calculation of the composition of an equilibrium chemically reacting
mixture. Some typical reactions, with their associated equilibrium constants, are

N2N 2N: K p;N2
¼

(pN)2

pN2

H2O2N 2Hþ 2O: K p;H2O2
¼

(pH)2(pO)2

PH2O2

In summary, we have made three important accomplishments in this section:
1) We have obtained the equilibrium constant, Eqs. (11.74) or (11.76), from

the formal approach of statistical thermodynamics.
2) We have shown it to be a function of temperature only, Eq. (11.74).
3) We have demonstrated a formula from which it can be calculated based on

a knowledge of the partition functions, Eq. (11.76). Indeed, tables of equilibrium
constants for many basic chemical reactions have been calculated and are given
in [148] and [149].

In perspective, the first part of this chapter has developed the high-temperature
properties of a single species. Now, in order to focus on the properties of a
chemically reacting mixture (such as high-temperature air), we must know
what chemical species are present in the mixture and in what quantity. After
these questions are answered, we can sum over all of the species and find the
thermodynamics properties of the mixture. These matters are the subject of the
next few sections.

11.10 Chemical Equilibrium—Some Further Comments

Consider air at normal room temperature and pressure. The chemical compo-
sition under these conditions is approximately 79% N2, 20% O2, and 1% trace
species such as Ar, He, CO2, H2O, etc., by volume. Ignoring these trace species,
we can consider that normal air consists of two species, N2, and O2. However, if
we heat this air to a high temperature, where 2500 K , T , 9000 K, chemical
reactions will occur among the nitrogen and oxygen. Some of the important reac-
tions in this temperature range are

O2N 2O (11:77a)

N2N 2N (11:77b)

Nþ ON NO (11:77c)

Nþ ON NOþ þ e� (11:77d)
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That is, at high temperatures, we have present in the air mixture not only O2 and
N2, but O, N, NO, NOþ, and e2 as well. Moreover, if the air is brought to a given
T and p, and then left for a period of time until the preceding reactions are occur-
ring an equal amount in both the forward and reverse directions, we approach the
condition of chemical equilibrium. For air in chemical equilibrium at a given p
and T, the species O2, O, N2, N, NO, NOþ, and e2 are present in specific,
fixed amounts, which are unique functions of p and T. Indeed, for any equilibrium
chemically reacting gas, the chemical composition (the types and amounts of
each species) is determined uniquely by p and T, as we discussed in Sec. 10.9.

From a statistical thermodynamic point of view, a system is in chemical equi-
librium when it is characterized by the maximum number of microstates, that is,
when the thermodynamic probability is maximum, Wmax. This helps to broaden
our concept of chemical equilibrium; namely, in an equilibrium chemically react-
ing mixture, the particles of each chemical species are distributed over their
respective energy levels according to a local Boltzmann distribution for each
species [Eqs. (11.68a–11.68c)].

11.11 Calculation of the Equilibrium Composition

for High-Temperature Air

In Sec. 10.9, we established a procedure for the calculation of the chemical
composition for an equilibrium chemically reacting gas; the material in that
section was illustrated by considering a system of hydrogen and oxygen. In
Sec. 11.9, the concept of chemical equilibrium and the equilibrium constant
were developed from a statistical thermodynamic point of view; these concepts
lead to results and methods that are identical to those from the classical viewpoint
discussed in Sec. 10.9.

In the present section, we will review the calculational procedure for obtaining
the equilibrium composition of a chemically reacting gas as discussed in Sec.
10.9. Moreover, because of the importance of high-temperature air in many prac-
tical applications, we will utilize a N2-O2 system in our example here.

Consider a system of high-temperature air at a given T and p, and assume that
the following species are present: N2, O2, N, O, NO, NOþ, e2. We want to solve
for pO2

, pO, pN2
, pN, pNO, pNO+ , and pe2 at the given mixture temperature and

pressure. We have seven unknowns; hence, we need seven independent
equations. The first equation is Dalton’s law of partial pressures, which states
that the total pressure of the mixture is the sum of the partial pressures (recall
that Dalton’s law holds only for perfect gases, i.e., gases wherein intermolecular
forces are negligible):

I. p ¼ pO2
þ pO þ pN2

þ pN þ pNO þ pNO+ þ pe� (11:78)

In addition, using Eq. (11.76) we can define the equilibrium constants for the
chemical reactions (11.77a–11.77d) as

II. (pO)2

pO2

¼ K p,O2
(T ) (11:79)
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III. (pN)2

pN2

¼ K p, N2
(T) (11:80)

IV. pNO

pNpO

¼ K p, NO(T) (11:81)

V. pNOpe�

pNpO

¼ K p, NOþ (T) (11:82)

In Eqs. (11.79–11.82), the equilibrium constants Kp are known values, calculated
from statistical mechanics as described earlier or obtained from thermodynamic
measurements. They can be found in established tables, such as the JANAF tables
[149]. However, Eqs. (11.78–11.82) constitute only five equations—we still
need two more. The other equations come from the indestructibility of matter,
as follows:

Fact : The number of O nuclei, both in the free and combined state, must remain con-
stant. Let NO denote the number of oxygen nuclei per unit mass of mixture.

Fact : The number of N nuclei, both in the free and combined state, must remain con-
stant. Let NN denote the number of nitrogen nuclei per unit mass of mixture.

Then, from the definition of Avogadro’s number NA and the mole-mass
ratios hi

NA(2hO2
þ hO þ hNO þ hNOþ) ¼ NO (11:83)

NA(2hN2
þ hN þ hNO þ hNOþ) ¼ NN (11:84)

However, from Eq. (10.20),

hi ¼ pi

v

RT
(11:85)

Dividing Eqs. (11.83) and (11.84) and substituting Eq. (11.85) into the result,
we have

VI.
2pO2
þ pO þ pNO þ pNOþ

2pN2
þ pN þ pNO þ pNOþ

¼
NO

NN

(11:86)

Equation (11.86) is called the mass-balance equation. Here, the ratio NO/NN is
known from the original mixture at low temperature. For example, assuming at
normal conditions that air consists of 80% N2 and 20% O2,

NO

NN

¼
0:2

0:8
¼ 0:25
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Finally, to obtain our last remaining equation, we state the fact that electric
charge must be conserved, and hence

hNOþ ¼ he� (11:87)

Substituting Eq. (11.85) into (11 87), we have

VII.

pNOþ ¼ pe� (11:88)

In summary, Eqs. (11.78–11.82), (11.86), and (11.88) are seven nonlinear,
simultaneous, algebraic equations that can be solved for the seven unknown
partial pressures. Furthermore. Eq. (11.78) requires pressure p as input, and
Eqs. (11.79–11.82) require the temperature T in order to evaluate the equilibrium
constants. Hence, these equations clearly demonstrate that, for a given chemi-
cally reacting mixture, the equilibrium composition is a function of T and p, as
was discussed at length in Chapter 10.

The preceding procedure, carried out for high-temperature air, is an example
of a general procedure that applies to any chemically reacting mixture in chemi-
cal equilibrium. In general, if the mixture has

P
species and f elements, then we

need
P

2 f independent chemical equations [such as Eqs. (11.77a–11.77d)]
with the appropriate equilibrium constants. The remaining equations are obtained
from the mass-balance equations and Dalton’s law of partial pressures. In the
preceding example for air,

P
¼ 7, and f ¼ 3. (The elements are O, N, and e2.)

Therefore, we needed
P

2 f ¼ 4 independent chemical equations with four
different equilibrium constants. These four equations were Eqs. (11.77a–11.77d).

The calculation of a chemical equilibrium composition is conceptually
straightforward, as indicated in this section. However, the solution of a system
of many nonlinear, simultaneous algebraic equations is not a trivial undertaking
by hand, and today such calculations are almost always performed on a high-
speed digital computer using custom-designed algorithms.

Also, let us emphasize a point made in Sec. 10.9, namely, that the specific
chemical species to be solved are chosen at the beginning of the problem. This
choice is important; if a major species is not considered (e.g., if N had been
left out of our preceding calculations), the final results for chemical equilibrium
will not be accurate. The proper choice of the type of species in the mixture is a
matter of experience and common sense. If there is any doubt, it is always safe to
assume all possible combinations of the atoms and molecules as potential species,
then, if many of the choices turn out to be trace species, the results of the calcu-
lation will state so. At least in this manner, the possibility of overlooking a major
species is minimized.

An example of results obtained from the preceding analysis is given in
Fig. 11.12. Here, the equilibrium composition of high-temperature air (in terms
of mole fraction) is given as a function of T at p ¼ 1 atm. Note the following
trends from Fig. 11.12—trends that we have mentioned in Chapters 9 and 10.

1) The O2 begins to dissociate above 2000 K and is virtually completely
dissociated above 4000 K.
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2) The N2 begins to dissociate above 4000 K and is virtually completely
dissociated above 9000 K.

3) The NO is present between 2000 and 6000 K, with a peak mole fraction
occurring about 3500 K.

A point should be made about the variation of XO as shown in Fig. 11.12. The
curve for XO has a local maximum around 5000 K and then decreases at higher
temperatures in the range from 5000 to 9000 K. This does not mean, however,
that the total amount of O atoms is decreasing in this range. Rather, it is a con-
sequence of the definition of mole fraction; because XO ; NO/N, where NO

is the number moles of O and N is the total number of moles, then XO decreases
between 5000 and 9000 K simply because the total number of moles of the
mixture N is increasing (as a result of the dissociation of N2, for example).

It is important to keep in mind the effect of pressure on these results. If the
pressure were increased to, say, 10 atm then all of the curves in Fig. 11.12

Fig. 11.12 Composition of equilibrium air vs temperature at 1 atm.
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would qualitatively shift to the right, that is, the various dissociation processes
would be delayed to higher temperatures. On the other hand, if p were decreased
to, say, 0.1 atm, then all of the curves in Fig. 11.12 would qualitatively shift to the
left, that is, dissociation would occur at lower temperature. Hence, raising the
pressure decreases the amount of dissociation, and lowering the pressure
increases the amount of dissociation. In a very qualitative sense, it is convenient
to keep in mind that, in an equilibrium chemically reacting mixture, an increase
in pressure “squeezes out” some of the amount of dissociation.

Extensive calculations of the equilibrium properties of high-temperature air,
including the equilibrium composition, can be found in [154]. Indeed, the data
plotted in Fig. 11.12 were obtained from the detailed tabulations found in [154].

11.12 Thermodynamic Properties of an Equilibrium

Chemically Reacting Gas

In perspective, to this point in our discussion of the properties of high-
temperature gases we have accomplished two major goals:

1) From Secs. 11.2–11.8, we have obtained formulas for calculating the ther-
modynamic properties of a given single species. In terms of our chapter road map
in Fig. 11.1, we traveled down all of the left-hand column, arriving at the box at
the bottom of that column.

2) From Secs. 11.9–11.11 and Sec. 10.9, we have seen how to calculate the
amount of each species in an equilibrium chemically reacting mixture. In terms of
our chapter road map, we traveled down all of the right-hand column, arriving at
the box at the bottom of that column.

In this section, we now combine the preceding knowledge to obtain the ther-
modynamic properties of an equilibrium chemically reacting mixture, that is, we
go to the intersection of both columns of the road map in Fig. 11.1 and deal with
the final box at the bottom. Because of its importance to gas dynamics, we will
concentrate on the enthalpy of the mixture.

For a chemically reacting mixture, we have seen that the enthalpy of the
mixture per unit mass of mixture is given by

h ¼
X

i

cihi ¼
X

i

hiHi (11:89)

where ci is the mass fraction of species i, hi is the enthalpy of species i per unit
mass of i, hi is the mole-mass ratio, and Hi is the enthalpy of species i per mole
of i. We can also write for the enthalpy of the mixture per mole of mixture

H ¼
X

i

XiHi (11:90)

where Xi is the mole fraction of species i.
Let us now examine the meaning of Hi more closely:

Hi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Absolute enthalpy

of species i per

mole of i

¼ (H � E0)i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sensible enthalpy

of species i per
mole of i

þ E0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zero-point energy

of species i per
mole of i

(11:91)
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The sensible enthalpy is obtained from statistical mechanics, as we have already
seen from Sec. 11.8.

(H � E0)i ¼ (E � E0)i þRT

(H � E0)i ¼
3

2
RT þ RT þ

hn=kT

ehn=kT � 1
RT þRT þ electronic energy

Translation
zfflfflfflffl}|fflfflfflffl{

Rotation
zfflffl}|fflffl{

Vibration
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

(11:92)

Note that, (H 2 E0)i is a function of T only. Also, E0i
is the zero-point energy of

species i, that is, the energy of the species at T ¼ 0 K; it is a constant for a given
chemical species. The relationship is schematically shown in Fig. 11.13. As
discussed in Secs. 11.2 and 11.7, the absolute value of E0i

usually cannot be cal-
culated or measured; nevertheless, it is an important theoretical quantity. For
example, in a complex chemically reacting mixture, we should establish some
reference level from which all of the energies of the given species can be
measured. Many times there is some difficulty and confusion in establishing
what this level should be. However, by carrying through our concept of the
absolute zero-point energy E0i

, the choice of a proper reference level will soon
become apparent.

Because the absolute value of E0i
generally cannot be obtained, how can we

calculate a number for h from Eq. (11.89) or H from Eq. (11.90)? The answer
lies in the fact that we never need an absolute number for h. In all thermodynamic
and gas dynamic problems, we deal with changes in enthalpy and internal energy.
For example, in Chapter 2 dealing with shock waves, we were always interested
in the change h2 2 h1 across the shock. In the general conservation equations
from Parts 1 and 2, we dealt with the derivatives @h/@x, @h/@y, @h/@z, @h/@t,
which are changes in enthalpy. Letting points 1 and 2 denote two different

Fig. 11.13 Schematic showing the contrast between sensible enthalpy and zero-point

energy.
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locations in a flowfield, we have, from Eq. (11.89),

h1 ¼
X

i

(hiHi)l ¼
X
½hi(H � E0)i�1 þ

X
(hiE0i)1

or

h1 ¼ hsens1
þ e01

(11:93)

where hsens1
and e0i

are the sensible enthalpy and zero-point energy, respectively,
per unit mass of mixture at point 1. Similarly, at point 2,

h2 ¼
X

i

(hiHi)2 ¼
X
½hi(H � E0)i�2 þ

X
(hiE0i

)2

or

h2 ¼ hsens2
þ e02

(11:94)

Subtracting Eq. (11.93) from (11.94) we have

h2 � h1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Change in
enthalpy

¼ (hsens2
� hsens1

)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Change in sensible

enthalpy

þ (e02
� e01

)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Change in zero-

point energy

or

Dh ¼ Dhsens þ De0 (11:95)

In Eq. (11.95) we have circumvented the need to know the absolute value of the
zero-point energy; rather, what we need now is a value for the change in zero-
point energy De0. The value of De0 can be obtained from measurements, as
discussed next.

The change in zero-point energy is related to the concept of the heat of
formation for a given species. When a chemical reaction represents the formation
of a single chemical species from its “elements” at standard conditions, the heat
of reaction (as discussed in Sec. 10.10) is called the standard heat of formation.
The standard conditions are those of the stable elements at the standard tempera-
ture, Ts ¼ 298.16 K. (The quotation marks around the word “elements” reflects
that some elements at the standard conditions are really diatomic molecules,
not atoms. For example, nitrogen and oxygen are always found at standard con-
ditions in the form N2 and O2, not N and O.) To illustrate, consider the formation
of H2O from its “elements” at standard conditions:

H2 þ
1
2
O2|fflfflfflfflffl{zfflfflfflfflffl}

At, Ts

Ts �! H2O|ffl{zffl}
At Ts
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Then, by definition

(DHf )
Ts

H2O|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Standard heat of
formation of H2O

; HTs

H2O � HTs

H2
� 1

2
HTs

O2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Enthalpy of the product minus

the enthalpy of reactants,
all at TS

In an analogous fashion, let us define the heat of formation at absolute zero. Here,
both the product and reactants are assumed to be at absolute zero. For example,

H2 þ
1
2
O2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

At T ¼ 0 K

�! H2O|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
At T ¼ 0 K

Letting (DHf )
W

H2O denote the heat of formation of H2O at absolute zero, we have

(DHf )
W

H2O ; H
W

H2O � H
W

H2
� 1

2
H

W

O2
(11:96)

However, the enthalpy of any species at absolute zero is, by definition, its zero-
point energy. Hence, Eq. (11.96) becomes

(DHf )
W

H2O ; (E0)H2O � (E0)H2
� 1

2
(E0)O2

(11:97)

Note that the preceding expressions are couched in terms of energy per mole.
However, the heat of formation of species i per unit mass (Dhf)i is easily obtained as

(Dhf )i ¼
(DHf )i

Mi

Also, the heats of formation for many species have been measured, and are tabulated
in such references as the JANAF tables and NASA SP-3001 (see [149] and [148],
respectively).

We now state the following theorem: In a chemical reaction, the change in
zero-point energy (zero-point energy of the products minus the zero-point
energy of the reactants) is equal to the difference between the heats of formation
of the products at T ¼ 0 K and the heats of formation of the reactants at T ¼ 0 K.

Proof of the preceding theorem is obtained by induction from examples. For
example, consider the water-gas reaction:

CO2 þ H2 �! H2Oþ CO

By definition of the change in zero-point energy,

DE0 ¼ (E0)H2O þ (E0)CO � (E0)CO2
� (E0)H2

(11:98)
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By definition of the heat of formation at absolute zero, we have

H2 þ
1
2
O2 �! H2O: (DHf )

W

H2O ¼ (E0)H2O � (E0)H2
� 1

2
(E0)O2

(11:99)

Cþ 1
2
O2 �! CO: (DHf )

W

CO ¼ (E0)CO � (E0)C �
1
2
(E0)O2

(11:100)

Cþ O2 �! CO2: (DHf )
W

CO2
¼ (E0)CO2

� (E0)C �
1
2
(E0)O2

(11:101)

H2 �! H2: (DHf )
W

H2
¼ 0 (11:102)

Adding Eqs. (11.99) and (11.100) and subtracting Eqs. (11.101) and (11.102), we
have

(DHf )
W

H2O þ (DHf )
W

CO � (DHf )
W

CO2
� (DHf )H2

¼ (E0)H2O

þ (E0)CO � (E0)CO2
� (E0)H2

; DE0

Thus, for the water-gas reaction, we have just shown that

DE0 ¼ (DHf )
W

H2O þ (DHf )
W

CO � (DHf )
W

CO2
� (DHf )

W

H2
(11:103)

This is precisely the statement of the preceding theorem!
Compare Eqs. (11.98) and (11.103). It appears that the terms (E0)H2O

, (E0)CO,
(E0)CO2

, and (E0)H2
can be replaced in a one-to-one correspondence by (DHf )8H2O

(DHf )8CO, (DHf )8CO2
, and (DHf )8H2

. Therefore. let us reorient our thinking about
the enthalpy of a gas mixture. We have been writing

h ¼
X

i

hiHi ¼
X

i

hi(H � E0)i

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Sensible enthalpy

of the mixture

þ
X

i

hiE0i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zero-point energy

of the mixture

(11:104)

Let us replace the preceding with

h ¼
X

i

hi(H � E0)i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sensible enthalpy,

obtained for example
from statistical

mechanics

þ
X

i

hi(DHf )
W

i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
‘‘Effective’’ zero-

point energy,
obtained from

tables

(11:105)

Equations (11.104) and (11.105) yield different absolute numbers for h; however,
from the preceding theorem the values for changes in enthalpy Dh will be the
same whether Eq. (11.104) or (11.105) is used. Therefore, we are led to an
important change in our interpretation of enthalpy, namely, from now on we
will think of enthalpy as given by Eq. (11.105) with the term involving the heat
of formation at absolute zero as an “effective” zero-point energy. In terms of
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enthalpy per unit mass, we write

h ¼
X

i

cihi

where

hi ¼ (h� e0)i þ (Dhf )
W

i

Thus

h ¼
X

i

ci(h� e0)i þ
X

i

ci(Dhf )
W

i (11:106)

[Note that in Eqs. (11.105) and (11.106), the effective zero-point energyP
i hi(DH)

W

i ¼
P

i ci(Dhf )
W

i is sometimes called the chemical enthalpy in the
literature.]

With the preceding, we end our discussion on the calculation of the thermo-
dynamic properties of an equilibrium chemically reacting mixture. In
summary, we have shown the following:

1) The sensible enthalpy of a mixture can be obtained from the following: a)
the sensible enthalpy for each species as given by the formulas of statistical
mechanics for example, Eqs. (11.62), (11.63), and (11.92); and b) knowledge
of the equilibrium composition described in terms of pi, Xi, hi, or ci.

2) The zero-point energy can be treated as an effective value by using the
heats of formation at absolute zero in its place. Therefore, Eq. (11.105) or
(11.106) can be construed as the enthalpy of a gas mixture.

11.13 Equilibrium Properties of High-Temperature Air

As discussed in Chapter 9, many applications in high-temperature gas
dynamics involve high-temperature air. Therefore, in this section we will high-
light the equilibrium thermodynamic properties of high-temperature air.

For a moment, return to the discussion in Sec. 11.1 concerning the calculation
of a flowfield in local thermodynamic and chemical equilibrium (terms to be
made more precise in subsequent chapters). Note that in order to solve such an
equilibrium flowfield we need to express two thermodynamic state variables
(such as T and p) in terms of two other state variables (such as r and h). The
choice of convenient dependent and independent variables is somewhat deter-
mined by the way that the flowfield solution is set up and generally varies from
one application to another. In any event, the high-temperature thermodynamic
properties of any equilibrium chemically reacting mixture, air or other mixtures,
are obtained from statistical thermodynamic calculations as discussed in the pre-
ceding sections. However, in what manner are these high-temperature thermo-
dynamic properties actually entered into a flow calculation? Or, another way to
ask the same question is: in what form can you actually find these properties in
the literature so that you can use them for a flow calculation?
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For high-temperature air, the answer to the preceding questions is as follows.
There are several options:

1) The equations from statistical thermodynamics, given in this chapter, can
be entered directly in the flow calculations, and the thermodynamic properties
can be generated “from scratch” internally in the calculation.

2) Tables of thermodynamic properties of high-temperature air exist; an
excellent source of such tabulated data is the work of Hilsenrath and Klein
[154]. These tables were calculated from the methods discussed in this chapter.
In turn, the tabular data can be fed into a computer and can be used in numerical
flowfield calculations via a “table look-up” procedure that interpolates between
discrete entries from the tables. Also, the tables in [154] are useful for approxi-
mate hand calculations of simple problems.

3) Also useful for hand calculations are graphical plots of high-temperature
air properties. Indeed, a large Mollier diagram is helpful in such cases. A
small section of the Mollier diagram for air is given in Fig. 11.14.

4) The tabulated data discussed in item 2 can be cast in the form of polynomial
correlations that are easy and convenient to apply within the framework of a flow-
field calculation. An excellent and frequently used set of correlations for high-
temperature air was obtained by Tannehill and Mugge as, given in [155]. Because
of their convenience, these correlations are given in detail later in this section.

All of the four options just listed have been used in calculations of equilibrium
air chemically reacting flowfields; the choice of any particular option is a func-
tion of the particular problem and the inclination of the user. However, for gas
mixtures other than air, such as hydrocarbon mixtures associated with combus-
tion or ablation problems, there are usually no tabulations available. (Because

Fig. 11.14 Mollier diagram for high-temperature equilibrium air.
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an infinite number of different mixtures can exist, it makes no sense to construct
an infinite number of different tables.) Hence, there are no Mollier diagrams or
polynomial correlations for the mixture properties. In this case, option 1 is the
only recourse.

Let us make some important comments about the physical variations of high-
temperature properties as reflected in the Mollier diagram in Fig. 11.14. A Mollier
diagram is a plot of enthalpy vs entropy, where the various curves on the diagram
correspond to constant temperature, constant density, or some other constant state
variable. In Fig. 11.14, note that, at low temperatures (below 2000 K), the
constant-temperature line (isothermal line) is essentially horizontal, indicating
that H depends only on T. In light of our definitions in Sec. 10.4, this demonstrates
that air is thermally perfect below about 2000 K. In contrast, at higher tempera-
ture (say 8000 K), the isothermal line is clearly not horizontal; we see in
Fig. 11.14 that H increases rapidly with S, even though T is constant. This is a
characteristic of a chemically reacting gas.

Question: Why does H increase, even though T is constant?

The answer can be constructed by following one of the high-temperature iso-
thermal lines in Fig. 11.14 say, the line for T ¼ 4000 K. Note that, as S increases,
the density (and hence the pressure) decreases along this line. In turn, as the
pressure decreases, the relative amount of dissociation increases along this isother-
mal line. (Recall our discussion about the effects of pressure on dissociation in Sec.
11.11.) This means that more atoms are present in the mixture. As noted earlier in
Fig. 11.11, two atoms have a combined zero-point energy that is higher than the
zero-point energy of the original single molecule. Hence, as pressure decreases
at constant T, the effective zero-point energy of the mixture increases, and
because H in Fig. 11.14 includes this effective zero-point energy (obtained from
the heats of formation as discussed in Sec. 11.12), then H increases at constant T.

Finally, let us repeat that a particularly convenient method of entering high-
temperature equilibrium air properties into a flowfield calculation is by way of
polynomial correlations of the calculated and tabulated data. Because the corre-
lations of Tannehill and Mugge [155] are widely used, they are, in part, itemized
next. In terms of pressure as a function of internal energy and density

p ¼ p(e, r)

we have

p ¼ re( ~g� 1) (11:107)

where g̃ is given by

~g ¼ a1 þ a2Y þ a3Z þ a4YZ þ a5Y2 þ a6Z2 þ a7YZ2 þ a8Z3

þ
a9 þ a10Y þ a11Z þ a12YZ

1þ exp½(a13 þ a14Y)(Z þ a15Y þ a16)�
(11:108)

and where Y ¼ log (r/1.292) and Z ¼ log (e/78408.4). The units for p are N/m2, the
units for r are kg/m3, and the units for e are m2/s2. The coefficients a1, a2, . . . , a16
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are given in Table 11.1. (The coefficients K in Table 11.1 pertain to the speed of
sound, to be discussed later.) In terms of temperature as a function of internal
energy and density

T ¼ T(e, r)

we have

log
T

151:78

� �
¼ b1 þ b2Y þ b3Z þ b4Y Z þ b5Y2 þ b6Z2 þ b7Y2Z þ b8Y Z2

þ
b9 þ b10Y þ b11Z þ b12Y Z þ b13Z2

1þ exp½(b14Y þ b15)(Z þ b16)�
(11:109)

where Y ¼ log(r/1.225), X ¼ log(p/1.0314 
 105), Z ¼ X 2 Y, and the pressure p
is first found from Eq. (11.107). The units for p are N/m2, and the units for T are
K. The coefficients, b2, b2, . . . , b16 are given in Table 11.2. In terms of specific
enthalpy as a function of pressure and density

h ¼ h( p, r)

we have

h ¼
p

r

~g

~g� 1

� �
(11:110)

where

~g ¼ c1 þ c2Y þ c3Z þ c4YZ þ
c5 þ c6Y þ c7Z þ c8Y Z

1þ exp½c9(X þ c10Y þ c11)�
(11:111)

and where Y ¼ log(r/1.292), X ¼ log(p/1.013 
 105), and Z ¼ X 2 Y. The
coefficients c1, c2, . . . , c11 are tabulated in Table 11.3. In terms of temperature as
a function of pressure and density, we have

log
T

T0

� �
¼ d1 þ d2Y þ d3Z þ d4Y Z þ d5Z2

þ
d6 þ d7Y þ d8Z þ d9Y Z þ d10Z2

1þ exp½d11(Z þ d12)�
(11:112)

where T0 ¼ 288.16 K, Y ¼ log(r/1.225), X ¼ log(p/1.0134 
 105), and
Z ¼ X 2 Y. The coefficients d1, d2, . . . , d12 are given in Table 11.4.

The accuracy of the Tannehill and Mugge correlations is demonstrated in
Fig. 11.15, where T is plotted vs p for constant r. The solid curves are from
the correlations just given, and the points are from tabulated data calculated by
means of statistical thermodynamics as described in this chapter. Note that the
correlations are an excellent representation of the tabulated results. For more
details about the correlations, see [155].
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11.14 Summary and Comments

In this chapter, we have seen how to calculate from first principles the thermo-
dynamic properties of equilibrium chemically reacting mixtures. The calculations
are obtained from the powerful concepts of statistical thermodynamics. The
bridge between the classical thermodynamics discussed in Chapter 10 and the
statistical thermodynamics discussed in the present chapter is

S ¼ k lnWmax (11:36)

where S is the entropy and Wmax (the thermodynamic probability) is the total
number of microstates in the most probable macrostate. Moreover, the population
distribution associated with the most probable macrostate, which in terms of stat-
istical thermodynamics is the state of equilibrium, is

N�j ¼ N
gje
�1j=kT

Q
(11:25)

where Q is the partition function given by

Q ¼
X

j

gje
�1j=kT

When the partition functions are evaluated for the various modes of molecular
energy, that is, translational, rotational, and vibrational, we have, for the internal
energy per unit mass for a given pure chemical species i,

ei ¼
3

2
RiT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Translation

þ RiT|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Rotation

þ

hvi=kT

ehvi=kT � 1
RiT|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Vibration

þ (eel)i|fflfflfflfflffl{zfflfflfflfflffl}
Sensible

electronic
energy

þ (Dhf )
W

i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Effective
zero point

energy

Fig. 11.15 Comparison of curve fits with tabulated data for high temperature air

(from [155]).
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where (Dh)i

W

is the heat of formation at absolute zero of species i per unit mass of
i. In turn, the equilibrium chemical composition at a specified T and p can be
obtained by using the equilibrium constant, where

Y
I

pvt

i ¼ Kp(T)¼
kT

V

� �P
i
vi

e�D10=kT
Y

i

Qi (11:76)

With the equilibrium composition expressed in terms of, say, mass fraction ci, we
have, for the internal energy of the chemically reacting mixture per unit mass of
mixture,

e¼
X

i

ciei

where e includes the effective zero-point energy by way of the heats of formation.
Other thermodynamic properties can be obtained in like fashion. For high-

temperature air, the results of calculations from statistical thermodynamics
have been presented in the form of graphs, tables, and correlations.

This brings to an end our discussion of equilibrium thermodynamic properties
of high-temperature chemically reacting gases. We have acquired the necessary
tools to make calculations of equilibrium, chemically reacting flowfields.
However, such calculations will be deferred until Chapter 14. In the meantime,
we will continue our discussion of basic physical chemistry effects in Chapters
12 and 13, branching out to more extensive considerations of nonequilibrium
processes.

Problems

11.1 Consider pure O2. Calculate the equilibrium sensible enthalpy per kg at
T ¼ 3000 K. For O2, v ¼ 4.73 
 1013 s21. Ignore the electronic energy.
Note: Boltzmann constant is k ¼ 1.38 
 10223 J/K, and Planck’s constant
is h ¼ 6.625 
 10234 (J)(s).

11.2 In problem 11.1, calculate the equilibrium sensible electronic energy per
kg by two different methods, and compare the results. How does the elec-
tronic energy compare with the combined translational, rotational, and
vibrational energies that were calculated in problem 11.1? For the elec-
tronic levels of O2: g0 ¼ 3, g1 ¼ 2, and 11/k ¼ 11,390 K. Ignore all
higher electronic levels.

11.3 Consider air in chemical equilibrium at 0.1 atm and T ¼ 4500 K. Assume
the chemical species present are O2, O, N2, and N. (Ignore NO.) Calculate
the enthalpy in joules per kilogram. Note the Following physical data:
Kp,O2

¼ 12.19 atm, Kp,N2
¼ 0.7899 
 1024 atm; for N2, DHf

W

¼ 0 and
v ¼ 7.06 
 1013 (s21); for N, DHf

W

¼ 4.714 
 108J/(kg . mol); for O2,
DHf

W

¼ 0, and v ¼ 4.73 
 1013 (s21); for O, DHf

W

¼ 2.47 
 108 J/
(kg . mol). Ignore the electronic levels.
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12
Elements of Kinetic Theory

So many of the properties of matter, especially when in the
gaseous form, can be deduced from the hypothesis that their
minute parts are in rapid motion, the velocity increasing
with the temperature, that the precise nature of this motion
becomes a subject of rational curiosity.

James Clark Maxwell, 1860

Chapter Preview

This chapter has to do with the rattling about of individual particles—

molecules, atoms, electrons—and their collisions with each other. This is

the level at which nature really works in a gas and is the essence of kinetic

theory. How frequently does a given particle collide with its neighboring par-

ticles, that is, how many collisions per second does a particle in a gas experi-

ence? On the average, how far does a particle move in between collisions?

Finally, what is the velocity of a given particle, on the average? Answers

are given in this chapter. The reason that we are interested in such answers

is that energy transfer between different modes of energy (translational,

rotational, vibrational, and electronic) takes place by way of particle col-

lisions. Chemical reactions also occur as a result of particle collisions.

Collisions take time to occur, especially a sufficient number of collisions to

bring about the energy transfer and chemical reactions. If the gas on the

whole is simply sitting around, going nowhere, we can simply wait for the

required number of particle collisions to occur. After that, the gas will be at

equilibrium, with the equilibrium thermodynamic and chemical properties

discussed in the preceding chapters. On the other hand, if, for example, the

gas is zipping through a rocket engine or rapidly flowing over a hypersonic

vehicle, the fluid elements of the gas might be far downstream of the exit

of the rocket engine or way behind the trailing edge of the vehicle before

the necessary number of particle collisions can occur within the fluid

element. This creates a highly nonequilibrium situation. To deal with such
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a nonequilibrium flow, we have to deal with the frequency of the particle col-

lisions in the flow. This is one of the reasons why you are about to study this

chapter. Another reason is that the transport properties of a gas, the viscosity

coefficient, thermal conductivity, and diffusion coefficient, depend on the

mean distance a particle moves between one collision and the next. To

obtain values of these transport coefficients for a high-temperature chemically

reacting gas, we have to look at this mean distance between collisions, called

the mean free path. So this chapter, as short as it is, is important to the remain-

der of our considerations in this book. Do not shortchange it.

12.1 Introduction

Return for a moment to our road map in Fig. 1.24. We are still working with
the first item under high-temperature flows, namely, a discussion of basic phys-
ical chemistry effects. Keep in mind that the purpose of this item is to present
basic concepts and develop essential equations for the understanding and analysis
of high-temperature gas flows. In this sense, we are building a storehouse of
“tools” to be used in Chapters 14 through 18. In Chapters 10 and 11 we estab-
lished some tools that will be useful in the study of equilibrium chemically react-
ing flows. In Chapter 13 we will develop tools for the analysis of nonequilibrium
flows. The function of the present chapter is to introduce some elementary con-
cepts from kinetic theory that are necessary for understanding the tools to be
developed in Chapter 13.

To set the perspective, in the classical thermodynamics of Chapter 10 we dealt
with the system as composed of a continuous substance that interacted (by way of
work and heat addition) with its surroundings. In Chapter 11 we took a more
microscopic point of view and were concerned with the system as being made
up of individual particles with translational, rotational, vibrational, and electronic
energies. The macroscopic properties of the system are simply reflections of suit-
able statistical averages over all of the particles. In the present chapter, we con-
tinue with the microscopic point of view and narrow our attention to just the rapid
translational motion of such particles. We will see that some important character-
istics of gases are dominated by this translational motion. A study of such matters
is the purview of the science of kinetic theory. In the present chapter we will
introduce only those aspects of kinetic theory necessary for our future work
with high-temperature flows. Hence, the present chapter does not constitute a
rigorous and thorough presentation of kinetic theory. You are encouraged to
study [150], [156], and [157] for definitive presentations. Also, this chapter is
so short and straightforward that no chapter road map is required to help you
navigate the flow of ideas.

12.2 Perfect-Gas Equation of State (Revisited)

In Sec. 10.2 we introduced the perfect-gas equation of state as an empirical
result. In Sec. 11.8 we derived the equation of state from the principles of
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statistical thermodynamics. In the present section, we will again derive a form of
the equation of state, this time using a simplified picture of molecular motion.
The purpose for revisiting the equation of state here is that the derivation provides
some useful insight to the molecular properties of gases.

Consider a gas contained within the cubical box sketched in Fig. 12.1. Single
out a given gas particle at some instant in time and at some location P1. This
particle has a translational velocity denoted by C, with x, y, and z components
of velocity denoted by Cx, Cy, and Cz, respectively. Here, we treat the gas particle
as a structureless “billiard ball,” translating in space and frequently colliding with
neighboring particles. Indeed, it is such molecular collisions that, given enough
time, establish a state of equilibrium in the system. Assume that the gas in the box
is in equilibrium. This implies that at any given point P1, if a given particle with
velocity C1 collides with another particle, causing a change in velocity, then there
is another collision between other particles in the same neighborhood, which
causes one of those other particles to have the velocity C1 at point P1. The net
result is as if the original particle simply continued at the velocity C1. With
this picture, we can visualize a particle traversing the box with a constant velocity
in the x direction, given by Cx. When the particle reaches the right face of the box
in Fig. 12.1, it is assumed to specularly reflect from the surface at point P2. That
is, if C1 is the velocity just before impacting the surface at point P2, and C2 is the
velocity immediate after impact, then jC1j ¼ jC2j, Cx2

¼ �Cx1
, Cy2
¼ Cy1

, and
Cz2
¼ Cz1

. During the impact, the particle experiences a change in momentum
in the x direction given by 2mCx, where m is the mass of the particle. Over
a unit time (say, 1 s), the particle makes a number of traverses back and forth

Fig. 12.1 Particle moving in a box; illustration of particle velocity components.
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across the box in the x direction. Counting a complete traverse as going and
coming to and from the right-hand face, the number of complete traverses per
unit time is Cx=2l, where l is the length of the box along the x axis. Hence, the
time rate of change of momentum experienced by the particle when impacting
the right-hand face is given by (2mCx)(Cx=2l ) ¼ mC 2

x=l. From Newton’s
second law, the time rate of change of momentum is equal to force. Hence, the
force exerted by the particle on the right-hand face is also mC2

x=l. Because pressure
is force per unit area and the area of the face is l2, then the pressure exerted by the
particle on the right-hand face is given by mC 2

x=l
3 ¼ mC 2

x=V , where V is the
volume of the system. Now assume that we have a large number of particles in
the box, each with a different mass mi and different velocity Ci. Then, the pressure
exerted on the right-hand face by the particles in the system is

p ¼
1

V

X
i

miC
2
i,x (12:1)

where the summation is taken over all of the particles. If we construct an
expression for the pressure exerted on the upper face (perpendicular to the y
axis) using identical reasoning, a similar result is obtained as

p ¼
1

V

X
i

miC
2
i,y (12:2)

Similarly, for the pressure exerted on the face perpendicular to the z axis, we have

p ¼
1

V

X
i

miC
2
i,z (12:3)

Adding Eqs. (12.1–12.3), we have

p ¼
1

3V

X
i

mi(C
2
i,x þ C2

i,y þ C2
i,z) ¼

1

3V

X
i

miC
2
i (12:4)

where Ci is the magnitude of velocity for the ith particle. However, the total
kinetic energy for the system E0trans is given by

E0trans ¼
1

2

X
i

miC
2
i (12:5)

Combining Eqs. (12.4) and (12.5), we have

pV ¼ 2
3

E0trans (12:6)

Equation (12.6) is the kinetic theory equivalent of the perfect-gas equation
of state. It can only be related to temperature through classical thermodynamics
because T is a variable that originated with classical thermodynamics. For
example, assume that we have a mole of particles in the system. Then V

562 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



in Eq. (12.6) becomes the molar volume V, and Etrans is the kinetic energy
per mole

pV ¼ 2
3

Etrans (12:7)

From Eq. (10.6a), we also have

pV ¼ RT (12:8)

Comparing Eqs. (12.7) and (12.8), we have

Etrans ¼
3
2
RT (12:9)

a result that we already know from Eq. (11.57). Hence, our simple kinetic theory
model leads to the same result as obtained by statistical mechanics for the trans-
lation energy. If we divide Eq. (12.9) by Avogadro’s number NA, then

Etrans

NA

¼
3

2

R

NA

T

or

1trans ¼
3
2

kT (12:9a)

Equation (12.9a) establishes the physical link between the thermodynamic vari-
able T and the molecular picture, that is, temperature is a direct index for the
mean kinetic energy of a particle in the system. The higher the temperature,
the higher is the mean molecular kinetic energy in direct proportion.

Equations (12.6) and (12.7) are interesting in their own right. They establish a
relation between the product of pressure and volume and the molecular kinetic
energy of the system. Therefore, the pV product can be interpreted as a
measure of energy in the system.

Finally, return to Eq. (12.4), and divide both sides by the total mass of the
system M, where m ¼

P
i mi.

pV

M
¼

1

3

P
i miC

2
iP

i mi

(12:10)

Note that M=V ¼ r, and define a mean square velocity �C
2

as

�C
2 ;

P
i miC

2
iP

i mi

(12:11)

Then, Eq. (12.10) becomes

p
r ¼

1

3
�C

2
(12:12)
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Equation (12.12) is another form of the kinetic theory equivalent of the perfect-
gas equation of state. Using Eq. (10.3), we find from Eq. (12.11) that

�C
2
¼ 3RT (12:12a)

or, the rms molecular velocity is given by

ffiffiffiffiffiffi
�C

2

q
¼

ffiffiffiffiffiffiffiffiffi
3RT
p

(12:13)

Return to Eq. (12.9a) for a moment. The translational kinetic energy for a par-
ticle 1trans is given by 1

2
miC

2
i , where mi is the mass of the particle. On the other

hand, from Eq. (12.9a), 1trans is also given by 3
2

kT , independent of the mass of
the particle. Hence, for a gas mixture at temperature T the heavy particles will
be moving more slowly, on the average, than the light particles. This is an inter-
esting physical characteristic to keep in mind.

12.3 Collision Frequency and Mean Free Path

Consider a particle of molecular diameter d moving at the mean molecular
velocity �C. [Note that �C and (�C

2
)1=2 are slightly different values, to be explained

later.] Continuing with the billiard ball model of Sec. 12.2, whenever this mol-
ecule comes into contact with a like molecule, the separation of the centers of
the two molecules is also d, as sketched in Fig. 12.2. This separation can be
viewed as a radius of influence, in that any colliding molecule whose center
comes within a distance d of the given molecule is going to cause a collision.
Therefore, as our given molecule moves through space, its radius of influence
will sweep out a cylindrical volume per unit time equal to pd2 �C, as sketched
in Fig. 12.3. If n is the number density, that is, the number of particles per unit
volume, then our given particle will experience npd2 �C collisions per second.
This is defined as the single particle collision frequency, denoted by Z 0. Hence

Z 0 ¼ npd2 �C (12:14)

We define the mean free path, denoted by l, as the mean distance traveled by
a particle between collisions. Because in unit time the particle travels a distance
�C, and it experiences Z 0 collisions during this time, then

l ¼
�C

Z 0
¼

1

npd2
(12:15)

The preceding analysis is very simplified, and more accurate results for col-
lision frequency and mean free path for a gas are slightly different than given
by Eqs. (12.14) and (12.15). In the preceding analysis, we have imagined a par-
ticle with radius of influence d sweeping out a volume in space, and we have
implicitly assumed that other molecules are simply present inside this volume.
In reality, the other molecules are moving, and for more accuracy we should
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Fig. 12.2 Illustration of radius of influence.

Fig. 12.3 Cylindrical volume swept out in 1 s by a particle with a radius of influence

d, moving at a mean speed C̄.
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take into account the relative velocity between the molecules rather than the
mean velocity of just one molecule. This requires a more sophisticated analysis
beyond the scope of this book. However, the results are given next; they can be
found derived in detail in Chapter 2 of [150]. The single particle collision fre-
quency between a single molecule of chemical species A and the molecules of
chemical species B is given by

ZAB ¼ nBpd2 �CAB (12:16)

where �CAB is a mean relative velocity between A and B molecules given by

�CAB ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
8kT

pm�AB

s
(12:17)

Hence, we can write

ZAB ¼ nBpd2
AB

ffiffiffiffiffiffiffiffiffiffiffiffi
8kT

pm�AB

s
(12:18)

In Eqs. (12.17) and (12.18), m�AB is the reduced mass, defined as

m�AB ;
mAmB

mA þ mB

(12:19)

where mA and mB are the masses of the A and B particles, respectively. For single-
species gas, the single particle collision frequency is given by

Z ¼
nffiffiffi
2
p pd2 �C ¼

nffiffiffi
2
p pd2

ffiffiffiffiffiffiffiffi
8kT

pm

r
(12:20)

Note that the difference between the simple result given by Eq. (12.14) and the
more accurate result given by Eq. (12.20) is the factor

ffiffiffi
2
p

, which takes into
account the relative velocities between particles. Also note that Eq. (12.20) for
a single-species gas does not fall out directly by simply inserting mA ¼ mB in
Eqs. (12.18) and (12.19). To specialize Eq. (12.18) for a single-species gas, it
must be divided by an additional factor of 2 because of the collision counting pro-
cedure used to derive Eq. (12.18). See [150] for the details.

Finally, for the mean free path of a single-species gas, taking into account the
relative velocities of the molecules, it can be shown (see [150]) that

l ¼
1ffiffiffi

2
p

pd 2n
(12:21)
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Note: In all of the preceding equations, the quantity pd 2 is frequently called
the collision cross section, denoted by s. For an accurate evaluation of collision
frequency and mean free path, we need appropriate values of s. These are
obtained in various ways from experiment. For our purposes, we will assume
that s is a known quantity that can be obtained from the literature. Also note
that, although we did not derive Eqs. (12.18), (12.20), and (12.21), they are cer-
tainly plausible based on our simple derivations of the similar but less exact
equations given by Eqs. (12.14) and (12.15).

The principal reason for displaying the results shown in Eqs. (12.20) and
(12.21) is to indicate how collision frequency and mean free path vary with
the pressure and temperature of the gas. For example, because from the equation
of state,

n ¼
p

kT

we see from Eq. (12.20) that

Z /
pffiffiffiffi
T
p (12:22)

and from Eq. (12.21) we see that

l/
T

p
(12:23)

Note that gases at high temperatures and low pressures are characterized by low
collision frequencies and high mean free paths. These trends will be important in
our discussions of nonequilibrium phenomena in subsequent chapters.

12.4 Velocity and Speed Distribution Functions:

Mean Velocities

In this section we introduce the concept of a velocity distribution function as
follows. Consider a system of N particles distributed in some manner (not necess-
arily uniformly) throughout physical space, as sketched in Fig. 12.4a. The instan-
taneous location of a particle is given by the location vector r. For each particle,
there is a corresponding point in the x-y-z physical space. The system of N par-
ticles is then represented by a cloud of N points in Fig. 12.4a. Also, at the same
instant a given particle has a velocity C, as represented in the velocity space
shown in Fig. 12.4b. For each particle, there is a corresponding point in the
Cx-Cy-Cz velocity space. Therefore, the system of N particles is also represented
by a cloud of N points in Fig. 12.4b. Now consider a point in Fig. 12.4a denoted
by r, and a unit volume in physical space centered around that point. Simul-
taneously, consider a point in Fig. 12.4b denoted by C, and a unit volume in
velocity space centered around that point. Then, by definition, the distribution
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function f (r, C ) is defined as the number of particles per unit volume of physical
space at r with velocities per unit volume of velocity space at C. In other words,
let dx dy dz be an elemental volume in physical space, and dCx dCy dCz be an
elemental volume in velocity space, then

f (x, y, z, Cx, Cy, Cz) dx dy dz dCx dCy dCz

represents the number of particles located between x and xþ dx, y and yþ dy,
and z and zþ dz with velocities that range from Cx to Cx þ dCx, Cy to
Cy þ dCy, and Cz to Cz þ dCz. Keep in mind that the gaseous system is composed
of particles in constant motion in space, and that they collide with neighboring
molecules, thus changing their velocities (in both magnitude and direction).
Therefore, in the most general case of a nonequilibrium gas, the particles will
be distributed nonuniformly throughout space and time, that is, the number of
points within the element dx dy dz in Fig. 12.4a will be a function of r and t,
and the number of points at any instant within the element dCx dCy dCz in
Fig. 12.4b might be changing with time.

The concept of the distribution function is a fundamental tool in classical
kinetic theory. If we integrate f over all space and all velocities, we have

ð1

�1

ð1

�1

ð1

�1

ð1

�1

ð1

�1

ð1

�1

f (x, y, z, Cx, Cy, Cz)

� dx dy dz dCx dCy dCz ¼ N (12:24)

One of the intrinsic values of the distribution function f is that the average value
of any physical quantity Q, which is a function of space and/or velocity, Q ¼
Q(x, y, z, Cx, Cy, Cz) can be obtained from

�Q ¼
1

N

ð1

�1

ð1

�1

ð1

�1

ð1

�1

ð1

�1

ð1

�1

Qf dx dy dz dCx dCy dCz (12:25)

where �Q is the average value of the property Q.

Fig. 12.4 Illustration of volume elements in physical and velocity spaces.
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Now consider the special case of a gas in translational equilibrium. In terms of
kinetic theory, a gas in equilibrium has the particles distributed uniformly
throughout space (i.e., the number density n is a constant, independent of x, y,
and z), and the number of molecular collisions that tend to decrease the
number of points in the volume dCx dCy dCz in velocity space (see Fig. 12.4b)
is exactly balanced by other molecular collisions that increase the number of
points in this elemental volume. For this case, f becomes essentially a velocity
distribution function, f ¼ f (Cx, Cy, Cz). For a gas in translational equilibrium, f
takes on a specific form that can be rigorously derived by examining the detailed
collision processes within the gas. It is beyond the scope of this book to take the
time and space for such a derivation; however, an excellent discussion is given in
Chapter 2 of Vincenti and Kruger [150], which should be consulted for details.
The result for the equilibrium velocity distribution function is

f (Cx, Cy, Cz) ¼ N
m

2pkT

� �3=2

exp �
m

2kT
(C2

x þ C2
y þ C2

z )
h i

(12:26)

Equation (12.26) is called the Maxwellian distribution; it gives the number of
particles per unit volume of velocity space located by the velocity vector C in
Fig. 12.4b. Keep in mind that Eq. (12.26) is a velocity distribution function,
denoting both magnitude and direction.

In a system in equilibrium, f is a symmetric function, that is,
f (Cx, Cy, Cz) ¼ f (�Cx, Cy, Cz) ¼ f (Cx, �Cy, Cz), etc. Thus, for an equilibrium
system, the velocity direction is not germane—we are concerned only with the
magnitudes of the particle velocities, that is, the speed of the particles. Hence,
we can introduce a speed distribution function X(C ) as follows. Consider the vel-
ocity space shown in Fig. 12.5. All particles on the surface of the sphere of radius
C have the same speed. Now consider the space between the sphere of radius C
and another sphere of radius C þ dC, where dC is an incremental change in
speed. The volume of this space is 4pC2dC. Because the number of particles
per unit volume of velocity space is given by Eq. (12.26), we then have for the
number of particles in the space between the two spheres

4pN
m

2pkT

� �3=2

C2 exp �
mC2

2kT

� �
dC

This gives the number of particles in the system with speeds between C and
C þ dC. In turn, the number of particles with speed C per unit velocity
change, which is defined as the speed distribution function x, is given by

x ¼ 4pN
m

2pkT

� �3=2

C2e�(mC2=2kT) (12:27)

Equation (12.27) is plotted in Fig. 12.6. Clearly we see that, for a system in equi-
librium at a given temperature, all of the particles do not move at the same speed;
quite the contrary, some of the particles are moving slowly, others are moving
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Fig. 12.5 Concentric spherical surfaces with radii C and C 1 dC.

Fig. 12.6 Speed distribution function and the values of most probable speed Cmp,

mean speed C̄, and rms speed (C̄
2
)1=2.
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more rapidly, and Eq. (12.27) gives the distribution of these speeds over all the
particles in the system.

Also noted in Fig. 12.6 are three speeds, defined as follows.
1) Most probable speed: This is the speed corresponding to the maximum

value of x, and it can be obtained by differentiating Eq. (12.27). The result is

Cmp ¼
ffiffiffiffiffiffiffiffiffi
2RT
p

(12:28)

where, as you recall, R ¼ k=m.
2) Average speed: This is obtained from Eq. (12.25) by inserting Q ¼ C. The

result is

�C ¼

ffiffiffiffiffiffiffiffiffi
8RT

p

r
(12:29)

This is the speed that was used in Eqs. (12.14–12.16) and Eq. (12.20) dealing
with collision frequency and the mean free path.

3) Root-mean-square speed: This is obtained from Eq. (12.25) by inserting
Q ¼ C 2. The result is

ffiffiffiffiffiffi
C2
p

¼
ffiffiffiffiffiffiffiffiffi
3RT
p

(12:30)

This is the same result as obtained in Eq. (12.13) during our discussion of the
perfect-gas equation of state.

The derivation of Eqs. (12.28–12.30) is left as a homework problem.
The molecular speeds given by Eqs. (12.28–12.30) are nearly equal to the

speed of sound in a gas. We know that, for a perfect gas, the speed of sound is
given by

a ¼
ffiffiffiffiffiffiffiffiffi
gRT

p

which, for g ¼ 1:4, yields a � 0:91Cmp. This makes sense because the energy of
sound is transmitted through a gas by molecular collisions, and therefore the
speed of this transmission should be somewhat related to the molecular speeds.

12.5 Summary and Comments

This brings to an end our elementary discussion of kinetic theory. We will
revisit the discipline of kinetic theory in Chapter 16, when we discuss transport
properties of high-temperature gases. However, for the time being we have
shown the following:

1) The pV product is a form of energy in a gas, given by

pV ¼ 2
3

Etrans (12:7)
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2) The equation of state for a perfect gas can be derived from kinetic theory as

p

r
¼

1

3
�C

2
(12:12)

3) The single-particle collision frequency between a particle of A species with
those of B species is

ZAB ¼ nBpd2
AB

ffiffiffiffiffiffiffiffiffiffiffiffi
8kT

pm�AB

s
(12:18)

where m�AB is the reduced mass given by

m�AB ¼
mAmB

mA þ mB

(12:19)

For a gas made up of pure chemical species, the single-particle collision fre-
quency is given by

Z ¼
nffiffiffi
2
p pd2

ffiffiffiffiffiffiffiffi
8kT

pm

r
(12:20)

4) The mean free path is given by

l ¼
1ffiffiffi

2
p

pd2n
(12:21)

5) The variations of Z and l with p and T are given by

Z /
pffiffiffiffi
T
p (12:22)

and

l/
T

p
(12:23)

6) The Maxwellian distribution function for velocities in an equilibrium gas is

f ¼ N
m

2pkT

� �3=2

exp �
m

2kT
(C2

x þ C2
y þ C2

z )
h i

(12:26)

7) The corresponding speed distribution function is

x ¼ 4pN
m

2pkT

� �3=2

C2e�(mC2=2kT) (12:27)
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8) The following speeds are obtained from Eq. (12.27).
Most probable speed:

Cmp ¼
ffiffiffiffiffiffiffiffiffi
2RT
p

(12:28)

Average speed:

�C ¼

ffiffiffiffiffiffiffiffiffi
8RT

p

r
(12:29)

Root-mean-square speed:

ffiffiffiffiffiffi
C 2
p

¼
ffiffiffiffiffiffiffiffiffi
3RT
p

(12:30)

Problems

12.1 The single-particle collision frequency in a given gas is 2� 1016 collisions
per second. When the pressure and temperature are both increased by a
factor of 4, what is the collision frequency?

12.2 Derive Eqs. (12.28), (12.29), and (12.30).
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13
Chemical and Vibrational Nonequilibrium

Remember, then, that science is the guide of action; that the
truth it arrives at is not that which we can ideally contem-
plate without error, but that which we may act upon
without fear; and you cannot fail to see that scientific
thought is not an accomplishment or condition of human
progress, but human progress itself.

William Kingdon Clifford, 1872

Chapter Preview

This chapter is the antithesis of Chapter 11. In Chapter 11, we studied how

to calculate the equilibrium thermodynamic properties and chemical compo-

sition of a chemically reacting mixture. In the present chapter, we learn how to

calculate the nonequilibrium thermodynamic properties and chemical compo-

sition of a chemically reacting mixture. Take a chunk of the air around you as

you are reading this book, and imagine that (somehow) you instantaneously

increase the temperature of this chunk of air to 1500 K. The vibrational

energy of the air will increase, but it will not be instantaneous. Because

molecules have their vibrational energy changed by collisions with other

molecules, and these collisions take time (as discussed in Chapter 12),

your chunk of air will experience a time rate of increase of vibrational

energy. Finally, if you wait around long enough, the vibrational energy of

your chunk of air will come up to its equilibrium value (the subject of

Chapter 11). But in the meantime, what has been the time rate of increase

of vibrational energy? The answer is the stuff of the present chapter.

Now, take your chunk of air and (somehow) instantaneously increase

its temperature to 5000 K. Chemical reactions will occur; the oxygen and

nitrogen molecules will dissociate, forming oxygen and nitrogen atoms.

Nitric oxide will be produced. But these chemical reactions do not go to

completion instantaneously. Chemical reactions take place through collisions

of molecules, and these collisions take time. Your chunk of air will experi-

ence a time rate of increase of oxygen atoms, a time rate of decrease
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of oxygen molecules, a time rate of formation of nitric oxide, and so forth.
Finally, if you wait around long enough, the chemical composition of your
chunk of air will arrive at its equilibrium value (the subject of Chapter 11).
But in the meantime, what has been the time rate of increase of oxygen
atoms? Of nitrogen atoms? And so forth. The answer is the stuff of this
chapter.

Why do we need to know these answers? Imagine that you now sling your

chunk of air at high velocity over a hypersonic vehicle at the same time that

the vibrational energy and chemical composition of the chunk of air are chan-

ging, in such a fashion that the equilibrium vibrational energy and chemical

composition is not achieved in the chunk of air until it is 100 m behind the

vehicle. Then the flowfield over the vehicle will be a nonequilibrium flowfield,

and to analyze the thermodynamic and aerodynamic characteristics of this

nonequilibrium flow, the answers to be developed in this chapter are absol-

utely essential.

So read on with interest. The analyses of nonequilibrium processes have a

certain intellectual beauty to them. As you read on with interest, also sit back

and enjoy.

13.1 Introduction

All vibrational and chemical processes take place by molecular collisions
and/or radiative interactions. Considering just molecular collisions, visualize,
for example, an O2 molecule colliding with other molecules in the system. If
the O2 vibrational energy is in the ground level before collision, it might or
might not be vibrationally excited after the collision. Indeed, in general the O2

molecule must experience a large number of collisions, typically on the order
of 20,000, before it will become vibrationally excited. The actual number of
collisions required depends on the type of molecule and the relative kinetic
energy between the two colliding particles—the higher the kinetic energy
(hence the higher the gas temperature), the fewer collisions are required for
vibrational energy exchange. Moreover, as the temperature of the gas is
increased, and hence the molecular collisions become more violent, it is probable
that the O2 molecule will be torn apart (dissociated) by collisions with other
particles. However, this requires a large number of collisions, on the order of
200,000. The important point to note here is that vibrational and chemical
changes take place as a result of collisions. In turn, collisions take time to
occur. Hence, vibrational and chemical changes in a gas take time to occur.
The precise amount of time depends on the molecular collision frequency Z,
defined in Sec. 12.3. The results given by Eq. (12.22) show that Z / p=

ffiffiffiffi
T
p

;
hence, the collision frequency is low for low pressures and very high
temperatures.

The equilibrium systems considered in Chapters 10 and 11 assumed that
the gas has had enough time for the necessary collisions to occur and that the
properties of the system at a fixed p and T are constant, independent of time.
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However, there are many problems in high-speed gas dynamics where the gas is
not given the luxury of the necessary time to come to equilibrium. A typical
example is the flow across a shock wave, where the pressure and temperature
are rapidly increased within the shock front. Consider a fluid element passing
through this shock front. When its p and T are suddenly increased, its equilibrium
vibrational and chemical properties will change. The fluid element will start to
seek these new equilibrium properties, but this requires molecular collisions,
and hence time. By the time enough collisions have occurred and equilibrium
properties have been approached, the fluid element has moved a certain
distance downstream of the shock front. Hence, there will be a certain region
immediately behind the shock wave where equilibrium conditions do not
prevail—there will be a nonequilibrium region. To study the nonequilibrium
region, additional techniques must be developed that take into account the time
required for molecular collisions. Such techniques are the subject of this
chapter. The detailed study of both equilibrium and nonequilibrium flows
through shock waves, as well as many other types of flows, will be made in
Chapters 15–17.

Because of the straightforward linear arrangement of this short chapter, a local
chapter road map is not needed. In terms of the road map for the book in Fig. 1.24,
this chapter wraps up the first item on the right-hand column under high-
temperature flows.

13.2 Vibrational Nonequilibrium: The Vibrational Rate Equation

In this section we derive an equation for the time rate of change of vibrational
energy of a gas as a result of molecular collisions—the vibrational rate equation. In
turn, this equation will be coupled with the continuity, momentum, and energy
equations in subsequent chapters for the study of certain types of nonequilibrium
flows.

Consider a diatomic molecule with a vibrational energy level diagram as
illustrated in Fig. 13.1. Focus on the ith level. The population of this level Ni

is increased by particles jumping up from the i 2 1 level (transition a shown in
Fig. 13.1) and by particles dropping down from the iþ 1 level (transition b).
The population Ni is decreased by particles jumping up to the iþ 1 level (tran-
sition c) and dropping down to the i 2 1 level (transition d). For the time
being, consider just transition c. Let Pi,iþ1 be the probability that a molecule in
the ith level, upon collision with another molecule, will jump up to the iþ 1
level. Pi,iþ1 is called the transition probability and can be interpreted on a dimen-
sional basis as the number of transitions per collision per particle (of course
keeping in mind that a single transition requires many collisions). The value of
Pi,iþ1 is always less than unity. Also, let Z be the collision frequency as given
by Eq. (12.20), where Z is the number of collisions per particle per second.
Hence, the product Pi,iþ1Z is physically the number of transitions per particle
per second. If there are Ni particles in level i, then Pi,iþ1ZNi is the total
number of transitions per second for the gas from the ith to the iþ 1 energy
level. Similar definitions can be made for transitions a, b, and d in Fig. 13.1.
Therefore, on purely physical grounds, using the preceding, definitions, we can
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write the net rate of change of the population of the ith level as

dNi

dt
¼ Piþ1,iZNiþ1 þ Pi�1,iZNi�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rate of increase of Ni

�Pi,iþ1ZNi � Pi,i�1ZNi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rate of decrease of Ni

To simplify the preceding equation, define a vibrational rate constant kiþ1,i such
that Piþ1,iZ ; kiþ1,i, similarly for the other transitions. Then the preceding
equation becomes

dNi

dt
¼ kiþ1,iNiþ1 þ ki�1,iNi�1 � ki,iþ1Ni � ki,i�1Ni (13:1)

Equation (13.1) is called the master equation for vibrational relaxation.
For a moment, consider that the gas is in equilibrium. Hence, from the

Boltzmann distribution, Eq. (11.25), and the quantum mechanical expression
for vibrational energy, hn(nþ 1

2
), given in Sec. 11.7

N�i
N�i�1

¼
e�1i=kT

e�1i�1=kT
¼ e�hn=kT (13:2)

Moreover, in equilibrium, each transition in a given direction is exactly balanced
by its counterpart in the opposite direction—this is called the principle of detailed
balancing. That is, the number of transitions a per second must exactly equal the
number of transitions d per second:

ki�1,iN
�
i�1 ¼ ki,i�1N�i

Fig. 13.1 Single quantum transition for vibrational energy exchange.
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or

ki�1,i ¼ ki,i�1

N�i
N�i�1

(13:3)

Combining Eqs. (13.2) and (13.3), we have

ki�1,i ¼ ki,i�1e�hv=kT (13:4)

Equation (13.4) is simply a relation between reciprocal rate constants; hence, it
holds for nonequilibrium as well as equilibrium conditions. Taking a result
from quantum mechanics, it can also be shown that all of the rate constants
for higher-lying energy levels can be expressed in terms of the rate constant
for transition e in Fig. 13.1, that is, the transition from i ¼ 1 to i ¼ 0:

ki,i�1 ¼ ik1,0 (13:5)

From Eq. (13.5), we can also write

kiþ1,i ¼ (iþ 1)k1,0 (13:6)

Combining Eqs. (13.4) and (13.5), we have

ki�1,i ¼ ik1,0e�hv=kT (13:7)

and from Eqs. (13.4), (13.5), and (13.6), we have

ki,iþ1 ¼ kiþ1,ie
�hv=kT ¼ (iþ 1)k1,0e�hv=kT (13:8)

Substituting Eqs. (13.5–13.8) into Eq. (13.1), we have

dNi

dt
¼ (iþ 1)k1,0Niþ1 þ ik1,0e�hv=kT Ni�1 � (iþ 1)k1,0e�hv=kT Ni � ik1,0Ni

or

dNi

dt
¼ k1,0{�iNi þ (iþ 1)Niþ1 þ e�hv=kT ½�(iþ 1)Ni þ iNi�1�} (13:9)

In many gas dynamics problems, we are more interested in energies than
populations. Let us convert Eq. (13.9) into a rate equation for evib. Assume
that we are dealing with a unit mass of gas. From Secs. 11.2 and 11.7,

evib ¼
X1
i¼1

1iNi ¼
X1
i¼1

(ihv)Ni ¼ hv
X1
i¼0

iNi
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Hence

devib

dt
¼ hv

X1
i¼1

i
dNi

dt
(13:10)

Substitute Eq. (13.9) into (13.10):

devib

dt
¼ hvk1,0

X1
i¼1

{�i2Ni þ i(iþ 1)Niþ1 þ e�hv=kT ½�i(iþ 1)Ni þ i2Ni�1�}

(13:11)

Considering the first two terms in Eq. (13.11) and letting s ¼ iþ 1,

X1
i¼1

½�i2Ni þ i(iþ 1)Niþ1� ¼ �
X1
i¼1

i2Ni þ
X1
s¼2

(s� 1)sNs

¼ �
X1
i¼1

i2Ni þ
X1
s¼2

s2Ns �
X1
s¼2

sNs

¼ �N1 �
X1
i¼2

i2Ni þ
X1
s¼2

s2Ns �
X1
s¼2

sNs

¼ �N1 �
X1
s¼2

sNs ¼ �
X1
i¼1

iNi ¼ �
X1
i¼0

iNi

Also, a similar reduction for the last two terms in Eq. (13.11) leads to

X1
i¼1

½�i(iþ 1)Ni þ i2Ni�1� ¼
X1
i¼0

(iþ 1)Ni

Thus, Eq. (13.11) becomes

devib

dt
¼ hvk1,0

X1
i¼0

½�iNi þ e�hv=kT (iþ 1)Ni�

¼ hvk1,0 e�hv=kT
X1
i¼0

Ni � (1� e�hv=kT )
X1
i¼0

iNi

" #
(13:12)

However

X1
i¼0

Ni ¼ N
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and

evib ¼
X1
i¼0

1iNi ¼ hv
X1
i¼0

iNi

Therefore

X1
i¼0

iNi ¼
evib

hv

Thus, Eq. (13.12) can be written as

devib

dt
¼ hvk1,0 e�hv=kT N � (1� e�hv=kT )

evib

hv

h i

or

devib

dt
¼ k1,0(1� e�hv=kT )

hvN

ehv=kT � 1
� evib

� �
(13:13)

However, recalling that we are dealing with a unit mass and hence N is the
number of particles per unit mass, we have, from Sec. 10.2, that Nk ¼ R, the
specific gas constant. Then, considering one of the expressions in Eq. (13.13),

hvN

ehv=kT � 1
¼

hv=kT

ehv=kT � 1
(NkT) ¼

hv=kT

ehv=kT � 1
RT (13:14)

The right-hand side of Eq. (13.14) is simply the equilibrium vibrational energy
from Eq. (11.61); we denote it by evib

eq . Hence, from Eq. (13.14)

hvN

ehv=kT � 1
¼ e

eq
vib (13:15)

Substituting Eq. (13.15) into Eq. (13.13),

devib

dt
¼ k1,0(1� e�hv=kT )(e

eq
vib � evib) (13:16)

In Eq. (13.16), the factor k1,0(1 2 e2hv/kT) has units of s21. Therefore, we define
a vibrational relaxation time t as

t ;
1

k1;0(1� e�hv=kT )

Thus, Eq. (13.16) becomes

devib

dt
¼

1

t
(e

eq
vib � evib) (13:17)
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Equation (13.17) is called the vibrational rate equation, and it is the main result of
this section. Equation (13.17) is a simple differential equation that relates the time
rate of change of evib to the difference between the equilibrium value it is seeking
and its local instantaneous nonequilibrium value.

The physical implications of Eq. (13.17) can be seen as follows. Consider a
unit mass of gas in equilibrium at a given temperature T. Hence,

evib ¼ e
eq
vib ¼

hv=kT

ehv=kT � 1
RT (13:18)

Now let us instantaneously excite the vibrational mode above its equilibrium
value (say, by the absorption of radiation of the proper wavelength, e.g., we
“zap” the gas with a laser). Let evibo

denote the instantaneous value of evib

immediately after the excitation at time t ¼ 0. This is illustrated in Fig. 13.2.
Note that evibo

. e
eq
vib. Because of molecular collisions, the excited particles

will exchange this “excess” vibrational energy with the translational and
rotational energy of the gas, and after a period of time evib will decrease
and approach its equilibrium value. This is illustrated by the solid curve in
Fig. 13.2. However, note that, as the vibrational energy drains away, it reappears
in part as an increase in translational energy. Because the temperature of the gas
is proportional to the translational energy [see Eq. (11.57)], T increases. In turn,
the equilibrium value of vibrational energy, from Eq. (13.18), will also increase.
This is shown by the dashed line in Fig. (13.2). At large times, evib and e

eq
vib will

asymptotically approach the same value.
The relaxation time t in Eq. (13.17) is a function of both local pressure and

temperature. This is easily recognized because t is a combination of the transition
probability P and the collision frequency Z, both defined earlier. In turn, P
depends on T (on the relative kinetic energy between colliding particles), and

Fig. 13.2 Vibrational relaxation toward equilibrium.
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Z / p=
ffiffiffiffi
T
p

. For most diatomic gases, the variation of t is given by the form

tp ¼ C1e(C2=T)1=3

or

lntp ¼ lnC1 þ
C2

T

� �1=3

(13:19)

The value of C1 and C2 must be obtained from experimental measurements.
At this stage in our discussion, we raise a problem that has always plagued the
analysis of nonequilibrium systems, namely, the uncertainties that exist in the
rate data, such as in the measured values of C1 and C2. Such measurements
must be made in high-temperature gases, and the experimental facility for
generating such high-temperature gases is a shock tube, with testing times on
the order of tens of microseconds. (See, for example, [4] for a discussion of
shock tubes.) It is no wonder that a large scatter invariably occurs in the data,
with associated uncertainties in the values of C1 and C2. Nevertheless, reasonable
values of C1 and C2 that reflect the literature are given in [150] and are summar-
ized in Table 13.1 for the pure gases O2, N2, and NO.

The temperature range of the data listed in Table 13.1 is approximately from
800 to 6000 K. Also, the preceding values of C1 are C2 are different if the O2, N2,
or NO are in a mixture of different gases. For example, if O2 is in a bath of
N2 molecules, then the vibrational relaxation time for O2 caused by collisions
with N2 is quoted in [158] as given by C1 ¼ 1.36 � 10– 4 atm-ms and C2 ¼
2.95 � 106 K.

In summary, the nonequilibrium variation of vibrational energy is given by the
vibrational rate equation expressed as Eq. (13.17). Note that in Eq. (13.17) both
t and e

eq
vib are variables, with t ¼ (p, T ) from Eq. (13.19) and e

eq
vib ¼ e(T) from

Eq. (13.18). However, a word of caution is given. Equation (13.17) has certain
limitations that have not been stressed during the preceding derivation,
namely, it holds only for diatomic molecules that are harmonic oscillators. The
use of evib ¼ hvn, obtained from Sec. 11.7, is valid only if the molecule is a
harmonic oscillator. Moreover, from Fig. 13.1 we have considered only single
quantum jumps between energy levels, that is, we did not consider transitions,
say, from the ith directly to the iþ 2 level. Such multiple quantum jumps can
occur for anharmonic molecules, but their transition probabilities are very
small. In spite of these restrictions, experience has proven that Eq. (13.17) is

Table 13.1 Vibrational rate data for Eq. (13.19)

Species C1 atm-ms C2, K

O2 5.42 � 1025 2.95 � 106

N2 7.12 � 1023 1.91 � 106

NO 4.86 � 1023 1.37 � 105
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reasonably valid for real problems dealing with diatomic gases, and it is
employed in almost all nonequilibrium analyses of such gases.

Recent developments in the study of vibrational nonequilibrium flows have
highlighted a further limitation of Eq. (13.17), as follows. The energy level
transitions included in the master equation (13.1) are so-called translation-
vibration (T-V) transfers. Here, a molecule upon collision with another will
gain or lose vibrational energy, which then reappears as a decrease or increase
in translational kinetic energy of the molecules. For example, a T-V transfer in
CO can be given as

CO(n)þ CO(n)O CO(n� 1)þ CO(n)þ KE

where a CO molecule in the nth vibrational level drops to the (n 2 1) level after
collision, with the consequent release of kinetic energy (KE). However,
vibration-vibration (V-V) transfers also occur, where the vibrational quantum
lost by one molecule is gained by its collision partner. For example, a V-V
transfer in CO can be given as

CO(n)þ CO(n)O CO(nþ 1)þ CO(n� 1)

The preceding equation assumes a harmonic oscillator, where the spacings
between all energy levels are the same. However, all molecules are in reality
anharmonic oscillators, which results in unequal spacings between vibrational
energy levels. Thus, in a V-V transfer involving anharmonic molecules, there
is a small amount of translational energy exchanged in the process, as follows:

CO(n)þ CO(n)O CO(nþ 1)þ CO(n� 1)þ KE

During an expansion process (decreasing temperature), the V-V transfers among
anharmonic molecules result in an overpopulation of some of the higher energy
levels than would be the case of a harmonic oscillator. This is called anharmonic
pumping and is particularly important in several types of gas dynamic and
chemical lasers. The reverse effect occurs in a compression process (increasing
temperature). In cases where anharmonic pumping is important, Eq. (13.17) is
not valid, and the analysis must start from a master rate equation [such as
Eq. (13.1)] expanded to include V-V transfers. For a fundamental discussion
of the anharmonic pumping effect at an introductory level, see pp. 112–120
of [147].

Vibrational nonequilibrium effects are particularly important in hypersonic
wind-tunnel nozzle expansions, in the expanding high-temperature flow over
blunt-nosed bodies, and in the region immediately behind a strong shock wave.
These matters will be discussed in Chapter 15.

13.3 Chemical Nonequilibrium: The Chemical Rate Equation

Consider a system of oxygen in chemical equilibrium at p ¼ 1 atm and
T ¼ 3000 K. Although Fig. 11.11 is for air, it clearly demonstrates that the
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oxygen under these conditions should be partially dissociated. Thus, in our
system, both O2 and O will be present in their proper equilibrium amounts.
Now, assume that somehow T is instantaneously increased to, say, 4000 K.
Equilibrium conditions at this higher temperature demand that the amount
of O2 decrease and the amount of O increase. However, as explained in
Sec. 13.1, this change in composition takes place via molecular collisions, and
hence it takes time to adjust to the new equilibrium conditions. During this non-
equilibrium adjustment period, chemical reactions are taking place at a definite
net rate. The purpose of this section is to establish relations for the finite time
rate of change of each chemical species present in the mixture—the chemical
rate equations.

Continuing with our example of a system of oxygen, the only chemical
reaction taking place is

O2 þM ���! 2OþM (13:20)

where M is a collision partner; it can be either O2 or O. In terms of notation, in
Eq. (10.19) the symbol Ci denoted the concentration of species i (moles of i per
unit volume). Here we introduce an alternative notation for concentration, where
[O2], [N2], etc. denote the concentrations of O2, N2, etc. Such a bracket notation
was not used in Chapter 10 because it would make the equation of state look
“funny.” However, in equations dealing with chemical nonequilibrium, the use
of [O2] to denote the concentration of O2 is convenient. Using the bracket nota-
tion for concentration, we denote the number of moles of O2 and O per unit
volume of the mixture by [O2] and [O], respectively. Empirical results have
shown that the time rate of formation of O atoms via Eq. (13.20) is given by

d½O�

dt
¼ 2k½O2�½M� (13:21)

where d[O]/dt is the reaction rate, k is the reaction rate constant, and Eq. (13.21)
is called a reaction rate equation. The reaction rate constant k is a function of T
only. Equation (13.21) gives the rate at which the reaction given in Eq. (13.20)
goes from left to right; this is called the forward rate, and k is really the
forward rate constant kf :

O2 þM ���!
k f

2OþM

Hence, Eq. (13.21) is more precisely written as follows.
Forward rate:

d½O�

dt
¼ 2kf ½O2�½M� (13:22)

The reaction in Eq. (13.20) that would proceed from right to left is called the
reverse reaction, or backward reaction,

O2 þM  ���
kb

2OþM

CHEMICAL AND VIBRATIONAL NONEQUILIBRIUM 585



with an associated reverse or backward rate constant kb, and a reverse or back-
ward rate given by the following.

Reverse rate:

d½O�

dt
¼ �2kb½O�

2
½M� (13:23)

Note that in both Eqs. (13.22) and (13.23), the right-hand side is the product of
the concentrations of those particular colliding molecules that produce the
chemical change, raised to the power equal to their stoichiometric mole
number in the chemical equation. Equation (13.22) gives the time rate of increase
of O atoms because of the forward rate, and Eq. (13.23) gives the time rate of
decrease of O atoms because of the reverse rate. However, what we would
actually observe in the laboratory is the net time rate of change of O atoms
caused by the combined forward and reverse reactions

O2 þM O
k f

kb

2OþM

and the net reaction rate is given by the following.
Net rate:

d½O�

dt
¼ 2kf ½O2�½M� � 2kb½O�

2
½M� (13:24)

Now consider our system to again be in chemical equilibrium; hence, the com-
position is fixed with time. Then d[O]/dt ; 0, [O2] ; [O2]�, and [O] ; [O]�

where the asterisk denotes equilibrium conditions. In this case, Eq. (13.24)
becomes

0 ¼ 2kf ½O2�
�
½M�� � 2kb½O�

�2
½M��

or

kf ¼ kb

½O��2

½O2�
� (13:25)

Examining the chemical equation just given, we can define the ratio [O]�2/[O2]�

in Eq. (13.25) as an equilibrium constant based on concentrations Kc. This
is related to the equilibrium constant based on partial pressures Kp, defined
in Sec. 10.9. From Eq. (10.19) it directly follows for the preceding oxygen
reaction that

Kc ¼
1

RT
Kp
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In general, we have

Kc ¼
1

RT

� �Sivi

Kp

Hence, Eq. (13.25) can be written as

kf

kb

¼ Kc (13:26)

Equation (13.26), although derived by assuming equilibrium, is simply a
relation between the forward and reverse rate constants, and therefore it holds
in general for nonequilibrium conditions. Therefore, the net rate, Eq. (13.24),
can be expressed as

d½O�

dt
¼ 2kf ½M� ½O2� �

1

Kc

½O�2
� 	

(13:27)

In practice, values for kf are found from experiment, and then kb can be directly
obtained from Eq. (13.26). Keep in mind that kf, kb, Kc, and Kp for a given reac-
tion are all functions of temperature only. Also, kf in Eq. (13.27) is generally
different depending on whether the collision partner M is chosen to be O2 or O.

The preceding example has been a special application of the more general
case of a reacting mixture of n different species. Consider the general chemical
reaction (but it must be an elementary reaction, as defined later)

Xn

i¼1

v0iXi O
kf

kb

Xn

i¼1

v00i Xi (13:28)

where v0i and v00i represent the stoichiometric mole numbers of the reactants and pro-
ducts, respectively. (Note that in our preceding example for oxygen where the
chemical reaction was O2 þM!

 2OþM, v0O2
¼ 1, v0O ¼ 0, v00O2

¼ 0, v0M ¼ 1,
v00M ¼ 1, and v00O ¼ 2.) For the preceding general reaction, Eq. (13.28), we write
the following.

Forward rate:

d½Xi�

dt
¼ (v00i � v0i)kf

Y
i

½Xi�
v0i (13:29)

Reverse rate:

d½Xi�

dt
¼ �(v00i � v0i)kb

Y
i

½Xi�
v00i (13:30)
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Net rate:

d½Xi�

dt
¼ (v00i � v0i) kf

Y
i

½Xi�
v0i � kb

Y
i

½Xi�
v00i

( )
(13:31)

Equation (13.31) is a generalized net rate equation; it is a general form of the law
of mass action first introduced in Sec. 10.9. In addition, the relation between kf

and kb given by Eq. (13.26) holds for the general reaction given in Eq. (13.28).
The chemical rate constants are generally measured experimentally. Although

methods from kinetic theory exist for their theoretical estimation, such results are
sometimes uncertain by orders of magnitude. The empirical results for many
reactions can be correlated in the form

k ¼ Ce�1a=kT (13:32)

where 1a is defined as the activation energy and C is a constant. Equation (13.32)
is called the Arrhenius equation. An improved formula includes a preexponential
temperature factor

k ¼ c1Tae�10=kT (13:33)

where c1, a, and 10 are all found from experimental data.
Returning to the special case of a dissociation reaction such as for diatomic

nitrogen

N2 þM ���!
k f

2NþM

the dissociation energy 1d is denned as the difference between the zero-point
energies,

1d ; D10 ¼ 2(10)N � (10)N2

For this reaction, the rate constant is expressed as

kf ¼ cf T
ae�1d=kT (13:34)

where the activation energy 1a ¼ 1d. Physically, the dissociation energy is the
energy required to dissociate the molecule at T ¼ 0 K. It is obviously a finite
number: it takes energy—sometimes a considerable amount of energy—to tear
a molecule apart. In contrast, consider the recombination reaction

N2 þM  ���
kb

2NþM
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Here, no relative kinetic energy between the two colliding N atoms is necessary
to bring about a change; indeed, the role of the third body M is to carry away
some of the energy that must be given up by the two colliding N atoms before
they can recombine. Hence, for recombination, there is no activation energy;
1a ¼ 0. Thus, the recombination rate constant is written as

kb ¼ cbThb (13:35)

with no exponential factor.
Finally, it is important to note that all of the preceding formalism applies only

to elementary reactions. An elementary chemical reaction is one that takes place
in a single step. For example, a dissociation reaction such as

O2 þM ���! 2OþM

is an elementary reaction because it literally takes place by a collision of an O2

molecule with another collision partner, yielding directly two oxygen atoms.
On the other hand, the reaction

2H2 þ O2 ���! 2H2O (13:36)

is not an elementary reaction. Two hydrogen molecules do not come together
with one oxygen molecule to directly yield two water molecules, even though
if we mixed the hydrogen and oxygen together in the laboratory our naked eye
would observe what would appear to be the direct formation of water. Reaction
(13.36) does not take place in a single step. Instead, Eq. (13.36) is a statement of
an overall reaction that actually takes place through a series of elementary steps:

H2 ���! 2H (13:37a)

O2 ���! 2O (13:37b)

Hþ O2 ���! OHþ O (13:37c)

Oþ H2 ���! OHþ H (13:37d)

OHþ H2 ���! H2Oþ H (13:37e)

Equations (13.37a–13.37e) constitute the reaction mechanism for the overall
reaction (13.36). Each of Eqs. (13.37a–13.37e) is an elementary reaction.

We again emphasize that Eqs. (13.21) through (13.35) apply only for
elementary reactions. In particular, the law of mass action given by
Eq. (13.31) is valid for elementary reactions only. We cannot write Eq. (13.31)
for reaction (13.36), but we can apply Eq. (13.31) to each one of the elementary
reactions that constitute the reaction mechanism (13.37a–13.37e).
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13.4 Chemical Nonequilibrium in High-Temperature Air

We again highlight the importance of air in high-speed compressible flow pro-
blems. For the analysis of chemical nonequilibrium effects in high-temperature
air, the following reaction mechanism occurs, valid below 9000 K:

O2 þM O
k f1

kb1

2OþM (13:38)

N2 þM O
k f2

kb2

2NþM (13:39)

NOþM O
k f3

kb3

Nþ OþM (13:40)

O2 þ N O
k f4

kb4

NOþ O (13:41)

N2 þ O O
k f5

kb5

NOþ N (13:42)

N2 þ O2 O
k f6

kb6

2NO (13:43)

Nþ O O
k f7

kb7

NOþ þ e� (13:44)

Equations (13.38–13.40) are dissociation reactions. Equations (13.41) and
(13.42) are bimolecular exchange reactions (sometimes called the “shuffle” reac-
tions); they are the two most important reactions for the formation of nitric oxide
(NO) in air. Equation (13.44) is called a dissociative-recombination reaction
because the recombination of the NOþ ion with an electron produces not NO
but rather a dissociated product NþO. Note that the preceding reactions are
not all independent; for example, Eq. (13.43) can be obtained by adding Eqs.
(13.41) and (13.42). However, in contrast to the calculation of an equilibrium
composition as discussed in Secs. 10.9 and 11.11, for a nonequilibrium reaction
mechanism the chemical equations do not have to be independent. In such a non-
equilibrium case, the kinetic reaction mechanism can contain a large number of
elementary chemical reactions, many of which are not independent. What is
important is that all pertinent reactions that can affect the rate process must be
included. This is quite different from the reactions used to calculate an equili-
brium composition. For such equilibrium calculations, all we need are S 2 f
independent chemical reaction, where S is the number of species and f is the
number of elements, as discussed in Sec. 11.11. The actual reactions used are
somewhat arbitrary, as long as they involve the various species in the equilibrium
mixture, and as long as they are independent (i.e., as long as one chemical
equation cannot be obtained by adding and/or subtracting any of the other
chemical equations). This is in direct contrast to a nonequilibrium system,
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where the specification of a detailed kinetic mechanism with many participating
reactions is necessary.

From the preceding reaction mechanism for air [Eqs. (13.38–13.44)], let us
construct the rate equation for NO. Reactions (13.40–13.43) involve the
production and extinction of NO. Moreover, in reaction (13.40) the collision
partner M can be any of the different species, each requiring a different rate
constant. That is, Eq. (13.40) is really the following equations:

NOþ O2 O
k f3a

kb3a

Nþ Oþ O2 (13:40a)

NOþ N2 O
k f3b

kb3b

Nþ Oþ N2 (13:40b)

NOþ NO O
k f3c

kb3c

Nþ Oþ NO (13:40c)

NOþ O O
k f3d

kb3d

Nþ Oþ O (13:40d)

NOþ N O
k f3e

kb3e

Nþ Oþ N (13:40e)

NOþ NO O
k f3f

kb3f

Nþ Oþ NO (13:40f)

NOþ e� O
k f3g

kb3g

Nþ Oþ e� (13:40g)

Thus, the chemical rate equation for NO is

d½NO�

dt
¼ �k f3a

½NO�½O2� þ kb3a
½N�½O�½O2�

� k f3b
½NO�½N2� þ kb3b

½N�½O�½N2�

� k f3c
½NO�2 þ kb3c

½N�½O�½NO�

� k f3d
½NO�½O� þ kb3d

½N�½O2�

� k f3e
½NO�½N� þ kb3e

½N�2½O�

� k f3f
½NO�½NO�þ þ kb3f

½N�½O�½NO��

� k f3g
½NO�½e�� þ kb3g

½N�½O�½e��

þ k f4 ½O2�½N� � kb4
½NO�½O�

þ k f5 ½N2�½O� � kb5
½NO�½N�

þ 2k f6 ½N2�½O2� � 2kb6
½NO�2 (13:45)
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There are rate equations similar to Eq. (13.45) for O2, N2, O, N, NOþ, and e2.
Clearly, you can see that a major aspect of such a nonequlibrium analysis is
simply bookkeeping, making certain to keep track of all of the terms in the
equations.

Values of the rate constants for high-temperature air are readily available in
the literature. See, for example, [158–162]. Again, keep in mind that there is
always some uncertainty in the published rate constants; they are difficult to
measure experimentally and very difficult to calculate accurately. Hence, any
nonequilibrium analysis is a slave to the existing rate data.

For temperatures above 9000 K, where ionization of the atoms takes place, a
kinetic mechanism more complex than that given by Eqs. (13.40a–13.40g) is
needed. Such a mechanism, along with the appropriate rate constants, is given
in Table 13.2. These data were compiled by Dunn and Kang in [162], and the
table is readily found in [158]. In this table, a form of the rate constant similar
to that given in Eq. (13.33) is used, specifically

kf ¼ Cf T
h f e�K f =RT (13:46)

where R ¼ 1:986 cal=(g �mol) K. The units of kf are expressed in cm3, g �mol,
and seconds, in the combination appropriate for the given chemical equation.
A typical temperature variation for one of the reactions, namely, the O2 þ O2 O
2Oþ O2 reaction, is shown in Fig. 13.3. Clearly, the value of kf changes rapidly
with temperature.

Table l3.2 and Fig. 13.3 are given here, not to say that the rate data are precise,
because they are not. Uncertainties exist in all of these data. Rather, Table 13.2
and Fig. 13.3 are representative of the rate data in modern use and are given here
simply to serve as an example. If you wish to carry out a serious nonequilibrium
analysis, the suggestion is made to always canvas the existing literature for the
most accurate rate data, even to the extent of talking with the physical chemistry
community, before embarking on any extensive calculations.

13.4.1 Two-Temperature Kinetic Model

The temperature T that appears in all preceding sections is labeled the
translational temperature; it is a measure of the collective translational energy
of the particles of the gas through Eq. (12.9a). It is the temperature that enters
into the molecular collision frequency through Eqs. (12.18–12.20). Therefore,
it is natural that the vibrational relaxation time t is a function of T through
Eq. (13.19), and the chemical rate constants are functions of T through
Eqs. (13.32) and (13.33).

In the special case that both vibrational and chemical nonequilibrium simul-
taneously exist in a mixture of gases, there is a coupling between the chemical
reaction rates and the vibrational relaxation rates that affects the values of
each. Molecules that are highly excited vibrationally, that is, in the higher-lying
vibrational energy levels, are more readily dissociated by molecular collisions.
They simply require less energy exchange during collisions to dissociate.
Therefore, the chemical kinetic rates for dissociation are going to be faster if
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the gas is already highly excited vibrationally. Similarly, because dissociation
more readily occurs from the higher-lying vibrational levels, there is a preferen-
tial depopulation of the higher-lying vibrational energy levels when dissociation
is going on, thus affecting the instantaneous vibrational energy of the gas and the
vibrational relaxation time.

The precise accounting of this mutual coupling phenomena on both the
vibrational and chemical rates is complex. An attempt to deal approximately
with this coupling involves the definition of a vibrational temperature Tvib

as follows. Consider a given molecular species, say, O2. If the instantaneous
nonequilibrium value of vibrational energy per unit mass of this species is evib

as dictated by the vibrational rate equation (13.17), then we define an

Table 13.2 Kinetic mechanism for high-temperature air for the Dunn/Kang model

Reaction Cf hf Kf

O2 þ N ¼ 2O þN 3.6000E18 –1.00000 118,800

O2 þ NO ¼ 2O þNO 3.6000E18 –1.00000 118,800

N2 þ O ¼ 2N þ O 1.9000E17 20.50000 226,000

N2 þ NO ¼ 2N þ NO 1.9000E17 20.50000 226,000

N2 þ O2 ¼ 2N þ O2 1.9000E17 20.50000 226,000

NOþ O2 ¼ N þ O þ O2 3.9000E20 21.5 151,000

NOþ N2 ¼ N þ O þ N2 3.9000E20 21.5 151,000

O þ NO ¼ N þ O2 3.2000E9 1 39,400

O þ N2 ¼ N þ NO 7.0000E13 0 76,000

N þ N2 ¼ 2N þ N 4.0850E22 21.5 226,000

O þ N ¼ NOþ þ e2 1.4000E06 1.50000 63,800

O þ e2 ¼ Oþ þ 2e2 3.6000E31 22.91 316,000

N þ e2 ¼ Nþ þ 2e2 1.1000E32 23.14 338,000

O þ O ¼ Oþ2 þ e2 1.6000E17 20.98000 161,600

O þ Oþ2 ¼ O2 þ Oþ 2.9200E18 21.11000 56,000

N2 þ Nþ ¼ N þ Nþ2 2.0200E11 0.81000 26,000

N þ N ¼ Nþ2 þ e2 1.4000E13 0 135,600

O þ NOþ ¼ NO þ Oþ 3.6300E15 20.6 101,600

N2 þ Oþ ¼ O þ N2
þ 3.4000E19 22.00000 46,000

N þ NOþ ¼ NO þ Nþ 1.0000E19 20.93 122,000

O2 þ NOþ ¼ NO þ Oþ2 1.8000E15 0.17000 66,000

O þ NOþ ¼ O2 þ Nþ 1.3400E13 0.31 154,540

O2 þ O ¼ 2O þ O 9.0000E19 21 119,000

O2 þ O2 ¼ 2O þ O2 3.2400E19 21 119,000

O2 þ N2 ¼ 2O þ N2 7.2000E18 21 119,000

N2 þ N2 ¼ 2N þ N2 4.7000E17 20.5 226,000

NOþ O ¼ N þ 2O 7.8000E20 21.5 151,000

NOþ N ¼ O þ 2N 7.8000E20 21.5 151,000

NOþ NO ¼ N þ O þ NO 7.8000E20 21.5 151,000

O2 þ N2 ¼ NO þ NOþ þ e2 1.3800E20 21.84 282,000

NOþ N2 ¼ NO2
þ e2

þN2 2.2000E15 20.35 216,000
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Fig. 13.3 Temperature variation of the rate constant for the dissociation of oxygen.
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instantaneous vibrational temperature for that species Tvib as that governing a
local Boltzmann distribution of the particles over the vibrational energy levels
at the temperature Tvib, with the value of evib given by

evib ¼
hv=k Tvib

ehv=kTvib � 1

� �
R Tvib

The higher is Tvib, the more particles there are in the higher-lying vibrational
energy levels, and the easier (hence faster) is the dissociation. To account for
this effect on the chemical rate constant, Park [263] suggests that the instan-
taneous vibrational and translational temperatures be combined to form an
average temperature Ta, where

Ta ¼
ffiffiffiffiffiffiffiffiffiffiffi
TvibT

p

and that Ta rather than T be used to calculate the chemical rate constants.
When the gas is in vibrational equilibrium, Tvib ¼ T, and hence Ta ¼ T. It is
only when vibrational nonequilibrium exits that Ta is different from T. If the
local nonequilibrium vibrational energy is higher than the local equilibrium
value (Tvib . T), then Ta . T, and the chemical reaction rate for that species
will be faster than if vibrational equilibrium existed. Similarly, if the local non-
equilibrium vibrational energy is lower than the local equilibrium value
(Tvib , T), then Ta , T, and the chemical reaction rate will be slower than if
vibrational equilibrium existed.

Park gives a kinetic mechanism for high-temperature air and associated rate
constants in [263]. Table 13.3 lists Park’s selected rate constants in units of
cm3 mol21 s21 as a function of Ta, T, and Te, where Te is the electron temperature,
an index of the translational energy of the electrons in the gas. For some cases,
Park generalizes the average temperature as

Ta ¼ T
q
vibT1�q

where q is between 0.3 and 0.5. The purpose of Table 13.3 in this book is simply
to illustrate a set of rate constants that are based on the two-temperature kinetic
model discussed in this section. Once again, if you are embarking on a serious
nonequilibrium analysis, you are encouraged to first visit your local physical
chemist to obtain the latest rate data and kinetic mechanism.

13.5 Chemical Nonequilibrium in H2-Air Mixtures

As described in Chapters 1 and 9, future airbreathing hypersonic vehicles
will be powered by supersonic combustion ramjet engines (scramjets). The
fuel for the scramjets will most likely be hydrogen, and therefore the chemical
kinetics of H2-air mixtures is of vital importance to the supersonic combustion
process. With this in mind, Tables 13.4 and 13.5 give a typical kinetic mech-
anism for H2-air chemically reacting mixtures, along with the reaction rate
constant data wherein kf is in the same form as given by Eq. (13.46).
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Tables 13.4 and 13.5 are obtained from [158], based on data supplied by
C. Jachimowski frorn the NASA Langley Research Center. In Table 13.5
are some third-body efficiencies for several reactions where H2 and H2O are
the third bodies, that is, the collision partner denoted by M in some of the
chemical equations.

Table 13.3 Selected rate coefficients for reactions in air (cm3 mol21 s21)a

No. Reactions Rate expression Remark

1 O2þO2! OþOþO2 2 � 1021 Ta
21.5 exp(–59,500/Ta) ——

2 O2þNO! OþOþNO 2 � 1021 T 21.5
a exp(–59,500/Ta) Estimated

3 O2þN2! OþOþN2 2 � 1021 Ta
21.5 exp(–59,500/Ta) ——

4 O2þO! Oþ OþO 1022 Ta
21.5 exp(–59,500/Ta) ——

5 O2þN! Oþ OþN 1022 Ta
21.5 exp(–59,500/Ta) Estimated

6 NOþO2! NþOþNO 5 � 1015 exp(–75,500/Ta) Estimated

7 NOþNO! NþOþNO 1.1 � 1017 exp(–75,500/Ta) ——

8 NOþN2! NþOþN2 5 � 1015 exp(–75,500/Ta) ——

9 NOþO! NþOþO 1.1 � 1017 exp(–75,500/Ta) Estimated

10 NOþN! NþOþN 1.1 � 1017 exp(–75,500/Ta) Estimated

11 N2þO2! NþNþO2 7 � 1021 T 21.6
a exp(–113,200/Ta) Estimated

12 N2þNO! NþNþNO 7 � 1021 T21.6
a exp(–113,200/Ta) Estimated

13 N2þN2! NþNþN2 7 � 1021 Ta
21.6exp(2113,200/Ta) ——

14 N2þO! Nþ NþO 3 � 1022 Ta
21.6 exp(2113,200/Ta) Estimated

15 N2þN! Nþ NþN 3 � 1022 Ta
21.6 exp(2113,200/Ta) ——

16 N2þ e! NþNþ e 3 � 1024 Te
21.6 exp(2113,200/Te) Estimated

17 N2þO! NOþN 6.4 � 1017 Ta
21 exp(238,200/Ta) ——

18 NOþO! O2þN 8.4 � 1012 exp(219,400/Ta) ——

19 NþO! NOþ þ e 5.3 � 1012 exp(231,900/Ta) ——

20 NþN! Nþ2 þ e 2 � 1013 exp(267,500/Ta) ——

21 OþO! Oþ2 þ e 1.1 � 1013 exp(280,600/Ta) ——

22 Oþ e! Oþ þ eþ e 3.9 � 1033 Te
23.78 exp(2158,500/Te) Estimated

23 Nþ e! Nþ þ eþ e 2.5 � 1033 Te
23.82 exp(2168,200/Te) ——

24 NOþ þO! Nþ þO2 1012 T 0.5 exp(277,200/T) ——

25 O2
þ
þN! Nþ þO2 8.7 � 1013 T 0.14 exp(228,600/T) ——

26 NOþOþ ! Nþ þO2 1.4 � 105 T1.9 exp(215,300/T) ——

27 Oþ2 þN2! Nþ2 þO2 9.9 � 1012 exp(240,700/T) ——

28 Oþ2 þO2! OkþO2 4 � 1012 T 20.09 exp(218,000/Ta) ——

29 NOþ þN! Oþ þN2 3.4 � 1013 Ta
21.08 exp(212,800/T) ——

30 NOþ þO2! Oþ2 þNO 2.4 � 1013 T 0.41 exp(232,600/T) ——

31 NOþ þO! Oþ2 þN 7.2 � 1012 T 0.29 exp(248,600/T) ——

32 Oþ þN2! Nþ2 þO 9 � 1011 T 0.36 exp(222,800/T) ——

33 NOþ þN! Nþ2 þO 7.2 � 1013 exp(235,500/T) ——

aT is the translational–rotational temperature, Te is the election temperature, and Ta is the geo-
metrical average between T and the vibrational temperature Tv, Ta ¼ Ta

v T1¼q, where q is between
0.3 and 0.5.
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13.6 Summary and Comments

In this chapter we have considered some of the elementary characteristics of
gases in both vibrational and chemical nonequilibrium.

To analyze and compute the time rate of change of vibrational energy in a gas,
the vibrational rate equation can be used:

devib

dt
¼

1

t
(e

eq
vib � evib) (13:17)

Table 13.4 Kinetic mechanism for H2 air from Jachimowski

Reaction Cf hf Kf

H2 þ O2 ¼ OH þ OH 1.7E13 0 48,000

OH þ H2 ¼ H2O þ H 2.2E13 0 5,150

H þ O2 ¼ OH þ O 2.20E14 0 16,800

O þ H2 ¼ OH þ H 1.80E10 1 8,900

OH þ OH ¼ H2O þ O 6.3E12 0 1,090

H þ OH ¼ H2O þ M 2.20E22 –2 0

H þ O ¼ OH þ M 6.00E16 –0.6 0

H þ H ¼ H2 þ M 6.40E17 –1 0

H þ O2 ¼ HO2 þ M 1.70E15 0 –1,000

HO2þ H ¼ H2 þ O2 1.30E13 0 0

HO2þ H ¼ OH þ OH 1.40E14 0 1,080

HO2þ O ¼ OH þ O2 1.50E13 0 950

HO2þ OH ¼ H2O þ O2 8.00E12 0 0

HO2þ HO2 ¼ H2O2 þ O2 2.00E12 0 0

H þ H2O2 ¼ H2 þ HO2 1.40E12 0 3,600

O þ H2O2 ¼ OH þ HO2 1.40E13 0 6,400

OH þ H2O2 ¼ H2O þ HO2 6.10E12 0 1,430

M þ H2O2 ¼ 2OH þ M 1.20E17 0 45,500

O þ O ¼ O2 þ M 6.00E13 0 –1,000

N þ N ¼ N2 þ M 2.80E17 –0.75 0

N þ O2 ¼ NO þ O 6.40E9 1.0 6,300

N þ NO ¼ N2 þ O 1.60E13 0 0

N þ OH ¼ NO þ H 6.30E11 0.5 0

H þ NO ¼ HNOþ M 5.40E15 0 2 600

H þ HNO ¼ NO þ H2 4.80E12 0 0

O þ HNO ¼ NO þ OH 5.00E11 0.5 0

OH þ HNO ¼ NO þ H2O 3.60E13 0 0

HO2þ HNO ¼ NO þ H2O2 2.00E12 0 0

HO2þ NO ¼ NO2 þ OH 3.43E12 0 –260

H þ NO2 ¼ NO þ OH 3.50E14 0 1,500

O þ NO2 ¼ NO þ O2 1.00E13 0 600

M þ NO2 ¼ NO þ O 1.16E16 0 66,000
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where the relaxation time t is given by

tp ¼ C1e(C2=T)1=3

Frequently, the preceding equations are called the Landau–Teller rate model.
To analyze and compute the finite-rate chemical kinetic processes in any gas

mixture, it is necessary to do the following:
1) Define the reaction mechanism [such as reactions (13.38–13.44)].
2) Obtain the rate constants from the literature, usually in the form of

Eq. (13.33).
3) Write all of the appropriate rate equations, such as Eq. (13.45).
4) Solve the rate equations simultaneously to obtain the time variation of the

species concentrations, that is, [O2] ¼ f1(t), [O] ¼ f2(t), etc. This is a job for a
high-speed digital computer. Indeed, most modern analyses of chemical non-
equilibrium systems would not be practicably possible without computers.

Finally, we will see how these considerations are used in the analyses of
nonequilibrium high-temperature flowfields in Chapters 15 and 17.

Table 13.5 Third body efficiencies for the kinetic mechanism for H2

air from Jachimowski

Reaction

Third-body efficienciesa

Third body Efficiency Third body Efficiency

HþOHþM ¼ H2OþM H2 1.0 H2O 6.0

HþOþM ¼ OHþM H2 1.0 H2O 5.0

HþHþM ¼ H2þM H2 2.0 H2O 6.0

HþO2þM ¼ HO2þM H2 2.0 H2O 16.0

MþH2O2 ¼ 2OHþM H2 1.0 H2O 15.0

aAll other third bodies have efficiency of 1.0.
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14
Inviscid High-Temperature Equilibrium Flows

Equilibrium: Any condition in which all acting influences
are cancelled by others resulting in a stable, balanced, or
unchanging system.

The American Heritage Dictionary
of the English Language, 1969

Chapter Preview

Finally, after four chapters of basic physics and chemistry, we are going to

look at some high-temperature gas dynamic flows. But we are not going

off the deep end and dealing with all kinds of complexities; rather, in this

chapter we are going to examine some basic high-speed flows such as

shock waves, nozzle flows, flows over cones, and flows over blunt-nosed

bodies. You can hardly get more basic. These flows are the bread and butter

of classical compressible flow, except here we examine how these classic

flows are changed by high-temperature effects. In fact, the underlying ques-

tion addressed throughout the remainder of this book is: how do the high-

temperature physics and chemistry discussed in the preceding four chapters

affect and change some otherwise familiar and classic flowfields? The

answers will be graphic, sometimes unexpected, and always fascinating.

As with all major subjects, we cannot do the whole thing at once. So in this

chapter we take our first step into the study of high-temperature gas dynamics

by assuming that both vibrational and chemical equilibrium exist throughout

the flowfield—equilibrium flows. In the whole panoply of high-temperature

gas dynamics, equilibrium flows are usually the most straightforward to

calculate and understand. So we start here. Ready . . . set . . . go!
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14.1 Introduction

It is worthwhile at this stage to return to our road map in Fig. 1.24. All of our
discussion in Part 3 of this book has, so far, been centered in the first item under
high-temperature flows in Fig. 1.24, namely, a presentation of basic physical
chemistry effects. The material covered under this item has been in the spirit
of “tool building,” that is, acquiring the necessary tools (concepts, definitions,
equations, etc.) from physical chemistry to allow us to properly analyze and
understand high-temperature flows. We now have enough of these tools to
study inviscid high-temperature flows—the next item on the road map in
Fig. 1.24. In particular, the subject of the present chapter is equilibrium inviscid
flows; the matter of nonequilibrium inviscid flows is the subject of Chapter 15.

Before progressing further, it is important to examine more closely what is
meant by high-temperature equilibrium flow.

Definition: Flow in local thermodynamic equilibrium—a local Boltzmann distri-
bution [Eq. (11.25)] exists at each point in the flow at the local temperature T.
Hence, at each point in the flow, the energy of each species is given by
Eq. (11.62) or (11.63).

Definition: Flow in local chemical equilibrium—the local chemical composition
at each point in the flow is the same as that determined by the chemical equili-
brium calculations described in Secs. 10.9, 11.9, and 11.11 (using the
equilibrium constants) at the local values of T and p.

How close an actual high-temperature flow comes to these ideal conditions
of local thermodynamic equilibrium and local chemical equilibrium depends

Fig. 14.1 Road map for Chapter 14.
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on the collision frequency and the flow time, as will be explained in Chapter 15.
In the present chapter we will simply assume that local equilibrium conditions
hold at each point in the flowfield, and we will examine the nature of high-
temperature flows under such equilibrium conditions.

The road map for this chapter is given in Fig. 14.1. We start with the governing
flow equations for inviscid equilibrium flow. We then apply these equations to
study shock wave and nozzle flows. Then we take a side trip to contrast two
extremes—frozen flow and equilibrium flow—and to look at the thermodynamic
properties of specific heat and the speed of sound in these two extremes. Then we
come back to the main route and finish our journey with a study of equilibrium
conical flows and blunt-body flows.

14.2 Governing Equations for Inviscid High-Temperature

Equilibrium Flow

Consider again Eqs. (4.1–4.5). Examine these equations carefully; they are
frequently called the Euler equations, and they are the governing equations for
inviscid flow used throughout Part 1 of this book. These equations are derived
in most basic fluid-dynamics texts: for example, see [4] and [5]. Think over
the nature of these derivations, and if necessary review them in these references.
We will proceed from here assuming that you are familiar with the derivations of
Eqs. (4.1–4.5).

Question: Do these equations hold for high-temperature, chemically reacting
equilibrium flows?

The answer lies in their derivation. For example, the continuity equation (4.1) is
simply a statement of global mass conservation, which holds whether or not the flow
is chemically reacting. Similarly, Eqs. (4.2–4.4) are basically Newton’s second law,
which is also independent of chemically reacting effects. Finally, Eq. (4.5) is the
energy equation (or more precisely the entropy equation) for adiabatic flow; it
stems from the combined first and second laws of thermodynamics presented in
Chapter 10. These laws hold for any type of gas and hence are applicable to high-
temperature chemically reacting flows. Thus, the answer to the question is yes;
Eqs. (4.1–4.5) hold for a high-temperature, chemically reacting, inviscid, equili-
brium flow. [On the other hand, Eq. (4.6), which was used frequently throughout
Part 1, does not hold for such a flow; it is a specialized form assuming constant g,
and hence applies only to a calorically perfect gas.]

Note that Eq. (4.5) is a statement that the entropy of a moving fluid element is
constant in an adiabatic, inviscid flow. For a high-temperature gas, this remains
true as long as the flow is in local equilibrium—the case treated in this chapter.
However, for nonequilibrium flow (to be discussed in Chapter 15), we know from
results such as Eq. (10.72) that there is an entropy increase caused by the irrevers-
ible effect of the nonequilibrium process. Hence, Eq. (4.5) does not hold for a
nonequilibrium inviscid flow. For such a case, and essentially for all general
high-temperature flows, it is recommended that we deal with another variable
rather than entropy in the energy equation. There are a number of alternate
forms of the energy equation for adiabatic, inviscid flows—for example, see
Chapter 6 of [4]. Let us choose the total enthalpy as our dependent variable,
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and write the energy equation for an adiabatic inviscid flow as

r
Dh0

Dt
¼ r

@h0

@t
þ ru

@h0

@x
þ rv

@h0

@y
þ rw

@h0

@z
¼
@p

@t
(14:1)

which holds for both equilibrium and nonequilibrium flows.
In summary, the governing equations for an inviscid, high-temperature, equi-

librium flow are, from Eqs. (4.1–4.4) and (14.1), written in vector and substantial
derivative notation.

Continuity:
@r

@t
þ � � (rV) ¼ 0 (14:2)

Momentum:

r
DV

Dt
¼ ��p (14:3)

Energy:

r
Dh0

Dt
¼
@p

@t
(14:4)

where
h0 ¼ hþ

V2

2
(14:5)

So we see that high-temperature effects do not change the basic form of these
equations; they are the same as used in many of our earlier analyses in Part 1.

Question: Why does the energy equation not have an extra term that deals with the
energy changes caused by chemical reactions (exothermic or endothermic) in
the flow?

The answer is that h in Eqs. (14.4) and (14.5) contains the effective zero-point
energies, namely, the heats of formation, as explained in Sec. 11.12. In this
fashion, the local energy exchanges caused by chemical reactions are
automatically accounted for when h is treated as the absolute enthalpy in the
form given by Eq. (11.105). When this is done, no explicit heat-addition term
appears in Eq. (14.4) to account for chemical reactions. (In some literature, a
chemical heat-addition term is included in the energy equation; in such cases
the enthalpy is the sensible rather than absolute value. Review Sec. 11.12 for
the difference between sensible and absolute enthalpy.)

Recall our discussion in Sec. 11.1 concerning the unknown variables in an
equilibrium chemically reacting flowfield and how they are obtained in principle.
We now see in detail how they are obtained. The flow equations (14.2–14.4) con-
stitute three equations for four unknowns: r, V, p, and h. This system of equations
must be completed by the addition of the equilibrium thermodynamic properties
for the gas. Conceptually, we can write these properties in the form

T ¼ T(r, h) (14:6)

p ¼ p(r, h) (14:7)

Therefore, Eqs. (14.2–14.4), (14.6), and (14.7) constitute five equations for the
five unknowns: r, V, p, h, and T. Note that T is not only an important flowfield
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variable, but it is absolutely necessary for the evaluation of the equilibrium
constants and the internal energy and enthalpy from the expressions given by
statistical thermodynamics (see Chapter 11). Recall from Sec. 11.13 that, in a
given calculation, Eqs. (14.6) and (14.7) can take the form of any of the
following:

1) The first is a direct calculation of the equilibrium thermodynamic proper-
ties from the equations of statistical thermodynamics (Chapter 11) carried out
in parallel with the solutions of the flow equations. In terms of a computer calcu-
lation, this can be viewed as a computer subroutine that generates the properties
directly from the statistical mechanical equations.

2) Next is tabulation of the equilibrium thermodynamic properties (if one is
available for the particular gas you are dealing with). For high-temperature air,
[154] is a good example of such tabulations.

3) They can also be correlations of the equilibrium thermodynamic properties
(again, if they are available). For air, [155] is a good example of such
correlations.

4) Graphical plots of the equilibrium thermodynamic properties (again, if they
are available) are the final form. For example, a large Mollier diagram for
high-temperature air is available in many laboratories and companies for such
purposes.

Finally, we note that analytical, closed-formed solutions of Eqs. (14.2–14.4),
and (14.6) and (14.7) have not yet been obtained in the literature, even for
the simplest type of high-temperature flow problem. It is almost axiomatic that
high-temperature effects, even in the most straightforward case of inviscid
one-dimensional flow, force the solutions of such problems to be numerical.
This aspect of the analysis of high-temperature flows will be amply demonstrated
in the subsequent sections and chapters.

Fig. 14.2 Normal shock geometry.
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14.3 Equilibrium Normal and Oblique Shock-Wave Flows

Consider a stationary normal shock wave as sketched in Fig. 14.2. Assume
that the shock is strong enough; hence, T2 is high enough, such that vibrational
excitation and chemical reactions occur behind the shock front. Moreover,
assume that local thermodynamic and chemical equilibrium hold behind
the shock. All conditions ahead of the shock wave (region 1) are known. Our
objective is to calculate properties behind the shock.

The governing equations for the flow across a normal shock are derived
in many basic texts; for example, see [4]. They can be obtained by writing
Eqs. (14.2–14.4) for steady, one-dimensional flow, and integrating between
points in front of and behind the shock. They are as follows.

Continuity:

r1u1 ¼ r2u2 (14:8)

Momentum:

p1 þ r1u2
1 ¼ p2 þ r2u2

2 (14:9)

Energy:

h1 þ
u2

1

2
¼ h2 þ

u2
2

2
(14:10)

Equations (14.8–14.10) are the familiar basic normal shock equations; consistent
with the discussion in Sec. 14.2, these equations are general; they hold for both
reacting and nonreacting gases.

In addition, the equilibrium thermodynamic properties for the high-temperature
gas are assumed known from the techniques discussed in Chapter 11. These can take
the form of tables or graphs, or can be calculated directly from the equations devel-
oped in Chapter 11. In any event, we can consider these properties in terms of the
following functional relations (“equations of state,” if you will):

r2 ¼ r( p2, h2) (14:11)

T2 ¼ T( p2, h2) (14:12)

Recall that, for a calorically perfect gas, Eqs. (14.8–14.12) yield a series of
closed-form algebraic relations for p2/p1, T2/T1, M2, etc., as functions of M1

(for example, see [4] and [5]). Unfortunately, no simple formulas can be obtained
when the gas is vibrationally excited and/or chemically reacting. For such
high-temperature cases, Eqs. (14.8–14.12) must be solved numerically. To set
up such a numerical solution, let us first rearrange Eqs. (14.8–14.10). From Eq.
(14.8)

u2 ¼
r1u1

r2

(14:13)
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Substitute Eq. (14.13) into (14.9):

p1 þ r1u2
1 ¼ p2 þ r2

r1u1

r2

� �2

(14:14)

Solving Eq. (14.14) for p2, we have

p2 ¼ p1 þ r1u2
1 1�

r1

r2

� �
(14:15)

In addition, substituting Eq. (14.13) into (14.10), we have

h1 þ
u2

1

2
¼ h2 þ

(r1u1=r2)2

2
(14:16)

Solving Eq. (14.16) for h2,

h2 ¼ h1 þ
u2

1

2
1�

r1

r2

� �2
" #

(14:17)

Because all of the upstream conditions, r1, u1, p1, h1, etc., are known,
Eqs. (14.15) and (14.17) express p2 and h2, respectively, in terms of only one
unknown, namely, r1/r2. This establishes the basis for an iterative numerical
solution, as follows:

1) Assume a value for r1/r2. (A value of 0.1 is usually good for a starter.)
2) Calculate p2 from Eq. (14.15) and h2 from Eq. (14.17).
3) With the values of p2 and h2 just obtained, calculate r2 from Eq. (14.11).
4) Form a new value of r1/r2 using the value of r2 obtained from step 3.
5) Use this new value of r1/r2 in Eqs. (14.15) and (14.17) to obtain new

values of p2 and h2, respectively. Then repeat steps 3–5 until convergence is
obtained, that is, until there is only a negligible change in r1/r2 from one iteration
to the next. (This convergence is usually very fast, typically requiring less than
five iterations.)

6) At this stage, we now have the correct values of p2, h2, and r2. Obtain the
correct value of T2 from Eq. (14.12).

7) Obtain the correct value of u2 from Eq. (14.13).
By means of steps 1–7, we can obtain all properties behind the shock wave for
given properties in front of the wave.

There is a basic practical difference between the shock results for a calori-
cally perfect gas and those for a chemically reacting gas. For a calorically

INVISCID HIGH TEMPERATURE EQUILIBRIUM 605



perfect gas (see [4] and [5])

p2

p1

¼ f1(M1)

r2

r1

¼ f2(M1)

h2

h1

¼ f3(M1)

Note that in this case only M1 is required to obtain the ratios of properties across a
normal shock wave. In contrast, for an equilibrium chemically reacting gas, we
have seen that

p2

p1

¼ g1(u1, p1, T1)

r2

r1

¼ g2(u1, p1, T1)

h2

h1

¼ g3(u1, p1, T1)

Note that in this case three freestream parameters are necessary to obtain the
ratios of properties across a normal shock wave. This makes plenty of sense—
the equilibrium composition behind the shock depends on p2 and T2, which in
turn are governed in part by p1 and T1. Hence, in addition to the upstream velocity
u1, the normal shock properties must depend also on p1 and T1. By this same
reasoning, if no chemical reactions take place, but the vibrational and electronic
energies are excited (a thermally perfect gas), then the downstream normal shock
properties depend on two upstream conditions, namely, u1 and T1.

Also note that, in contrast to a calorically perfect gas, the Mach number no
longer plays a pivotal role in the results for normal shock waves in a high-
temperature gas. In fact, for most high-temperature flows in general, the Mach
number is not a particularly useful quantity. The flow of a chemically reacting
gas is mainly governed by the primitive variables of velocity, temperature, and
pressure. For an equilibrium gas, the Mach number is still uniquely defined as
V/a, and it can be used along with other determining variables—it just does
not hold a dominant position as in the case of a calorically perfect gas. For a non-
equilibrium gas, however, there is some ambiguity even in the definition of Mach
number (to be discussed in Chapter l5), and hence the Mach number further loses
significance for such cases.

For high-temperature air, a comparison between calorically perfect gas and
equilibrium chemically reacting gas results was shown in Fig. 1.18. Here, the
temperature behind a normal shock wave is plotted vs upstream velocity for con-
ditions at a standard altitude of 52 km. The equilibrium results are plotted directly
from normal shock tables prepared by the Cornell Aeronautical Laboratory (now
CALSPAN Corporation) and published in [163] and [164]. These reports should
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be consulted for equilibrium normal shock properties associated with air in the
standard atmosphere. From Fig. 1.18, the calorically perfect results considerably
overpredict the temperature, and for obvious reasons. For a calorically perfect
gas, the directed kinetic energy of a flow ahead of the shock is mostly converted
to translational and rotational molecular energy behind the shock. On the other
hand, for a thermally perfect and/or chemically reacting gas, the directed
kinetic energy of the flow, when converted across the shock wave, is shared
across all molecular modes of energy, and/or goes into zero-point energy of
the products of chemical reaction. Hence, the temperature (which is a measure
of translational energy only) is less for such a case.

For further comparison, consider a reentry vehicle at 170,000-ft standard alti-
tude with a velocity of 36,000 ft/s. The properties across a normal shock wave for
this case are tabulated in Table 14.1. Note from that tabulation that chemical
reactions have the strongest effect on temperature, for the reasons given
earlier. This is generally true for all types of chemically reacting flows—the
temperature is by far the most sensitive variable. In contrast, the pressure ratio
is affected only by a small amount. Pressure is a “mechanically” oriented vari-
able; it is governed mainly by the fluid mechanics of the flow and not so much
by the thermodynamics. This is substantiated by examining the momentum
equation, namely, Eq. (14.9). For high-speed flow, u2� u1, and p2� p1.
Hence from Eq. (14.9),

p2 � r1u2
1

This is a common hypersonic approximation; note that p2 is mainly governed by
the freestream velocity, and that thermodynamic effects are secondary.

In an equilibrium dissociating and ionizing gas, increasing the pressure
at constant temperature tends to decrease the atom and ion mass fractions,
that is, increasing the pressure tends to inhibit dissociation and ionization. The
consequences of this effect on equilibrium normal shock properties are
shown in Fig. 14.3, where the temperature ratio across the shock is plotted vs
upstream velocity for three different values of upstream pressure. Note that
T2/T1 is higher at higher pressures; the gas is less dissociated and ionized at
higher pressure, and hence more energy goes into translational molecular
motion behind the shock rather than into the zero-point energy of the products
of dissociation.

Table 14.1 Properties across a normal shock wave in air at a

velocity of 36,000 ft/s and an altitude of 170,000 ft

Flow property

For calorically

perfect air,

g ¼ 1.4

For equilibrium

chemically reacting air

(CAL Report AG-1729-A-2)

p2/p1 1233 1387

r2/r1 5.972 15.19

h2/h1 206.35 212.8

T2/T1 206.35 41.64
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Because of the importance of high-temperature effects in high-speed atmos-
pheric flight, more detailed results for equilibrium normal shock properties in
air are given in Figs. 14.4 and 14.5, obtained from [165]. In Figs. 14.4a and
14.4b, the temperature behind a normal shock wave is plotted as a function of
velocity in front of the wave, with altitude as a parameter. The velocity range
in Fig. 14.4a is below orbital velocity, and hence the results are affected primarily
by dissociation. In contrast, the velocities in Fig. 14.4b cover the superorbital
range (above 26,000 ft/s) and therefore reflect the effects of substantial ioniz-
ation. Note again the effect of pressure in these results; at a given velocity,
T2 increases with decreasing altitude (i.e., increasing pressure) because the
amount of dissociation and ionization in an equilibrium gas is decreased at
higher pressure. Also note the general magnitude of the temperatures encoun-
tered. At u1 ¼ 10,000 ft/s (typical of a hypersonic cruise transport), T2 � 3000 K.
At u2 ¼ 26,000 ft/s (orbital velocity typical of a space shuttle or trans-
atmospheric vehicle), T2 � 7000 K. For atmospheric entry at escape velocity,
u1 ¼ 36,000 ft/s (typical of Apollo-type vehicles and aeroassisted orbital transfer
vehicles), T2 � 11,000 K. Moreover, Fig. 14.4a illustrates that chemically react-
ing effects begin to impact the normal shock properties at velocities above
6000 ft/s (approximately Mach 6). The density ratio across a normal shock

Fig. 14.3 Influence of pressure on the normal shock temperature in equilibrium air.
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Fig. 14.4a Variation of normal shock temperature with velocity and altitude;

velocity range below orbital velocity (from Huber [165]).

Fig. 14.4b Variation of normal shock temperature with velocity and altitude;

velocity range near and above orbital velocity (from [165]).
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Fig. 14.5a Variation of normal shock density with velocity and altitude; velocity

range below orbital velocity (from [165]).

Fig. 14.5b Variation of normal shock density with velocity and altitude; velocity

range near and above orbital velocity (from [165]).
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wave r2/r1 is shown in Figs. 14.5a and 14.5b, plotted vs velocity with altitude as
a parameter. Recall from Eq. (2.4) that, for a calorically perfect gas, r2/r1

approaches the limiting value of (g þ 1)/(g 2 1) as M1! 1. For air with
g ¼ 1.4, this limiting ratio is 6. Note from Figs. 14.5a and 14.5b that r2/r1 is
strongly affected by chemical reactions and that its values range far above
6—reaching as high as 22.

The value of r2/r1 has an important effect on the shock detachment distance in
front of a hypersonic blunt body. The flow of a calorically perfect gas over a
hypersonic blunt body is discussed in Secs. 5.3 and 5.4. An approximate
expression for the shock detachment distance d on a sphere of radius R is
(see [46])

d

R
¼

r1=r2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(r1=r2)

p (14:18)

In the limit of high velocities, r1/r2 becomes small compared to unity, and
Eq. (14.18) is approximated by

d

R
�

r1

r2

¼
1

(r2=r1)
(14:19)

Therefore, the value of the density ratio across a normal shock wave has a major
impact on shock detachment distance; the higher the density ratio r2/r1, the
smaller is d. From Figs. 14.5a and 14.5b, we see that the effect of chemical reac-
tions is to increase r2/r1, which, in turn, decreases the shock detachment dis-
tance. Therefore, in comparison to the calorically perfect-gas blunt-body
results discussed in Secs. 5.3 and 5.4, the shock wave for a chemically reacting
gas (at the same velocity and altitude conditions) will lie closer to the body. This
is emphasized schematically in Fig. 14.6, where dcp and dcR are the shock detach-
ment distances for a calorically perfect gas and a chemically reacting gas,
respectively.

Let us now turn our attention to oblique shock waves in an equilibrium gas.
The flow across an oblique shock is sketched in Fig. 14.7. It is readily shown
(see [4] and [5]) that the component of flow velocity tangential to a straight
oblique shock wave is preserved across the shock, that is, Vt,1 ¼ Vt,2 in
Fig. 14.7. This is a basic mechanical result obtained from the momentum
equation, and hence it is not influenced by high-temperature effects. In turn,
the thermodynamic changes across the oblique shock are dictated only by the
component of the upstream velocity perpendicular to the shock Vn,1. Therefore,
we have for the high-temperature equilibrium flow across an oblique shock
wave the same basic, familiar results from classic shock-wave theory, namely,
that the properties behind the oblique shock are the same as the properties
across a normal shock with upstream velocity u1 ¼ Vn,1. (The exception to this
is, of course, the flow velocity behind the oblique shock V2, where V2 must be
obtained by the vector addition of the tangential component Vt,2 and the
normal component Vn,2, with Vn,2 satisfying the normal shock results.) Conse-
quently, the normal shock analysis involving Eqs. (14.13–14.17) also applies
to the equilibrium flow across an oblique shock wave.
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Fig. 14.7 Oblique shock geometry.

Fig. 14.6 Relative locations of blunt-body bow shock waves for calorically perfect

and chemically reacting gases.
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From, the oblique shock picture in Fig. 14.7, we have

tan(b� u) ¼
Vn;2

Vt;2
(14:20)

where, as in Chapter 2, u is the deflection angle and b is the wave angle. Because
Vt,2 ¼ Vt,1, Eq. (14.20) can be written as

tan(b� u) ¼
Vn;2

Vt;1
¼

Vn;2

Vn;1

Vn;1

Vt;1

or

tan(b� u) ¼
Vn;2

Vn;1
tanb (14:21)

Equation (14.21) is, for the equilibrium high-temperature case, the analog of
Eq. (2.16) for the calorically perfect-gas case; Eq. (14.21) relates the wave
angle b, the deflection angle u, and the upstream velocity V1 (via its components
Vn,1 and Vn,2). The solution of Eqs. (14.21) combined with the normal shock
numerical solution described by Eqs. (14.13–14.17) yields a u-b-V diagram
for equilibrium flow across oblique shocks, which is a direct analog to the fam-
iliar u-b-M diagram obtained for a calorically perfect gas shown in Fig. 2.3. An
equilibrium u-b-V diagram for high-temperature air is given in Fig. 14.8a,
obtained from [166]. The results shown in Fig. 14.8a are for an altitude of
100,000 ft, that is, for a fixed p1 and T1. The equilibrium chemically reacting
results are given by the solid curves for different values of V1. These are com-
pared with the calorically perfect-gas results with g ¼ 1.4, given by the dashed
curves. From these results, note the following aspects:

1) Figure 14.8a for equilibrium chemically reacting air is qualitatively similar
to Fig. 2.3 for calorically perfect air.

2) For the equilibrium chemically reacting results, Mach number M1 is not an
important parameter, as discussed earlier for the normal shock case. Rather, the
oblique shock results depend on velocity V1 as well as p1 and T1 (or equivalently,
as in the case of Fig. 14.8a, on V1 and altitude).

3) The density ratio effect is strongly evident in Fig. 14.8a. Consider
the “weak-shock solutions” given by the lower portion of the u-b-V curves.
(See [4] and [5] for a discussion of weak-shock and strong-shock cases for
oblique shock waves.) In Fig. 14.8a, for a given deflection angle u the equilibrium
results for the wave angle b (solid curves) are less than those for a calorically
perfect gas with constant g ¼ 1.4 (dashed curves). This implies that the
oblique shock wave will lie closer to the surface for the chemically reacting
equilibrium case, as sketched in Fig. 14.8b. In this sense, Fig. 14.8b is, for the
flow over a wedge, the analog to Fig. 14.6 for the flow over a blunt body. Of
course, the reason why the chemically reacting oblique shock lies closer to the
surface is because of the increased density ratio r2/r1 across the wave, just as
in the case of the normal shock. The reverse is true for the strong-shock solutions
given by the upper portions of the curves in Fig. 14.8a. Here, the wave angle is
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Fig. 14.8a Deflection angle-wave angle-velocity diagram for oblique shocks in

high-temperature air at 100,000 ft altitude (from Moeckel [166]).

Fig. 14.8b Comparison of oblique shock waves for a calorically perfect gas vs an

equilibrium chemically reacting gas.
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greater for the chemically reacting case. (However, keep in mind that in the vast
majority of actual applications it is the weak-shock solution that prevails.)

4) The maximum deflection angle u allowed for the solution of a straight
oblique shock wave is increased by chemically reacting effects.

An interesting study of equilibrium properties behind normal and oblique
shock waves for velocity-altitude points following trajectories for a transatmo-
spheric vehicle was recently given by Bussing and Eberhardt in [158]. The trajec-
tories are shown on the velocity-altitude map in Fig. 14.9. The two lower curves
correspond to two possible ascents of a hypothetical transatmospheric vehicle.
The other curves show the ascent and entry flight paths of the space shuttle,
for comparison. The equilibrium chemical composition behind a normal shock
is shown in Fig. 14.10, and that for an oblique shock with b ¼ 30 deg is
shown in Fig. 14.11. In both figures, the values of p1 and T1 that correspond to
the various M1 values on the abscissa are those that pertain to the standard alti-
tudes as dictated by the upper and lower trajectories in Fig. 14.9. In Fig. 14.10
for the normal shock case, note the progressive increase in dissociation as M1

increases above a value of 6. Also note that the mole fraction of ions is exclu-
sively because of NOþ, and that this mole fraction is small. In contrast, for the
case with b ¼ 30 deg shown in Fig. 14.11, dissociation does not become import-
ant until M1 is well above 12, and that ionization is virtually nonexistent.

This concludes our discussion of normal and oblique shock waves for flow
in local thermodynamic and chemical equilibrium. These are very basic flows,
and they clearly exhibit the type of high-temperature effects associated with
compression-type flows. Make certain that you feel comfortable with these
results, both quantitative and qualitative, before progressing further.

Fig. 14.9 Velocity-altitude map showing several vehicle flight paths (from Bussing

and Eberhardt [158]).
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Fig. 14.10 Equilibrium chemical species variations behind a normal shock,

following the trajectories shown in Fig. 14.9 (from [158]).

Fig. 14.11 Equilibrium chemical species variations behind a 30-deg oblique shock,

following the trajectories shown in Fig. 14.9 (from [158]).

616 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



14.4 Equilibrium Quasi-One-Dimensional Nozzle Flows

Consider the inviscid, adiabatic high-temperature flow through a convergent-
divergent Laval nozzle, as sketched at the top of Fig. 14.12. As usual, the reser-
voir pressure and temperature are denoted by p0 and T0, respectively. The throat
conditions are denoted by an asterisk and exit conditions by a subscript e.
This nozzle could be a high-temperature wind tunnel, where air is heated in
the reservoir, for example, by an electric arc (an arc tunnel) or by shock waves
(a shock tunnel). In a shock tunnel, the nozzle is placed at the end of a shock
tube, and the reservoir is essentially the hot, high-pressure gas behind a reflected
shock wave (see Sec. 9.1). The nozzle in Fig. 14.12 could also be a rocket
engine, where the reservoir conditions are determined by the burning of fuel
and oxidizer in the combustion chamber. In either case—the high-temperature
wind tunnel or the rocket engine—the flow through the nozzle is chemically
reacting. Assuming local chemical equilibrium throughout the flow, let us
examine the properties of the nozzle expansion.

Fig. 14.12 Illustration of the solution of an equilibrium nozzle flow on a Mollier

diagram.
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First, let us pose the question: is the chemically reacting flow isentropic?
On a physical basis, the flow is both inviscid and adiabatic. However, this
does not guarantee in general that the chemically reacting flow is irreversible.
If we deal with an equilibrium chemically reacting flow, we can write the
combined first and second laws of thermodynamics from Eqs. (10.34) and
(10.46) as

T ds ¼ dh� v dp (14:22)

From Eq. (14.5) we have, for an adiabatic steady flow, h0 ¼ constant or, in differ-
ential form,

dhþ V dV ¼ 0 (14:23)

From Eq. (14.3), written along a streamline, we obtain a familiar form of Euler’s
equation as

dp ¼ �rV dV (14:24)

This can be rearranged as

V dV ¼ �
dp

r
¼ �vdp (14:25)

As explained in Sec. 14.2, all of these equations hold for chemically reacting
flow. Combining Eqs. (14.23) and (14.25), we have

dh�
dp

r
¼ dh� vdp ¼ 0 (14:26)

Substituting Eq. (14.26) into (14.22), we obtain

T ds ¼ 0 (14:27)

Hence, the equilibrium chemically reacting nozzle flow is isentropic. Moreover,
because Eq. (14.27) was obtained by combining the energy and momentum
equations, the assumption of isentropic flow can be used in place of either the
momentum or energy equations in the analysis of the flow.

It is a general result that equilibrium chemical reactions do not introduce
irreversibilities into the system; if an equilibrium reacting system starts at
some conditions p1 and T1, deviates from these conditions for some reason, but
then returns to the original p1 and T1, the chemical composition at the end
returns to what it was at the beginning. Equilibrium chemical reactions are
reversible. Hence, any shockless, inviscid, adiabatic, equilibrium chemically
reacting flow is isentropic. This is not true if the flow is nonequilibrium, as
will be discussed in Chapter 15.
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All of the preceding results and statements hold for any general shockless flow
in local thermodynamic and chemical equilibrium. Let us now address the
specific aspects of quasi-one-dimensional flow. As defined and discussed in [4]
and [5], quasi-one-dimensional flow is a flow where the cross-sectional area is
a variable A ¼ A(x), but where all of the flow properties across any given cross
section are assumed to be uniform. Hence, a flow that is in reality two or three
dimensional is assumed to have properties that vary only in the x direction;
p ¼ p(x), V ¼ u ¼ u(x), T ¼ T(x), etc. Various aspects of quasi-one-dimensional
flow for a calorically perfect gas are discussed in Chapter 5 of [4], such matters
should be reviewed by the reader before progressing further.

Let us pose another question: for an equilibrium, chemically reacting,
quasi-one-dimensional nozzle flow, does sonic flow exist at the throat? We
have already established that the flow is isentropic. This is the only necessary
condition for the derivation of the area-velocity relation, derived in most
compressible flow texts (see [4] and [5]). This relation is given by

dA

A
¼ (M2 � 1)

du

u
(14:28)

which holds for a general gas. In turn, when M ¼ 1, dA/A ¼ 0, and therefore
sonic flow does exist at the throat of an equilibrium chemically reacting nozzle
flow. The same is not true for a nonequilibrium flow, as will be discussed in
Chapter 15.

We are now in a position to solve the equilibrium chemically reacting nozzle
flow. A graphical solution is the easiest to visualize. Consider that we have the
equilibrium gas properties on a Mollier diagram, as sketched in Fig. 14.12.
Recall from Fig. 11.14 that a Mollier diagram is a plot of h vs s, and lines of con-
stant p and constant T can be traced on the diagram. Hence, referring to
Fig. 14.12, a given point on the Mollier diagram gives not only h and s, but p
and T at that point as well (and any other equilibrium thermodynamic property,
because the state of an equilibrium system is completely specified by any
two-state variables). Let point l in Fig. 14.12 denote the known reservoir con-
ditions in the nozzle. Because the flow is isentropic, conditions at all other
locations throughout the nozzle must fall somewhere on the vertical line
through point 1 in Fig. 14.12. In particular, choose a value of u ¼ u2 = 0. The
point in Fig. 14.12 that corresponds to this velocity (point 2) can be found
from Eqs. (14.4) and (14.5) as follows:

h0 ¼ const

Hence,

h1 þ
u2

1

2
¼ h2 þ

u2
2

2
¼ h0 (14:29)
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Thus,

Dh ¼ h0 � h2 ¼
u2

2

2
(14:30)

Therefore, for a given velocity u2, Eq. (14.30) locates the appropriate point on
the Mollier diagram. In turn, the constant-pressure and -temperature lines
that run through point 2 define the pressure p2 and temperature T2 associated
with the chosen velocity u2. In this fashion, the variation of the thermodynamic
properties through the nozzle expansion can be calculated as a function of
velocity u for given reservoir conditions.

For an equilibrium gas, the speed of sound, a2 ; (@p/@r)s, is also a unique
function of the thermodynamic state. This will be discussed in more detail in
Sec. 14.6. For example,

a ¼ a(h, s) (14:31)

Thus, at each point on the Mollier diagram in Fig. 14.12, there exists a definite
value of a. Moreover, at some point along the vertical line through point 1, the
speed of sound a will equal the velocity u at that point. Such a point is marked
by an asterisk in Fig. 14.12. At this point, u ¼ a ¼ u� ¼ a�. Because we demon-
strated earlier that sonic flow corresponds to the throat in an equilibrium nozzle
flow, then this point in Fig. 14.12 must correspond to the throat. The pressure,
temperature, and density at this point are p�, T�, and r�, respectively. Thus,
from the continuity equation for quasi-one-dimensional flow, we have

ru A ¼ r�u�A� (14:32)

or

A

A�
¼

r�u�

ru
(14:33)

Therefore, Eq. (14.33) allows the calculation of the nozzle area ratio as a function
of velocity through the nozzle.

In summary, using the Mollier diagram in Fig. 14.12, we can compute the
appropriate values of u, p, T, and A/A� through an equilibrium nozzle flow for
given reservoir conditions. An alternative to this graphical approach is a straight-
forward numerical integration of Eqs. (14.23), (14.24), and (14.32) along with
tabulated values of the equilibrium thermodynamic properties. The integration
starts from known conditions in the reservoir and marches downstream. Such a
numerical integration solution is left for the reader to construct.

In either case, numerical or graphical, it is clear that the familiar closed-form
algebraic relations that can be obtained for a calorically perfect gas (see [4] and
[5]) are not obtainable for chemically reacting nozzle flows. This is analogous to
the case of chemically reacting flow through a shock wave discussed in Sec. 14.2.
In fact, by now the reader should suspect, and correctly so, that closed-form
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algebraic relations cannot be obtained for any high-temperature chemically
reacting flow of interest. Numerical or graphical solutions are necessary for
such cases.

Recall that, for a calorically perfect gas, the nozzle flow characteristics were
governed by the local Mach number only. For example, from [4] and [5], for a
calorically perfect gas,

A

A�
¼ f1(M)

T

T0

¼ f2(M)

p

p0

¼ f3(M)

In contrast, for an equilibrium chemically reacting gas,

A

A�
¼ g1( p0, T0, u)

T

T0

¼ g2(p0, T0, u)

p

p0

¼ g3(p0, T0, u)

Note, as in the case of a normal shock, that the nozzle flow properties depend on
three parameters. Also, once again we see that Mach number is not the pivotal
parameter for a chemically reacting flow.

Some results for the equilibrium supersonic expansion of high-temperature air
are shown in Fig. 14.13. Here the mole-mass ratios for N2, O2, N, O, and NO are
given as a function of area ratio for T0 ¼ 8000 K and p0 ¼ 100 atm. At these
conditions, the air is highly dissociated in the reservoir. However, as the gas
expands through the nozzle, the temperature decreases, and as a result the
oxygen and nitrogen recombine. This is reflected in Fig. 14.13, which shows
hO and hN decreasing and hO2

and hN2
increasing as the gas expands super-

sonically from A/A� ¼ 1 to 1000.
A typical result from equilibrium chemically reacting flow through a rocket

nozzle is shown in Fig. 14.14. Here, the equilibrium temperature distribution is
compared with that for a calorically perfect gas as a function of area ratio. The
reservoir conditions are produced by the equilibrium combustion of an oxidizer
(N2O2) with a fuel (half N2H4 and half unsymmetrical dimethyl hydrazine) at an
oxidizer-to-fuel ratio of 2.25 and a chamber pressure of 4 atm. The calorically
perfect gas is assumed to have a constant g ¼ 1.20. It is important to note
from Fig. 14.14 that the equilibrium temperature is higher than that for the calori-
cally perfect gas. This is because, as the gas expands and becomes cooler, the
chemical composition changes from a high percentage of atomic species
(O and H) in the reservoir with an attendant high zero-point energy to a high per-
centage of molecular products (H2O), CO, etc. in the nozzle expansion with an
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attendant lower zero-point energy. That is, the gas recombines, giving up chemi-
cal energy, which serves to increase the translational energy to the molecules,
hence resulting in a higher static temperature that would exist in the nonreacting
case. Note that the trend shown in Fig. 14.14 for nozzle flow is exactly the
opposite of that shown in Figs. 1.18 and 14.3 for shock waves. For nozzle
flow, the equilibrium temperature is always higher than that for a calorically
perfect gas; for flow behind a shock wave, the equilibrium temperature is
always lower than that for a calorically perfect gas. In the former case, the reac-
tions are exothermic, and energy is dumped into the translational molecular
motion; in the latter, the reactions are endothermic, and energy is taken from
the translational mode.

Fig. 14.13 Chemical composition for the equilibrium nozzle expansion of high-

temperature air (from [264]).
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Without going into the details, the two- or three-dimensional nature of nozzle
flows in local thermodynamic and chemical equilibrium can be calculated by
means of the method of characteristics. The philosophy and execution of
the method of characteristics for such a case is no different than discussed in
Sec. 5.2; the compatibility equations and characteristic lines are exactly the
same—only the high-temperature thermodynamic properties given in concept
by Eqs. (14.6) and (14.7) have to be included. See [53] for more details.

14.5 Frozen and Equilibrium Flows: The Distinction

Referring to our chapter road map in Fig. 14.1, we now make a temporary
detour to the right-hand column. To this point in the present chapter, we have
discussed flows in local thermodynamic and chemical equilibrium, as defined
in Sec. 14.1. In reality, such flows never occur precisely in nature. This is
because all chemical reaction and vibrational energy exchanges require a
certain number of molecular collisions to occur; because the gas particles experi-
ence a finite collision frequency (see Chapter 12), such reactions and energy
exchanges require a finite time to occur, as described in Chapter 13. Therefore,
in the hypothetical case of local equilibrium flow discussed in the present
chapter where the equilibrium properties of a moving fluid element demand
instantaneous adjustments to the local T and p as the element moves through
the field, the reaction rates have to be infinitely large. Therefore, equilibrium
flow implies infinite chemical and vibrational rates.

The opposite of this situation is a flow where the reaction rates are precisely
zero—so-called frozen flow. As a result, the chemical composition of frozen flow

Fig. 14.14 Comparison between equilibrium and calorically perfect results for the

flow through a rocket engine.
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remains constant throughout space and time. (This is true for an inviscid flow; for
a viscous flow the composition of a given fluid element can change via diffusion,
even though the flow is chemically frozen. Diffusion effects are discussed in
Chapters 16 and 17.)

To reinforce the distinction between equilibrium and frozen flows, the
qualitative difference between chemical equilibrium and frozen nozzle flows is
sketched in Fig. 14.15 for a case of fully dissociated oxygen in the reservoir.
Examining Fig. 14.15c, the flow starts out with oxygen atoms in the reservoir
(cO ¼ 1, cO2

¼ 0). If we have equilibrium flow, as the temperature decreases
throughout the expansion the oxygen atoms will recombine; hence, cO decreases,
and cO2

increases as a function of distance through the nozzle. If the expansion

Fig. 14.15 Schematic comparing equilibrium and frozen chemically reacting flows

through a nozzle.
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(area ratio) is large enough such that the exit temperature is near room temp-
erature, equilibrium conditions demand that virtually all of the oxygen atoms
recombine, and, for all practical purposes, cO2

¼ 1 and cO ¼ 0 at the exit.
These equilibrium distributions are shown by the solid curves in Fig. 14.15. In
contrast, if the flow is chemically frozen, then by definition the mass fractions
are constant as a function of distance through the nozzle (the dashed lines in
Fig. 14.15c). Recombination is an exothermic reaction; hence, the equilibrium
expansion results in the chemical zero-point energy of the atomic species
being transferred into the translational, rotational, and vibrational modes of mol-
ecular energy. (The zero-point energy of two O atoms is much higher than the
zero-point energy of one O2 molecule. When two O atoms recombine into one
O2 molecule, the decrease in zero-point energy results in an increase in the
internal molecular energy modes.) As a result, the temperature distribution for
equilibrium flow is higher than that for frozen flow, as sketched in Fig. 14.15.

For vibrationally frozen flow, the vibrational energy remains constant
throughout the flow. Consider a nonreacting vibrationally excited nozzle expan-
sion as sketched in Fig. 14.16. Assume that we have diatomic oxygen in the reser-
voir at a temperature high enough to excite the vibrational energy, but low
enough such that dissociation does not occur. If the flow is in local thermodyn-
amic equilibrium, the translational, rotational, and vibrational energies are
given by Eqs. (11.57), (11.59), and (11.61), respectively. The energies decrease
through the nozzle, as shown by the solid curves in Fig. 14.16c. However, if the
flow is vibrationally frozen, then evib is constant throughout the nozzle and is
equal to its reservoir value. This is shown by the horizontal dashed line in
Fig. 14.16c. In turn, because energy is permanently sealed in the frozen
vibrational mode, less energy is available for the translational and rotational
modes. Thus, because T is proportional to the translational energy, the frozen
flow temperature distribution is less than that for equilibrium flow, as shown in
Fig. 14.16b. In turn, the distributions of etrans and erot will be lower for vibration-
ally frozen flow, as shown in Fig. 14.16c.

It is left as an exercise for the reader to compare the equilibrium and frozen
flows across a normal shock wave.

Note that a flow which is both chemically and vibrationally frozen has con-
stant specific heats. This is nothing more than the flow of a calorically perfect
gas; we have treated the topic in Chapters 1 through 8.

As a final note in this section, although precisely equilibrium or precisely
frozen flows never occur in nature, there are a large number of flow applications
that come very close to such limiting situations and can be analyzed using one
or the other of these assumptions. (This is in the same category as saying that
precisely isentropic flow never exists in real life, but there are many practical pro-
blems that can be very accurately analyzed by making the assumption of isentro-
pic flow.) The judgment as to whether a given flow in real life is close enough to
either equilibrium or frozen flow depends on the comparison between reaction
times and flow times, to be described in Sec. 15.1. Suffice it to say here that
the study of flows in local thermodynamic and chemical equilibrium (the
subject of this chapter) is very practical and is applicable to many real flow
problems.
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14.6 Equilibrium and Frozen Specific Heats

In this section, we temporarily deviate from our discussion of flow problems
and reexamine a thermodynamic property of chemically reacting gases, namely,
the specific heat. To understand the significance of this section, look back over
the flow problems described in Secs. 14.2–14.4. Note that the governing
equations do not involve the specific heats cp or cv; rather, the energy equation
deals with the more fundamental variables of enthalpy or internal energy. The
reason for this is developed in the present section.

Let us derive an expression for the specific heat of an equilibrium chemically
reacting gas, as follows.

Fig. 14.16 Schematic comparing equilibrium and frozen vibrationally relaxing

flows through a nozzle.
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The enthalpy of a chemically reacting mixture can be obtained from
Eq. (11.89), repeated here:

h ¼
X

i

cihi ð11:89Þ

By definition, the specific heat at constant pressure cp is

cp ¼
@h

@T

� �
p

(14:34)

Thus, for a chemically reacting mixture, Eqs. (11.89) and (14.34) give

cp ¼
@

@T

X
i

cihi

 !" #
p

cp ¼
X

i

ci

@hi

@T

� �
p

þ
X

i

hi

@ci

@T

� �
p

(14:35)

In Eq. (14.35), (@hi/@T )p is the specific heat per unit mass for the pure species i,
cpi

. Hence, Eq. (14.35) becomes

cp ¼
X

i

cicpi
þ
X

i

hi

@ci

@T

� �
r

(14:36)

Equation (14.36) is an expression for the specific heat of a chemically reacting
mixture. If the flow is frozen, by definition there are no chemical reactions,
and therefore in Eq. (14.36) the term (@ci/@T )p ¼ 0. Thus, for a frozen flow,
the specific heat becomes, from Eq. (14.36),

cp ¼ cpf
¼
X

i

cicpi
(14:37)

In turn, the frozen flow specific heat, denoted in Eq. (14.37) by cpf
, can be inserted

in Eq. (14.36), yielding, for a chemically reacting gas,

cp|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Specific heat at

constant pressure for
the reacting mixture

¼ cpf|{z}
Frozen
specific

heat

þ
X

i

hi

@ci

@T

� �
p|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Contribution caused by
chemical reaction

(14:38)

Considering the internal energy of the chemically reacting gas given by

e ¼
X

i

ciei
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and using the definition of specific heat at constant volume

cv ¼
@e

@T

� �
v

we obtain in a similar fashion

cv ¼ cvf
þ
X

i

ei

@ci

@T

� �
v

(14:39)

where

cvf
¼
X

i

cicvi
(14:40)

Equations (14.38) and (14.39) are conceptually important. Throughout our
calorically perfect-gas discussions in Chapters 1 through 8, we were employing
cp and cv as expressed by Eqs. (14.37) and (14.40). Now, for the case of a chemi-
cally reacting gas, we see from Eqs. (14.38) and (14.39) that an extra contri-
bution, namely,

X
i

hi

@ci

@T

� �
p

or
X

i

ei

@ci

@T

� �
v

is made to the specific heats purely because of the reactions themselves. The mag-
nitude of this extra contribution can be very large and usually dominates the value
of cp or cv.

For practical cases, it is not possible to find analytic expressions for (@ci/@T)p

or (@ci/@T)v. For an equilibrium mixture, they can be evaluated numerically by
differentiating the data from an equilibrium calculation, such as was described
in Secs. 11.12 and 11.13. Such evaluations have been made, for example, by
Frederick Hansen in NASA TR-50 (see [167]). Figure 14.17 is taken directly
from Hansen’s work and shows the variation of cv for air with temperature at
several different pressures. The humps in each curve reflect the reaction term
in Eq. (14.39),

X
i

ei

@ci

@T

� �
v

and are caused consecutively by dissociation of oxygen, dissociation of nitrogen,
and then, at very high temperatures, the ionization of both O and N. (Note that the
ordinate of Fig. 14.17 is a nondimensionalized specific heat, where R is the uni-
versal gas constant, M0 is the initial molecular weight of undissociated air, M is
molecular weight at a given T and p, and Cv is the molar specific heat.)

Because cp and cv for a chemically reacting mixture are functions of both T
and p (or T and v) and because they exhibit such wild variations as seen in
Fig. 14.17, they are not usually employed directly in calculations of inviscid
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high-temperature flows. Note that, in our preceding discussions on shock waves
(Sec. 14.3) and nozzle flows (Sec. 14.4), h or e were used for a solution rather
than cp or cv. However, it is important for an overall understanding of high-
temperature flows to know how and why the specific heats vary. This has been
the purpose of the preceding discussion. Moreover, in Chapter 17 dealing with
chemically reacting viscous flows, the Prandtl and Lewis numbers are identified
as important similarity parameters, both of which involve cp. Thus, we need
values for cp for chemically reacting viscous flows in order to evaluate local
values of the Prandtl and Lewis numbers.

14.7 Equilibrium Speed of Sound

In general, the speed of sound in a gas is given by (see [4] and [5])

a ¼

ffiffiffiffiffiffiffiffiffiffiffi
@p

@r

� �s
s

This is a physical fact and is not changed by the presence of chemical reactions.
Furthermore, for a calorically perfect gas, a ¼

ffiffiffiffiffiffiffiffiffiffi
gRT
p

. But what is the value of

Fig. 14.17 Specific heat of equilibrium air at constant pressure as a function of

temperature (from Hansen [167]).
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speed of sound in an equilibrium reacting mixture? How do we calculate it? Is it
equal to

ffiffiffiffiffiffiffiffiffi
gRT
p

? The purpose of this section is to address these questions.
Consider an equilibrium chemically reacting mixture at a fixed p and T.

Therefore, the chemical composition is uniquely fixed by p and T. Imagine a
sound wave passing through this equilibrium mixture. Inside the wave, p and T
will change slightly. If the gas remains in local chemical equilibrium through
the internal structure of the sound wave, the gas composition is changed
locally within the wave according to the local variations of p and T. For this situ-
ation, the speed of the sound wave is called the equilibrium speed of sound,
denoted by ae. In turn, if the gas is in motion at the velocity V, then V/ae is
defined as the equilibrium Mach number Me.

To obtain a quantitative relation for the equilibrium speed of sound, consider
the first and second laws of thermodynamics from Eqs. (10.32), (10.34), and
(10.46):

T ds ¼ deþ p dv (14:41)

T ds ¼ dh� v dp (14:42)

The process through a sound wave is isentropic; hence, Eqs. (14.41) and (14.42)
become

deþ p dv ¼ 0 (14:43)

and

dh� v dp ¼ 0 (14:44)

For an equilibrium chemically reacting gas

e ¼ e(v, T)

Thus, the total differential is

de ¼
@e

@v

� �
T

dvþ
@e

@T

� �
v

dT

de ¼
@e

@v

� �
T

dvþ cv dT (14:45)

Similarly,

h ¼ h( p, T)

dh ¼
@h

@p

� �
T

dpþ
@h

@T

� �
p

dT

dh ¼
@h

@p

� �
T

dpþ cp dT (14:46)
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Note that, in Eqs. (14.45) and (14.46), cv and cp are given by Eqs. (14.39) and
(14.36), respectively. Substituting Eqs. (14.45) into (14.43),

@e

@v

� �
T

dvþ cv dT þ p dv ¼ 0

cv dT þ pþ
@e

@v

� �
T

� �
dv ¼ 0 (14:47)

Substituting Eq. (14.46) into (14.44),

@h

@p

� �
T

dpþ cp dT � v dp ¼ 0

cp dT þ
@h

@p

� �
T

� v

� �
dp ¼ 0 (14:48)

Dividing Eq. (14.48) by (14.47),

cp

cv

¼
½(@h=@p)T � v� dp

½(@e=@v)T þ p� dv
(14:49)

However, v ¼ 1/r; hence, dv ¼ 2dr/r2. Thus, Eq. (14.49) becomes

cp

cv

¼
½(@h=@p)T � v�

½(@e=@v)T þ p�
(�r2)

dp

dr
(14:50)

Because we are dealing with isentropic conditions within the sound wave,
any changes dp and dr within the wave must take place isentropically. Thus,
dp/dr ; (@p/@r)s ; ae

2. Hence, Eq. (14.50) becomes

@p

@r

� �
s

¼
cp

cv

1

r2

½(@e=@v)T þ p�

½1=r� (@h=@p)T �

or

a2
e ¼

cp

cv

p

r

½1þ (1=p)(@e=@v)T �

½1� r(@h=@p)T �
(14:51)

As usual, let g ; cp/cv. Also, note from the equation of state that p/r ¼ RT.
Thus, Eq. (14.51) becomes

a2
e ¼ gRT

½1þ (1=p)(@e=@v)T �

½1� r(@h=@p)T �
(14:52)
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Equation (14.52) gives the equilibrium speed of sound in a chemically reacting
mixture.

Equation (14.52) gives an immediate answer to one of the questions asked at
the beginning of this section. The speed of sound in an equilibrium reacting
mixture is not equal to the simple result

ffiffiffiffiffiffiffiffiffi
gRT
p

obtained for a calorically
perfect gas. However, if the gas is calorically perfect, then h ¼ cpT and
e ¼ cvT. In turn, (@h/@p)T ¼ 0 and (@e/@v)T ¼ 0, and Eq. (14.52) reduces to the
familiar result

af ¼
ffiffiffiffiffiffiffiffiffi
gRT

p
(14:53)

The symbol af is used in Eq. (14.53) to denote the frozen speed of sound because
a calorically perfect gas assumes no reactions. Equation (14.53) is the speed at
which a sound wave will propagate when no chemical reactions take place intern-
ally within the wave, that is, when the flow inside the wave is frozen.

For a thermally perfect gas, h ¼ h(T) and e(T ). Hence, again Eq. (14.52)
reduces to Eq. (14.53).

Clearly, the full Eq. (14.51) must be used whenever (@e/@v)T and (@h/@p)T are
finite. This occurs for two cases: 1) when the gas is chemically reacting and
2) when intermolecular forces are important, that is, when we are dealing with
a real gas (see Sec. 10.4). In both of the preceding cases, h ¼ h(T, p) and
e ¼ e(T, v), and hence Eq. (14.52) must be used.

Note from Eq. (14.52) that the equilibrium speed of sound is a function of both
T and p, unlike the case for a calorically or thermally perfect gas where it depends
on T only. This is emphasized in Fig. 14.18, which gives the equilibrium speed of
sound for high-temperature air as a function of both T and p. In addition, note in
Fig. 14.18 that the frozen speed of sound is given by a constant horizontal line at
a2r/p ¼ 1.4, and that the difference between the frozen and equilibrium speed of

Fig. 14.18 Equilibrium speed of sound for air as a function of temperature (from

[167]).
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sound in air can be as large as 20% under practical conditions. In turn, this once
again underscores the ambiguity in the definition of Mach number for high-
temperature flows. The frozen Mach number Mf ¼ V/af and the equilibrium
Mach number Me ¼ V/ae can differ by a substantial amount. Hence, Mach
number is not particularly useful in this context.

Finally, note that the derivatives of e and h in Eq. (14.52) must be obtained
numerically from the high-temperature equilibrium properties of the mixture.
Although Eq. (14.52) is in a useful form to illustrate the physical aspects of
the equilibrium speed of sound, it does not constitute a closed-form formula
from which, given the local p and T, a value of ae can be immediately obtained.
Rather, the derivatives must be evaluated numerically, as has been carried out by
Hansen [167] and others. Indeed, a correlation for the equilibrium speed of sound
in high-temperature air is given by Tannehill and Mugge in [155] as

a ¼ e K1 þ ( ~g� 1) ~gþ K2

@ ~g

@ ln e

� �
p

" #
þ K3

@ ~g

@ ln r

� �
e

( )" #1=2

(14:54)

where K1, K2, and K3 are given in Table 11.1 found in Sec. 11.13 and g̃ is defined
by Eq. (11.108).

14.8 Equilibrium Conical Flow

Referring to our chapter road map in Fig. 14.1, we now return to the central
column and treat the equilibrium high-temperature supersonic and hypersonic
flow over a cone at zero degree angle of attack. This flow is sketched in
Fig. 14.19, where uc and b are the cone half-angle and the shock-wave angle,

Fig. 14.19 Cone-flow geometry.
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respectively. Any point in the flow between the shock and the body is located by
the spherical coordinates r, u, and F. The cone is a right-circular cone; hence, the
flow is axisymmetric, where variations of properties in the azimuthal direction F
are zero. (For this reason, F is not shown in Fig. 14.19.) Moreover, we take
advantage of a property of conical flow, namely, that the flow properties along
any conical ray (the r direction) are constant. This is the classical picture of
conical flow (for example, see [4]); it is unchanged for the case of equilibrium,
high-temperature flow.

The governing equations for axisymmetric conical flow can be obtained by
writing Eqs. (14.2) and (14.3) in spherical coordinates, while setting @/@F ¼ 0
and VF ¼ 0. From Eq. (14.2) for a steady flow

� � (rV) ¼ 0 (14:55)

In spherical coordinates, with the axisymmetric assumption, Eq. (14.55) becomes

1

r2

@

@r
(r2rVr)þ

1

r sin u

@

@u
(rVu sin u) ¼ 0 (14:56)

Expanding the derivatives in Eq. (14.56), and setting @/@r ¼ 0 for conical flow,
we obtain

2rVr þ rVu cot uþ
d(rVu)

du
¼ 0 (14:57)

Equation (14.57) is the continuity equation for conical flow. Note that, because u
is the only independent variable, Eq. (14.57) is an ordinary differential equation.
For the momentum equation, we write Eq. (14.3) in spherical coordinates, taking
components first in the r direction, and then in the u direction.

r Direction:

Vr

@Vr

@r
þ

Vu

r

@Vr

@u
�

V2
u

r
¼ �

1

r

@p

@r
(14:58)

Applying the conical flow assumption to Eq. (14.58), we obtain simply that

Vu ¼
dVr

du
(14:59)

Equation (14.59) is the r-momentum equation for conical flow.
u Direction:

Vr

@Vu

@r
þ

Vu

r

@Vu

@u
þ

VrVu

r
¼ �

1

rr

@p

@u
(14:60)
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Applying the conical flow assumption to Eq. (14.60), we have

Vu

dVu

du
þ VrVu ¼ �

1

r

dp

du
(14:61)

Equation (14.61) is the u-momentum equation for conical flow.
The energy equation will be invoked by stating that the flow is isentropic

between the shock and the cone, and hence any change in pressure dp in any
direction in the flowfield is related to a corresponding change in density dr via
the speed of sound relation

a2 ¼
@p

@r

� �
s

¼
d p

dr
(14:62)

(Note that setting the ordinary differential expression dp/dr equal to a2 is valid
only when the flowfield is isentropic, as in the present case.) With Eq. (14.62), we
can write Eq. (14.57) as

2Vr þ Vu cot uþ
dVu

du
þ

Vu

ra2

dp

du
¼ 0 (14:63)

Examine Eqs. (14.61) and (14.63); they are two equations in terms of the deriva-
tives dVu/du and dp/du. Solving Eqs. (14.61) and (14.63) for these derivatives,
we obtain

dVu

du
¼

a2

V2
u � a2

2Vr þ Vu cot u�
VrV

2
u

a2

� �
(14:64)

and

dp

du
¼ �

rVua2

V2
u � a2

(Vr þ Vu cot u) (14:65)

In summary, Eqs. (14.59), (14.64), and (14.65) constitute three coupled ordinary
differential equations in terms of the five unknowns, Vu, Vr, p, r, and a. This
system is completed by adding the equilibrium high-temperature thermodynamic
properties in the form of

r ¼ r ( p; s) (14:66)

a ¼ a( p; s) (14:67)

Therefore, Eqs. (14.59) and (14.64–14.67) represent the governing equations
for equilibrium flow over a cone. They stem from Eqs. (14.2) and (14.3), along
with the basic speed of sound relation—all of which hold for chemically reacting
flow. Thus, Eqs. (14.59) and (14.64–14.67) hold for equilibrium chemically
reacting flow. For this case, they constitute the high-temperature analog of the
classic Taylor–Maccoll equation for the conical flow of a calorically perfect
gas, found in many compressible flow texts (for example, see Chapter 10 of [4]).
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An iterative numerical solution of the preceding equations can be carried
out as follows. Consider a given cone with specified uc in a specified freestream
(p1, r1, V1 are known):

1) Assume a shock wave angle b.
2) Calculate the equilibrium flow properties immediately behind the oblique

shock using the method described in Sec. 14.3.
3) Using these shock conditions as initial values, solve Eqs. (14.59) and

(14.64–14.67) using any standard numerical solver for ordinary differential
equations, for example, a Runge–Kutta method. This solution is a forward-
marching solution in steps Du, starting at the shock.

4) Integrate these equations until the cone surface is reached. Then check to see
if Vu ¼ 0 at uc. This is the proper flow-tangency boundary condition at the surface,
namely, that the component of velocity normal to the surface is zero. If this bound-
ary condition is not satisfied, return to step l, and assume a new value of b.

5) Continue this iterative process until convergence is obtained, that is, until
Vu ¼ 0 at the specified uc.

Such conical flow solutions have been obtained in equilibrium air by Romig
[168] and Hudgins [169] and [170]. Indeed, [170] is a massive tabulation
of equilibrium cone properties covering altitudes from sea level to 200,000 ft
and Mach numbers up to 40. Some sample results obtained from [169] are
shown in Figs. 14.20–14.22. In each of these figures, M1 sin uc is the variable
plotted along the abscissa. This is the familiar hypersonic similarity parameter
studied in Part 1 of this book; Kc ¼ M1 sin uc is a useful parameter, even for
chemically reacting flows. The ratio of cone surface pressure to freestream
pressure pc/p1 is given in Fig. 14.20 for three different altitudes and is compared
with calorically perfect results for g ¼ 1.4. Note the rather dramatic result that
pc/p1 is virtually unaffected by chemical reactions. This is characteristic of
chemically reacting flows involving compression processes; we noted the same
behavior in Sec. 14.3 dealing with shock waves. The pressure is a “mechanical”
variable, strongly dependent on the mechanical aspects of the flow and essentially
uninfluenced by chemically reacting effects. In contrast, the ratio of cone surface
density to freestream density rc/r1 is greatly affected by chemical reactions, as
shown in Fig. 14.21. Note that, consistent with our earlier discussions, the effect
of chemical reactions is to increase the density ratio compared to the g ¼ 1.4
results; this implies that the shock-layer thickness will be smaller for the chemi-
cally reacting case. Finally, the ratio of cone surface temperature to freestream
temperature is given in Fig. 14.22. As expected, the equilibrium temperatures
are lower than the g ¼ 1.4 results and are progressively smaller as the altitude
increases; this is because the higher altitudes (lower pressures) result in increased
dissociation.

14.9 Equilibrium Blunt-Body Flows

The calculation of the inviscid flow over a supersonic or hypersonic blunt
body was discussed in Sec. 5.3 in the context of a calorically perfect gas. In
that section, emphasis was placed on a time-marching approach as the only
viable technique for the solution of the problem. The same time-marching phil-
osophy is used to calculate the high-temperature equilibrium inviscid flow over a
blunt body. A recent example of such an approach is the work of Palmer [171].
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Utilizing the equations for two-dimensional or axisymmetric flow in the strong
conservation form given by

@Q

@t
þ
@F

@x
þ
@G

@y
þ rH ¼ 0 (14:68)

where

Q ¼

r

ru

rv

r eþ
V2

2

� �

2
666664

3
777775

F ¼

ru

ru2 þ p

ruv

r eþ
V2

2
þ

p

r

� �
u

2
666664

3
777775

G ¼

rv

ruv

rv2 þ p

r eþ
V2

2
þ

p

r

� �
v

2
666664

3
777775

H ¼
1

y

rv

ruv

rv2

r eþ
V2

2
þ

p

r

� �
v

2
666664

3
777775

Fig. 14.20 Surface pressures on cones; comparison between equilibrium air and

calorically perfect results (from Hudgins [169]).
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where r ¼ 0 or 1 for two-dimensional or axisymmetric flow, respectively, and
where V2 ¼ u2

þ v2, Palmer carried out an implicit, finite difference, shock-
capturing, time-marching solution of the equilibrium chemically reacting flow
over cylinders and spheres, AOTV configurations, and hypersonic inlets. For
details, see [171]. Equation (14.68) with the given forms of the vectors Q, F,
G, and H hold in general for an equilibrium chemically reacting gas; they can
readily be obtained by a proper manipulation of Eqs. (14.2–14.5). Of course,
the equilibrium high-temperature gas properties can be included in the calcu-
lation through relations such as p ¼ p(e, r) as correlated in Eqs. (11.107) and
(11.108), and T ¼ T(e, r) as given by Eq. (11.109).

Some typical results are given in Figs. 14.23–14.25 obtained from [171]. In
Fig. 14.23a, contours of r/r1 are shown for a calorically perfect gas with
g ¼ 1.4 for flow over a sphere at Mach 20 and an altitude of 20 km; these are
to be compared with similar results obtained from the equilibrium chemically
reacting case shown in Fig. 14.23b. Clearly, the chemically reacting case exhibits
higher densities and a thinner shock layer, as expected. In Figs. 14.24a and
14.24b, a similar comparison is made for the contours of T/T1. In Figs. 14.25a.
and 14.25b, contours of N and NO mole fractions are given. Figure 14.25a

Fig. 14.21 Surface density on cones; comparison between equilibrium air and

calorically perfect results (from [169]).

638 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



Fig. 14.22 Surface temperature on cones; comparison between equilibrium air and

calorically perfect results (from [169]).

Fig. 14.23 Normalized density contours for blunt-body flow: a) calorically

perfect-gas results and b) equilibrium chemically reacting air results. M¥ 5 20 and

altitude 5 20 km (from Palmer [171]).
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shows that the most intense dissociation occurs near the stagnation region, but
Fig. 14.25b shows that the primary concentrations of NO occur further down-
stream, essentially beyond the sonic line.

We end this section with a rather interesting application of blunt-body equili-
brium flowfield calculations. The three-dimensional equilibrium flow over the
space shuttle was calculated by Maus et al. in [172]. A side and top view of
the shuttle are shown in Fig. 14.26, obtained from [172]. The three-dimensional
steady flowfield is calculated by using a time-marching finite difference
solution in the blunt-nose region and then a spatial, downstream-marching
finite-difference solution in the locally supersonic and hypersonic regions.

Fig. 14.24 Normalized temperature contours for blunt-body flow: a) calorically

perfect gas and b) equilibrium chemically reacting air. M¥ 5 20 and altitude 5
20 km (from [171]).

Fig. 14.25 Species mole fraction contours for blunt-body flow; equilibrium

chemically reacting air. M¥ 5 20, and altitude 5 20 km: a) XN and b) XNO.
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High-temperature, equilibrium air thermodynamic properties were used. In [172],
a rather interesting and unexpected effect of high-temperature flow on the space
shuttle was pointed out. Flight experience with the shuttle has indicated a much
higher pitching moment at hypersonic speeds than predicted; this has required
the body flap deflection for trim to be more than twice that predicted. This
discrepancy is considered to be one of the few major anomalies between
design predictions and actual flight performance for the shuttle. Maus et al.
argue that this discrepancy is caused by the effects of a chemically reacting
shock layer, as follows. Figure 14.27, taken from [172], shows the calculated
pressure distribution along the windward centerline of the shuttle; two sets of cal-
culations are presented, one for a nonreacting shock layer with g ¼ 1.4, and the
other for a reacting shock layer assuming local chemical equilibrium. At first
glance, there appears to be little difference; indeed, pressure distributions are
always somewhat insensitive to chemically reacting effects, as noted earlier.
However, close examination of Fig. 14.27 shows that, for the chemically reacting
flow, the pressures are slightly higher on the forward part of the shuttle and
slightly lower on the rearward part. This results in a more positive pitching
moment. Because the moment is the integral of the pressure through a moment
arm, a slight change in pressure can substantially affect the moment. This is
indeed the case here, indicated by Fig. 14.28, taken from [172]. Clearly, the
pitching moment is substantially greater for the chemically reacting case.

Fig. 14.26 Space shuttle geometry (from [172]).
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This conclusion is a curious example of high-temperature effects having a rather
unexpected but very important influence on the basic aerodynamics of the shuttle
and serves to reinforce the importance of high-temperature flows in hypersonic
aerodynamics.

Fig. 14.27 Pressure distribution along the windward centerline of the space shuttle;

comparison between a calorically perfect gas and equilibrium air calculations (from

Maus et al. [172]).

Fig. 14.28 Predicted pitching-moment coefficient for the space shuttle; comparison

between a calorically perfect gas and equilibrium air calculations (from [172]).
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14.10 Summary and Comments

In this chapter, we have examined various basic flows under the assumption of
local thermodynamic and chemical equilibrium. In particular, we have studied
the following:

1) Flow across normal and oblique shocks: Here we found that the ratios
of properties across a normal shock depend on three upstream quantities (u1, p1,
and T1), and in addition, the oblique shock properties also depend on deflec-
tion angle u or wave angle, b. A u-b-V diagram for oblique shocks is
given. This is in sharp contrast to shock properties for a calorically perfect
gas, which depend only on M1 for normal shocks and M1 and (say) u for
oblique shocks. The increased density ratio across shock waves in the case
of a chemically reacting flow results in smaller shock detachment distances
and thinner shock layers on bodies, in comparison to the familiar constant
g ¼ 1.4 case.

2) Quasi-one-dimensional flow: Here we found that flow properties at any
given location depend on three quantities, such as p0, T0, and the local value of
u. Indeed, the area ratio A/A� depends on the same three quantities. Again, this
is in contrast to the constant g ¼ 1.4 results, where flow properties can be
related to local Mach number only.

3) Specific heat for a chemically reacting gas: Here the strong variations in
cp and cv with T and p make the specific heats a rather awkward variable to deal
with. For this reason, the energy equation is usually expressed in terms of the
more fundamental variables, h or e.

4) Equilibrium speed of sound: This is also a strong function of T and p. In
a chemically reacting gas, the speed of sound is an ambiguous quantity; the
equilibrium speed of sound is always lower than the frozen speed of sound;
this leads to the definition of two distinct Mach numbers at a given point in
the flow—the equilibrium and frozen Mach numbers.

5) Flow over right-circular cones at zero angle of attack: Here, we found a
system of equations for chemically reacting flow analogous to the classical
Taylor–Maccoll equation for a calorically perfect gas. The equilibrium results
show higher densities and lower temperatures than the constant g ¼ 1.4
results; however, p is virtually unaffected by chemical reactions.

6) Blunt-body flows: Here, the same time-marching philosophy as described
in Chapter 5 for a calorically perfect gas is used, except using the proper govern-
ing equations for the chemically reacting flow, as well as the equilibrium thermo-
dynamic properties.

Common to all of these flows is the fact that some type of numerical sol-
ution is required; analytical solutions for practical chemically reacting flows
have not yet been obtained (and probably never will be). In many cases,
these numerical solutions require some type of iterative approach. Also
common to all of these flows is the fact that Mach number, which is so power-
ful in the analysis of the flow of a calorically perfect gas, is simply another
flow variable when dealing with chemically reacting flows. Also, there are
at least two Mach numbers that can be defined at any point—the equilibrium
and frozen Mach numbers.
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Design Example 14.1: Hypersonic Waveriders—Part 4

Question: How do high-temperature flows affect the design of the viscous
optimized hypersonic waveriders discussed in three preceding Design Examples?

A major characteristic of the flowfields over hypersonic vehicles is the high
enthalpy levels encountered in such flows; the attendant chemically reacting
air is frequently important in such hypersonic flows. Is this true for the design
of waveriders? This question was addressed by McLaughlin [265] and discussed
in [255]. McLaughlin generated a new family of viscous optimized waveriders
wherein the equilibrium chemically reacting flow over a cone (discussed in
Sec. 14.8) is used as the generating flowfield. In this sense, chemically reacting
effects are taken into account insofar as their impact on the inviscid flow
aspects of waverider design are concerned.

As a precursor to the results, an examination of Fig. 14.22, which gives the
ratio of cone surface temperature to freestream temperature, indicates rather
moderate temperatures for slender cones. For example, for a 10-deg half-angle
cone at Mach 25, the temperature ratio at an altitude of 200,000 ft is about 6,
giving a cone surface temperature of about 1500 K—just barely on the verge
of causing very mild oxygen dissociation. For a 15-deg half-angle cone, the
surface temperature would be approximately 3000 K—in the range of oxygen
dissociation but virtually no nitrogen dissociation. Therefore, at first glance we
would not expect the inviscid flows used to generate slender waveriders to be
dominated by chemically reacting effects. Indeed, such turns out to be the case.

For example, Table 14.2 gives the values of maximum lift-to-drag ratios for
optimized waveriders from Mach 5 to Mach 50, all generated from the flow
behind a conical shock wave of half-angle 15 deg. Each entry in Table 14.2 is
for a waverider optimized within the flowfield of the given conical shock
wave. They are not the “optimum of the optimum” obtained from using a
variety of shock angles at the given Mach number as discussed in the earlier
Design Examples. Rather, the relatively large cone half-angle of 15 deg was
intentionally chosen so that the flow temperature would be high enough for
chemical reactions to occur and therefore to underscore their effect. In

Table 14.2 Maximum L/D; comparison between the

nonreacting and chemically reacting cases

Mach no. Nonreacting Reacting

Mfree L/D L/D

5.0 4.62 4.65

10.0 3.67 3.64

15.0 3.48 3.42

20.0 3.46 3.35

30.0 3.45 3.21

40.0 3.48 3.17

50.0 3.47 3.18
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Table 14.2, the nonreacting column is for a calorically perfect gas with g ¼ 1.4.
The reacting column gives results for the case of a chemically reacting equili-
brium flow. There is virtually no effect of chemically reacting flow on (L/
D)max until freestream Mach numbers on the order of 40 and 50 are reached.
Because lift and wave drag are caused by the pressure distribution exerted
over the vehicle surface and because pressure is the flowfield property least
affected by chemical reactions (see Fig. 14.20), such a result is not surprising.
Also, the change in shape of the optimized waverider between the nonreacting
and reacting cases is not great, as seen in Fig. 14.29 for the extreme case of
Mach 50.

In conclusion, that part of the viscous-optimized waverider design process
that depends on the inviscid flow is not greatly affected by chemical reactions.
This is because of the slender-body geometry of the waverider, creating relatively
weak shock waves, with temperature increases across the shocks that are too low

Fig. 14.29 Comparison of waverider shapes at Mach 50 for the nonreacting (top)

and reacting (bottom) cases (Anderson et al. [255]).
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to initiate strong chemically reacting effects. Hence, from this point of view, the
waverider design process based on a calorically perfect gas appears to be reasonable
for Mach numbers at least as high as 25.

As a caution, we note that higher temperatures will be generated by viscous
dissipation in the boundary layer along the body surface, and this might be a
region where chemically reacting effects are important in waverider design, in
conjunction with the calculation of local skin friction and heat transfer.
Viscous high-temperature flows is the subject of Chapter 17.

Problems

14.1 Consider the supersonic expansion of pure O2 through a convergent-
divergent nozzle. The reservoir temperature is 2000 K, and the velocity
at the nozzle exit is 1500 m/s. Assuming local thermodynamic equili-
brium, calculate the exit temperature and the exit-to-throat-area ratio
Ae/A�. Neglect the electronic energy.

14.2 Consider a stationary normal shock wave in pure diatomic nitrogen. The
velocity and temperature upstream of the shock are 3000 m/s
and 300 K, respectively. Calculate the temperature ratio across the
shock, assuming local thermodynamic equilibrium. Neglect any chemical
reactions and the electronic energy. For N2, hv/k ¼ 3390 K.

14.3 Consider a centered Prandtl–Meyer expansion wave in a chemically
reacting gas. Assuming local chemical and thermodynamic equilibrium,
describe how you would calculate the change in properties across this
wave for given upstream conditions and a given expansion angle u. Be
as precise as you can. Describe the problem in general, and then give a
step-by-step method for its solution.
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15
Inviscid High-Temperature

Nonequilibrium Flows

For low densities and high velocities, the molecular reaction
rates within a fluid element do not keep pace with the rapid
flow changes. In consequence, internal molecular energy
modes, chemical dissociation, species ionization, and mole-
cular radiation are all out of equilibrium. This essential
nonequilibrium character complicates extensively the
numerical computation of flowfields. It also has a significant
impact on the relative roles of computation and experimen-
tation in the vehicle design process.

From the National Academy of Sciences Report
Current Capabilities and Future Directions

in Computational Fluid Dynamics, 1986

Chapter Preview

The preceding chapter dealt with high-temperature flows through shock

waves, nozzles, over cones, and over blunt-nosed bodies assuming local

thermodynamic and chemical equilibrium. In the present chapter, we look

at some of the same flows, but assuming local thermodynamic and chemical

nonequilibrium. Does it make a difference? You bet your life it does.

Nonequilibrium conditions change some of the basic physical characteristics

of the flow. Oblique shock waves that you think should be straight become

bent. The flow at the throat of a supersonic nozzle is no longer at Mach 1.

The speed of sound now depends on the frequency of the sound waves. The

surprises continue. Moreover, the calculation of nonequilibrium flows is

mathematically completely different from that of an equilibrium flow. They

say that variety is the spice of life. Compared to the preceding chapter, the

present chapter provides plenty of variety. This is exciting stuff. So sit back

and enjoy.

647



15.1 Introduction

For a given high-temperature flow, how can we judge whether it is close to
local thermodynamic and/or chemical equilibrium (in which case the methods
of Chapter l4 hold), or whether it substantially departs from such equilibrium
conditions (in which case we have to do something different—the subject of
the present chapter)? To answer this question, let us first be more precise about
the definitions of equilibrium and frozen flows. In light of our preceding discus-
sions, we can state the following!

Definition: A frozen flow is one where the reaction rate constants kf ¼ kb ¼ 0 and
the vibrational relaxation time t! 1.

Definition: An equilibrium flow is one where kf ¼ kb! 1 and t ¼ 0.

These definitions make sense. For example, in a flowfield where the pressure,
temperature, etc., change as a function of time and space, the only way that
the internal energy modes and the chemical composition of a fluid element
moving along a streamline can maintain their local equilibrium values at the
local p and T is to be able to adjust instantly to the changing conditions, that
is, to have infinitely fast reaction rates or, alternatively, a zero relaxation time.
Similarly, for a frozen flow the only way that no changes in the internal
energy modes and the chemical composition can occur is to have precisely
zero reaction rates, or alternatively an infinitely long relaxation time. Of
course, in practice, neither of the preceding flows actually occur exactly.
However, let tf ¼ characteristic time for a fluid element to traverse the flowfield
of interest �l/V1, where l is a characteristic length of the flowfield; and tc ¼
characteristic time for the chemical reactions and/or vibrational energy to
approach equilibrium.

Then, the following holds:
1) We can assume local equilibrium flow if

tf � tc

2) We can assume frozen flow if

tf � tc

3) For all other cases, the reacting and/or vibrationally excited flow is
nonequilibrium.

To elaborate on the preceding criteria, visualize a fluid element moving
through a flowfield (over a hypersonic vehicle, through a nozzle, etc.). Let l re-
present the characteristic length of the flowfield (the length of the body, or the
length of the nozzle, etc.). Then tf is the approximate resident time of the fluid
element in the flow, that is, the time it takes for the fluid element to flow past
a body, flow through a nozzle, etc. Denote tf as the fluid-dynamic time. Similarly,
tc is the time it takes for the internal energy modes and/or the chemical reactions
to change. We will denote tc as the chemistry time. If in a given flowfield
tf � tc, then the chemistry has plenty of time to adjust while the fluid element
moves through the flowfield; in such a case, the flow can be assumed to be in
local equilibrium. In contrast, if tf � tc, then the fluid element zips through
the flowfield before any chemical changes can take place; in such a case, the
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flow can be assumed to be frozen. For all other situations, especially for tf � tc,
a nonequilibrium flow exists. The analysis of such nonequilibrium flows is
the subject of this chapter.

The road map for this chapter is shown in Fig. 15.1. It is a path similar to that
taken in Fig. 14.1, except now we are dealing with nonequilibrium flows. We start
with the governing equations for inviscid nonequilibrium flows and then apply
these equations to study flows through shock waves, nozzle flows, and blunt-
body flows. We close the chapter with a discussion on the method of charac-
teristics as applied to a chemically reacting nonequilibrium flow. There is one
side journey, namely, that to discuss binary scaling, an interesting feature that
under special circumstances can be used to relate one nonequilibrium blunt-body
flow to another.

15.2 Governing Equations for Inviscid, Nonequilibrium Flows

Equations (14.2–14.5) hold for nonequilibrium as well as equilibrium flows.
However, for a nonequilibrium flow, in addition to the continuity equation
given by Eq. (14.2), which we will now denote as the global continuity
equation, we must also deal with a species continuity equation for each indi-
vidual chemical species in the mixture. In the present book, we have not
derived the basic governing equations of fluid dynamics, but rather have
assumed such derivations to be prior knowledge on the part of the reader.
(See, for example, [4] and [5] for such derivations.) However, here we make
an exception in regard to the species continuity equation. Under the assump-
tion that the reader might not be familiar with the species continuity equation,
it is derived as follows.

Consider a fixed, finite-control volume in the nonequilibrium, inviscid, flow of
a chemically reacting gas; such a control volume is sketched in Fig. 15.2. Let ri

Fig. 15.1 Road map for Chapter 15.
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be the mass of species i per unit volume of mixture. Hence

r ¼
X

i

ri

Examining Fig. 15.2, the mass flow of species i through the elemental surface
area dS is ri V . dS, where V is the local flow velocity and dS ¼ ndS, where n
is the unit normal vector. Hence, the net mass flow of species i out of the
control volume is

ð ð
s

riV � dS

The mass of species i inside the control volume is

ð ð ð
v

ri dV

Let _wi be the local rate of change of ri as a result of chemical reactions inside the
control volume. Therefore, the net time rate of change of the mass of species i
inside the control volume is caused by 1) the net flux of species i through the
surface and 2) the creation or extinction of species i inside the control volume

Fig. 15.2 Finite-control volume fixed in space, with the flow moving through it.
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as a result of chemical reactions. Writing the preceding physical principle in
terms of integrals over the control volume, we have

@

@t

ð ð ð
V

ri dV ¼ �

ð ð
s

riV � dSþ

ð ð ð
V

_wi dV (15:1)

Equation (15.1) is the integral form of the species continuity equation; you will
note that its derivation is quite similar to the standard derivation of the global
continuity equation given in most fluid-dynamics textbooks, such as [4] and
[5]. In turn, using the divergence theorem, the differential form of the species
continuity equation is obtained directly from Eq. (15.1) as

@ri

@t
þ r � (riV) ¼ _wi (15:2)

[Recall that we are dealing with an inviscid flow. If the flow were viscous,
Eqs. (15.1) and (15.2) would each have an additional term for the transport of
species i by mass diffusion, and the velocity would be the mass motion
of species i, which is not necessarily the same as the mass motion of the
mixture V. Such matters will be discussed in Chapter 17.]

In Eqs. (15.1) and (15.2) an expression for _wi comes from the chemical rate
equation (13.31), couched in suitable dimensions. For example, assume that
we are dealing with chemically reacting air, and we write Eqs. (15.1)
and (15.2) for NO, that is, ri ¼ rNO. The rate equation for NO is given by
Eq. (13.45) in terms of

d½NO�

dt
¼ �k f 3a½NO�½O2� þ � � �

The dimensions of this equation are moles per unit volume per unit time.
However, the dimensions of _wNO in Eqs. (15.1) and (15.2) are the mass of NO
per unit volume per unit time. Recalling that molecular weight is defined as
the mass of species i per mole of i, we can write

_wNO ¼MNO

d½NO�

dt

where MNO is the molecular weight of NO. Therefore, Eq. (15.2) written
for NO is

@rNO

@t
þ r � (rNOV) ¼MNO

d½NO�

dt

where d[NO]/dt is obtained from Eq. (13.45).
For a nonequilibrium chemically reacting mixture with n different species, we

need n – 1 species continuity equations of the form of Eq. (15.2). These, along

INVISCID NONEQUILIBRIUM FLOWS 651



with the additional result that

X
i

ri ¼ r

provide n equations for the solution of the instantaneous composition of a non-
equilibrium mixture of n chemical species.

An alternative form of the species continuity equation can be obtained as
follows. The mass fraction of species i, ci is defined as ci ¼ ri/r. Substituting
this relation into Eq. (15.2)

@(rci)

@t
þ r � (rciV) ¼ _wi (15:3)

Expanding Eq. (15.3), we have

r
@ci

@t
þ V � rci

� �
þ ci

@r

@t
þ r � (rV)

� �
¼ _wi (15:4)

The first two terms of Eq. (15.4) constitute the substantial derivative of ci. The
second two terms (in brackets) result in zero from the global continuity equation
(14.2). Hence, Eq. (15.4) can be written as

Dci

Dt
¼

_wi

r
(15:5)

In terms of the mole-mass ratio, hi ¼ ci=Mi, Eq. (15.5) becomes

Dhi

Dt
¼

_wi

Mir
(15:6)

Equations (15.5) and (15.6) are alternative forms of the species continuity
equation, couched in terms of the substantial derivative.

Recall that the substantial derivative of a quantity is physically the time rate of
change of that quantity as we follow a fluid element moving with the flow. There-
fore, from Eqs. (15.5) and (15.6), as we follow a fluid element of fixed mass
moving through the flowfield, we see that changes of ci or hi of the fluid
element are caused only by the finite-rate chemical kinetic changes taking
place within the element. This makes common sense, and in hindsight, therefore,
Eqs. (15.5) and (15.6) could have been written directly by inspection. We empha-
size that in Eqs. (15.5) and (15.6) the flow variable inside the substantial deriva-
tive ci or hi is written per unit mass. As long as the nonequilibrium variable inside
the substantial derivative is per unit mass of mixture, then the right-hand side of
the conservation equation is simply caused by finite-rate kinetics, such as shown
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in Eqs. (15.5) and (15.6). In contrast, Eq. (15.2) can also be written as

Dri

Dt
¼ _wi � ri(r � V) (15:7)

The derivation of Eq. (15.7) is left to the reader. In it, the nonequilibrium vari-
able inside the substantial derivative ri is per unit volume. Because it is not per
unit mass, an extra term in addition to the finite-rate kinetics appears on the
right-hand side to take into account the dilation effect of the changing specific
volume of the flow. (Recall from basic fluid mechanics that r . V is physically
the time rate of change of volume of a fluid element per unit volume, as derived
in [5].)

In addition to the species continuity equation, another equation must be added
to the system given by Eqs. (14.2–14.5) if vibrational nonequilibrium is present.
The finite-rate kinetics for vibrational energy exchange were discussed in Sec.
13.2, leading to Eq. (13.17) as the vibrational rate equation. Based on our earlier
discussion, if we follow a moving fluid element of fixed mass, the rate of change
of evib for this element is equal to the rate of molecular energy exchange inside
the element. Therefore, we can write the vibrational rate equation for a moving
fluid element as

Devib

Dt
¼

1

t
(e

eq
vib � evib) (15:7a)

Note in Eq. (15.7a) that evib is the local nonequilibrium value of vibrational
energy per unit mass of gas.

Let us now summarize the governing equations for an inviscid, nonequili-
brium, high-temperature flow. In such a flow, we wish to solve for p, r, T, V,
h, evib, and ci as functions of space and time. The governing equations that
allow for the solution of these variables are as follows.

Global continuity:

@r

@t
þ r � (rV) ¼ 0 (15:8)

Species continuity:

@ri

@t
þ r � (riV) ¼ _wi (15:9)

or

Dci

Dt
¼

_wi

r
(15:10)

or

Dhi

Dt
¼

_wi

Mir
(15:11)
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(Note that for a mixture of n species, we need n� 1 species continuity equations;
the nth equation is given by

P
i ri ¼ r, or

P
i ci ¼ 1, or

P
i hi ¼ h:)

Momentum:

r
DV

Dt
¼ �rp (15:12)

Energy:

r
Dh0

Dt
¼
@p

@t
þ _q (15:13)

where

h0 ¼ hþ
V2

2
(15:14)

In Eq. (15.13), _q denotes a heat-addition term caused by volumetric heating (say,
by radiation absorbed or lost from the gas). The term _q does not have anything to
do with chemical reactions. The energy exchanges as a result of chemical reac-
tions are naturally accounted for by the heats of formation appearing in h in
Eqs. (15.13) and (15.14), for example, Eqs. (11.105) or (11.106). In addition to
the preceding equations, we also have the following.

Equation of state:

p ¼ rRT (15:15)

where

R ¼
R

M

M ¼
X

i

ci

Mi

 !�1

Enthalpy:

h ¼
X

i

cihi (15:16)

where

hi ¼ (etrans þ erot þ evib þ ee)i þ RiT þ (Dh8f )i (5:17)

In Eq. (15.16), for a nonequilibrium flow, ci is obtained from the species continuity
equation, say, Eq. (15.10). In regard to evibi

which appears in Eq. (15.17), there
are some cases where the assumption of local thermodynamic equilibrium is
appropriate even though chemical nonequilibrium prevails. (As noted in
Sec. 13.1, far fewer molecular collisions are required for vibrational energy
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exchanges than for chemical reactions to occur. Hence, for some cases the mole-
cular collision frequency might be high enough to allow near-equilibrium con-
ditions for vibrational energy, but not high enough to provide near-equilibrium
chemical conditions.) In such a case, evibi

is given by Eq. (11.61) for the species
i. However, when both thermodynamic and chemical nonequilibrium prevail,
evibi

is a nonequilibrium value that must be obtained from the vibrational rate
equation (15.7a), written for species i as follows.

Vibrational energy:

D(cievib)

Dt
¼

ci

ti

(e
eq
vibi
� evibi

) (15:18)

Before progressing further, look back over Eqs. (15.8–15.18), and make certain
that you feel comfortable with them. These equations are the governing
equations for inviscid, nonequilibrium, high-temperature flow. They will be
used throughout the remainder of this chapter.

15.3 Nonequilibrium Normal and Oblique Shock-Wave Flows

Consider a strong normal shock wave in a gas. Moreover, assume the tempera-
ture within the shock wave is high enough to cause chemical reactions within the
gas. In this situation, we need to reexamine the qualitative aspects of a shock
wave, as sketched in Fig. 15.3. The thin region where large gradients in tempera-
ture, pressure, and velocity occur, and where the transport phenomena of vis-
cosity and thermal conduction are important is called the shock front. For all
of our preceding considerations of a calorically perfect gas, or equilibrium
flow of a chemically reacting or vibrationally excited gas, this thin region is
the shock wave. For these previous situations, the flow in front of and behind
the shock front was uniform, and the only gradients in flow properties took
place almost discontinuously within a thin region of no more than a few
mean-free-paths thickness. However, in a nonequilibrium flow, all chemical reac-
tions and/or vibrational excitations take place at a finite rate. Because the shock
front is only a few mean free paths thick, the molecules in a fluid element can
experience only a few collisions as the fluid element traverses the front. Conse-
quently, the flow through the shock front itself is essentially frozen. In turn, the
flow properties immediately behind the shock front are frozen flow properties, as
discussed in Sec. 14.5 and as sketched in Fig. l5.3. Then, as the fluid element
moves downstream, the finite-rate reactions take place, and the flow properties
relax toward their equilibrium values, as also sketched in Fig. 15.3. With this
picture in mind, the shock wave now encompasses both the shock front and the
nonequilibrium region behind the front where the flow properties are changing
as a result of the finite-rate reactions. For purposes of illustration, assume that
the gas is pure diatomic nitrogen in front of the shock wave, that is, (cN)1 ¼ 0
in Fig. 15.3. The properties immediately behind the shock front are obtained
from frozen flow results, that is, the constant g ¼ 1.4 results from Chapter 2.
Hence, the values of Tfrozen and rfrozen shown in Fig. 15.3 can be obtained
directly from standard compressible flow tables such as found in [4] and [5]
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for air. In addition, cN immediately behind the shock front is still zero because the
flow is frozen. Downstream of the shock front, the nonequilibrium flow must be
analyzed using the equations summarized in Sec. 15.2. In this region, the nitrogen
becomes either partially or totally dissociated (depending on the strength of the
shock wave), and cN increases as sketched in Fig. 15.3. In turn, because this reac-
tion is endothermic, the static temperature behind the shock front decreases, and
the density increases. Finally, the downstream flow properties will approach their
equilibrium values, as calculated from the technique described in Sec. 14.3.

A numerical calculation of the nonequilibrium region behind the shock front
can be established as follows. Because the flow is one-dimensional and steady,
the equations of Sec. 15.2 become the following.

Global continuity:

r duþ u dr ¼ 0 (15:19)

Momentum:

dp ¼ �ru du (15:20)

Fig. 15.3 Schematic of chemically reacting nonequilibrium flow behind a normal

shock wave.
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Energy:

dh0 ¼ 0 (15:21)

Species continuity:

u dci ¼
_wi

r
dx (15:21a)

In Eq. (15.21a) the x distance is measured from the shock front, extending down-
stream as shown in Fig. 15.4. Note that Eq. (15.21a) explicitly involves the finite-
rate chemical reaction term _wi, and that a distance dx multiplies this term. Hence,
Eq. (15.21a) introduces a scale effect into the solution of the flowfield—a scale
effect that is present solely because of the nonequilibrium phenomena. In turn,
all flowfield properties become a function of distance behind the shock front,
as sketched in Fig. 15.4. Equations (15.19–15.21a) can be solved by using any
standard numerical technique for integrating ordinary differential equations,
such as the well-known Runge–Kutta technique, starting right behind the
shock front (point 1 in Fig. 15.4), and integrating downstream in steps Dx, as
sketched in Fig. 15.4. The initial conditions at point 1 in Fig. 15.4 are obtained
by assuming frozen flow across the shock front. If we are dealing with atmos-
pheric flight, where the free stream conditions are those for cool, nonreacting
air, then the chemical composition at point 1 is the same as the known compo-
sition ahead of the shock, and the local values of velocity, pressure, temperature,
etc., at point 1 are the same as calculated for a normal shock wave in a calorically

Fig. 15.4 Schematic of grid points for the numerical solution of nonequilibrium

normal shock flows.
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perfect gas with g ¼ 1.4, that is, the standard normal shock tables for air with
g ¼ 1.4 (as found in [4] and [5]) yield the proper initial conditions at point 1.

Caution: In carrying out such a numerical solution of nonequilibrium flows, a
major problem can be encountered. If one or more of the finite-rate chemical
reactions are very fast [if _wi in Eq. (15.21a) is very large], then Dx must still
be chosen very small even when a higher-order numerical method is used. The
species continuity equations for such very fast reactions are called “stiff”
equations and readily lead to instabilities in the solution. Special methods for
treating the solution of stiff ordinary differential equations have been reviewed
by Hall and Treanor (see [173]); such matters are still a state-of-the-art research
problem today.

Typical results for the nonequilibrium flowfield behind a normal shock wave
in air are given in Figs. 15.5 and 15.6, taken from the work of Marrone [174].
The Mach number ahead of the shock wave is 12.28, strong enough to produce
major dissociation of O2, but only slight dissociation of N2. The variation of
chemical composition with distance behind the shock front is given in
Fig. 15.5. Note the expected increase in the concentration of O and N, rising
from their frozen values (essentially zero) immediately behind the shock
front, and monotonically approaching their equilibrium values about 10 cm
downstream of the shock front. For the most part, the nonequilibrium flow vari-
ables will range between the two extremes of frozen and equilibrium values.
However, in some cases, because of the complexities of the chemical kinetic

Fig. 15.5 Distributions of the chemical species for the nonequilibrium flow through

a normal shock wave in air: M1 5 12.28, p1 5 1.0 mm Hg, and T1 5 300 K (from

Marrone [174]).
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mechanism, a species can exceed these two extremes. A case in point is the vari-
ation of NO concentration shown in Fig. 15.5. Note that it first increases from
essentially zero behind the shock front and overshoots its equilibrium value at
about 0.1 cm. Further downstream, the NO concentration approaches its equili-
brium value from above. This is a common behavior of NO when it is formed
behind a shock front in air; it is not just a peculiarity of the given upstream con-
ditions in Fig. 15.5. The variations in temperature and density behind the shock
front are shown in Fig. 15.6. As noted earlier, the chemical reactions in air
behind a shock front are predominantly dissociation reactions, which are
endothermic. Hence, T decreases and r increases with distance behind the
front—both by almost a factor of 2.

Let us now consider the case of the nonequilibrium flow behind an oblique
shock wave. First, consider the standard picture of a straight oblique shock
front, as sketched in Fig. 15.7. Let x denote distance downstream of the
shock front measured perpendicular to the front, as shown in Fig. 15.7. From
the component of the momentum equation tangential to the shock front, we
find that the tangential component of velocity Vt is preserved across the shock
front, that is, Vt,2 – Vt,1. This is a basic mechanical result, unaffected by chemi-
cal reactions. Moreover, for the same reason, Vt is constant everywhere behind
the shock front; letting points 2 and 3 denote different x-wise locations in the
flow behind the shock front, we have Vt,3 ¼ Vt,2 ¼ Vt,1. In contrast, the
normal component of velocity Vn varies with x in the nonequilibrium flow

Fig. 15.6 Distributions of the temperature and density for the nonequilibrium flow

through a normal shock wave in air: M1 5 12.28, r1 5 1.0 mm Hg, and T1 5 300 K

(from [174]).
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behind the shock front. This can be explained as follows. The oblique shock
properties are basically determined by normal shock properties based on an
upstream velocity perpendicular to the shock front Vn,1 on which a constant tan-
gential component Vt is superimposed throughout the flow. This is a familiar
picture from fundamental oblique shock-wave theory, unaffected by chemical
reactions. In the nonequilibrium flow behind a normal shock front, Fig. 15.6
shows that density increases with distance behind the front. Because rVn is a
constant for flow across a normal shock, then Vn must decrease with distance
behind the front. Hence, returning to Fig. 15.7, we see that Vn decreases with
x, that is, Vn,3 , Vn,2. Thus, because Vt,3 ¼ Vt,2, the flow deflection angle u3

is greater than u2. Conclusion: The streamlines in the nonequilibrium flow
behind a straight oblique shock front are curved and continually increase their
deflection angle until equilibrium conditions are reached far downstream. There-
fore, in order to create a straight oblique shock front in a nonequilibrium flow,
we have to have a compression corner that is shaped like the solid surface shown
in Fig. 15.7. This compression surface, after its initial discontinuous deflection
of u2 corresponding to frozen flow, must curve upward until equilibrium con-
ditions are obtained far downstream, where u4 corresponds to the equilibrium
deflection angle given by Fig. 14.8 (as calculated by the method discussed in
Sec. 14.3). This curved, nonuniform flowfield in the nonequilibrium region
behind a straight oblique shock front is an important difference from the
familiar uniform flows obtained for calorically perfect and equilibrium
oblique shock results.

Fig. 15.7 Geometry for nonequilibrium flow behind a straight oblique shock

wave.
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Using the inverse of the preceding reasoning, for the supersonic or hyperso-
nic nonequilibrium flow over a straight compression corner as sketched in
Fig. 15.8, the shock wave will be curved. The wave angle right at the corner
bf corresponds to frozen flow. Far downstream, the wave angle approaches
the equilibrium flow value be. Recall from Fig. 14.8 that, for a given deflection
angle u, the equilibrium shock-wave angle is always less than the frozen wave
angle (for g ¼ 1.4).

In conclusion, the nonequilibrium flow behind a shock front, normal or
oblique, varies with distance behind the front. This introduces a dimensional
scale in such flows. For example, Bussing and Eberhardt [158] define a nonequi-
librium length scale (or relaxation distance) as the distance downstream of the
shock front required for the flow properties to reach 95% of their equilibrium
values. For any given flow, the relaxation distances are different for different
variables. Sample results from [158] are shown in Figs. 15.9 and 15.10. In
Fig. 15.9, the relaxation distances behind a normal shock for T, Xo, and XN are
plotted vs freestream Mach number, where the upstream conditions at each
Mach number correspond to the lower flight trajectory shown in Fig. 14.9 for a
transatmospheric vehicle. In Fig. 15.10, the same quantities are given for the
flow behind an oblique shock with b ¼ 30 deg, also for the lower flight trajectory
given in Fig. 14.9. In both Figs. 15.9 and 15.10, results are shown for two differ-
ent sets of chemical rate data for high-temperature air, one set from Wray [159],
and the other from Dunn and Kang [162]. The essential information to be derived
from a comparison of Figs. 15.9 and 15.10 is that nonequilibrium distances
behind a normal shock are much smaller (on the order of 1 cm) than behind a

Fig. 15.8 Schematic of nonequilibrium flow over a compression corner.
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30-deg oblique shock (on the order of 700 cm) for the same flight conditions. This
is because of the higher pressures and temperatures behind the normal shock
wave, yielding much higher reaction rates and therefore producing lower relax-
ation distances. The results in Figs. 15.9 and 15.10 also demonstrate that non-
equilibrium effects are important for hypersonic transatmospheric vehicles. For
example, for a nose radius of 10 cm, the hypersonic shock detachment distance
will be on the order of 1 cm or less [see Eqs. (14.19) and (14.4)]. Figure 15.9 indi-
cates that a major portion of the blunt-body flow region will be nonequilibrium
flow. Moreover, for the flow over slender bodies or wings, Fig. 15.10 predicts
long regions of nonequilibrium flow downstream of the leading edges.

Finally, note that the analysis of nonequilibrium flows behind shock waves
requires the numerical solution of differential equations [see Eqs. (15.19–
15.21)]. This is in direct contrast to the solution of equilibrium flow behind
shocks, which, although requiring a numerical solution, deals with a system of
algebraic equations [see Eqs. (14.8–14.10)]. This is an example of the general
nature of nonequilibrium flow solutions, namely, that the nonequilibrium beha-
vior introduces a scale length into the flow, and the solution of such flows can
only be treated by differential equations. This is true no matter how simple the
fluid-dynamic aspects might be.

Fig. 15.9 Nonequilibrium length scales behind a normal shock wave, following the

lower trajectory in Fig. 14.9 (from Bussing and Eberhardt [158]).
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15.4 Nonequilibrium Quasi-One-Dimensional Nozzle Flows

Because of the practical importance of high-temperature flows through rocket
nozzles and high-enthalpy aerodynamic testing facilities, intensive efforts were
made after 1950 to obtain relatively exact numerical solutions for the expansion
of a high-temperature gas through a nozzle when vibrational and/or chemical
nonequilibrium conditions prevail within the gas. In a rocket nozzle, nonequili-
brium effects decrease the thrust and specific impulse. In a high-temperature
wind tunnel, the nonequilibrium effects make the flow conditions in the test
section somewhat uncertain. Both of the preceding are adverse effects, and
hence rocket nozzles and wind tunnels are usually designed to minimize the
nonequilibrium effects; indeed, engineers strive to obtain equilibrium conditions
in such situations. In contrast, the gas dynamic laser (see [147]) creates a laser
medium by intentionally fostering vibrational nonequilibrium in a supersonic
expansion; here, engineers strive to obtain the highest degree of nonequilibrium
possible. In any event, the study of nonequilibrium nozzle flows is clearly
important.

Until 1969, all solutions of nonequilibrium nozzle flows involved steady-state
analyses. Such techniques were developed to a high degree and are nicely
reviewed by Hall and Treanor (see [173]). However, such steady-state analyses

Fig. 15.10 Nonequilibrium length scales behind a 30-deg oblique shock wave,

following the lower trajectory in Fig. 14.9 (from [158]).
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were not straightforward. Complicated by the presence of stiff chemical rate
equations, such solutions encountered a saddle-point singularity in the vicinity
of the nozzle throat, and this made it very difficult to integrate from the subsonic
to the supersonic sections of the nozzle. Moreover, for nonequilibrium nozzle
flows the throat conditions and hence the mass flow are not known a priori; the
nozzle mass flow must be obtained as part of the solution of the problem. There-
fore, in 1969 a new technique for solving nonequilibrium nozzle flows was
advanced by Anderson (see [175] and [176]) using the time-marching finite
difference method discussed in Sec. 5.3. This time-marching approach circum-
vents the preceding problems encountered with steady-state analyses and also
has the virtue of being relatively easy and straightforward to program on the com-
puter. Since its introduction in 1969, the time-marching solution of nonequili-
brium nozzle flows has gained wide acceptance.

Consider the nozzle and grid-point distribution sketched in Fig. 15.11. The
time-marching solution of nonequilibrium nozzle flows follows the general phil-
osophy as described in Sec. 5.3, with the consideration of vibrational energy and
chemical species concentrations as additional dependent variables. In this
context, at the first grid point in Fig. 15.11, which represents the reservoir con-
ditions, equilibrium conditions for evib and ci at the given p0 and T0 are calculated
and held fixed, invariant with time. Guessed values of evib and ci are then arbitra-
rily specified at all other grid points (along with guessed values of all other flow
variables); these guessed values represent initial conditions for the time-
marching solution. For the initial values of evib and ci, it is recommended that
equilibrium values be assumed from the reservoir to the throat and then frozen
values be prescribed downstream of the throat. Such an initial distribution of
nonequilibrium variables is qualitatively similar to typical results obtained for
nonequilibrium nozzle flows, as we will soon see.

The governing continuity, momentum, and energy equations for unsteady
quasi-one-dimensional flow are given in Chapter 12 of [4] as follows.

Continuity:

@r

@t
¼ �

1

A

@(ruA)

@x
(15:22)

Fig. 15.11 Coordinate system and grid points for the time marching of quasi-one-

dimensional flow through a nozzle.
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where A is the local cross-sectional area of the nozzle. In addition to these
equations, for a nonequilibrium flow the appropriate vibrational rate and
species continuity equations are
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eq
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(15:25)

and
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Equations (15.22–15.26) are solved step by step in time using the finite differ-
ence predictor-corrector approach described in Sec. 5.3. Along with the other
flow variables, evib and ci at each grid point will vary with time; but after
many time steps all flow variables will approach a steady state. It is this steady
flowfield that we are interested in as our solution—the time-dependent technique
is simply a means to achieve this end.

The nonequilibrium phenomena introduce an important new stability criterion
for Dt in addition to the Courant–Friedrichs–Lewy (CFL) criterion discussed in
Sec. 5.3. The value chosen for Dt must be geared to the speed of the nonequili-
brium relaxation process and must not exceed the characteristic time for the
fastest finite rate taking place in the system. That is,

Dt , BG (15:27)

where G ¼ t for vibrational nonequilibrium, G ¼ r(@ _wi=@ci)
�1 for chemical

nonequilibrium, and B is a dimensionless proportionality constant found by
experience to be less than unity, and sometimes as low as 0.1. The value
chosen for Dt in a nonequilibrium flow must satisfy both Eq. (15.27) and the
usual CFL criterion, given here as

Dt ,
Dx

uþ a
(15:28)

Which of the two stability criteria is the smaller, and hence governs the time step,
depends on the nature of the case being calculated. If the local pressure and
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temperature are low enough everywhere in the flow, the rates will be slow, and
Eq. (15.28) generally dictates the value of Dt. On the other hand, if some of
the rates have particularly high transition probabilities and/or the local p and T
are very high, then Eq. (15.27) generally dictates Dt. This is almost always
encountered in rocket nozzle flows of hydrocarbon gases, where some of the
chemical reactions involving hydrogen are very fast and combustion chamber
pressures and temperatures are reasonably high.

The nature of the time-marching solution of a vibrational nonequilibrium
expansion of pure N2 is shown in Fig. 15.12. Here, the transient evib profiles at
various time steps are shown; the dashed curve represents the guessed initial dis-
tribution. Note that during the first 250 time steps the proper steady-state distri-
bution is rapidly approached and is reasonably attained after 800 time steps.
Beyond this time, the time-dependent solution produces virtually no change in
the results from one time step to the next. This steady-state distribution agrees
with the results of a steady-flow analysis after Wilson et al. (see [177]), as
shown in Fig. 15.l3. Here, a local vibrational temperature is defined from the
local nonequilibrium value of evib using the relation

evib ¼
hn=kTvib

ehn=kTvib � 1

� �
RTvib (15:29)

patterned after the equilibrium expression given by Eq. (11.61). (Recall that we
first defined the vibrational temperature in Sec. 13.4.1.) Note that Eq. (15.29) is
not a valid physical relationship for nonequilibrium flow; it is simply an equation
that defines the vibrational temperature Tvib and that allows the calculation of a
value of Tvib from the known value of evib. Hence, Tvib is simply an index for
the local nonequilibrium value of evib. In Fig. 15.13, both the time-marching

Fig. 15.12 Transient and final steady-state evib distributions for the nonequilibrium

expansion of N2 obtained from the time-marching analysis (from Anderson [175]).
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calculations as well as the steady-flow analysis of Wilson et al. assume nonequi-
librium flow at all points downstream of the reservoir, including the subsonic
section. Very good agreement between the two techniques is obtained.

Many analyses of nonequilibrium nozzle flows in the literature assume local
equilibrium to the throat and then start their nonequilibrium calculations down-
stream of the throat. In this fashion, the problems with the saddle-point singular-
ity and the unknown mass flow, described earlier, are sidestepped. Examples of
such analyses are given by Harris and Albacete [178] and by Erickson [179].
However, for many practical nozzle flows, nonequilibrium effects become
important in the subsonic section of the nozzle, and hence a fully nonequilibrium
solution throughout the complete nozzle is required.

Figures 15.12 and 15.13 illustrate an important qualitative aspect of nonequi-
librium nozzle flows. Note that, as the expansion proceeds and the static tempera-
ture (Ttrans) decreases through the nozzle, the vibrational temperature and energy
also decrease to begin with. However, in the throat region, evib and Tvib tend to

Fig. 15.13 Steady-state Tvib distributions for the nonequilibrium expansion of N2;

comparison of the time-marching analysis with the steady-flow analysts of Wilson

et al. (from [175]).
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“freeze” and are reasonably constant downstream of the throat. This is a qualitat-
ive comment only; the actual distributions depend on pressure, temperature, and
nozzle length. It is generally true that equilibrium flow is reasonably obtained
throughout large nozzles at high pressures. Reducing both the size of the
nozzle and the reservoir pressure tends to encourage nonequilibrium flows.

Results for a chemical nonequilibrium nozzle flow are given in Fig. 15.14,
where the transient mechanism of the time-dependent technique is illustrated.
Here, the nonequilibrium expansion of partially dissociated oxygen is calculated,
where the only chemical reaction is

O2 þMN 2OþM

In Fig. 15.14, the dashed line gives the initially assumed distribution for the
atomic-oxygen mass friction, c0. Note the rapid approach toward the steady-state
distribution during the first 400 time steps. The final steady-state distribution is
obtained after 2800 time steps. This steady-state distribution compares favorably
with the results of Hall and Russo (solid circles), who performed a steady-flow
analysis of the complete nonequilibrium nozzle flow (see [180]). Again, note
the tendency of the oxygen mass fraction to freeze downstream of the throat.

A more complex chemically reacting nonequilibrium nozzle flow is illustrated
by the expansion of a hydrocarbon mixture through a rocket engine, as calculated
by Vamos and Anderson in [181]. The configuration of a rocket nozzle is given in
Fig. 15.15. Here, for the time-marching numerical solution two grids are used
along the nozzle axis: a fine grid of closely spaced points through the subsonic
section and slightly downstream of the throat and a coarse grid of widely

Fig. 15.14 Transient and final steady-state atom mass-fraction distributions for the

nonequilibrium expansion of dissociated oxygen; comparison of the time-marching

method with the steady-state approach of Hall and Russo (from [180]).
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spaced points further downstream. Because most of the nonequilibrium behavior
and the fastest reactions are occurring in the throat region, a fine grid is chosen
here to maintain accuracy. In contrast, far downstream in the cooler supersonic
region, the reactions are slower, the chemical composition is tending to freeze,
and the grid spacing can be larger. (Parenthetically, we note that for any of the
finite difference solutions discussed in this book, the grid spacings do not have
to be constant. Indeed, the concept of adaptive grids, i.e., putting grid points
only where you want them as dictated by the gradients in the flow, is a current
state-of-the-art research problem of computational fluid dynamics.)

In Fig. 15.15, the reservoir conditions are formed by the equilibrium combus-
tion of N2O4, N2H4, and unsymmetrical dimethyl hydrazine, with an
oxydizer-to-fuel ratio of 2.25 and a chamber pressure of 4 atm. Results for the
subsequent nonequilibrium expansion are shown in Fig. 15.16. Here, the transient
variation of the hydrogen-atom mass fraction through the nozzle is shown. For
convenience, the initial distribution is assumed to be completely frozen from
the reservoir (the dashed horizontal line). Several intermediate distributions
obtained during the time-marching calculations are shown, with the final
steady state being achieved at a dimensionless time of 1.741. Note that, if the
flow were in local chemical equilibrium, XH would decrease continuously as T
decreases, as shown in Fig. 15.16. In contrast, however, because of the complex-
ities of the H-C-O-N chemical kinetic mechanism, XH actually increases with dis-
tance along the nozzle. Here is another example (the first was given in Sec. 15.2)
where a nonequilibrium variable falls outside the bounds of equilibrium and
frozen flows. The variation of static temperature is given in Fig. 15.17; note
that for nonequilibrium flow the temperature distribution is lower than the equi-
librium value. This is because the nonequilibrium flow tends to freeze some of the
dissociated products, hence locking up some of the chemical zero-point energy
that would otherwise be converted to random molecular translational energy.
The steady-state temperature distribution in Fig. 15.17 (at t0 ¼ 1.741) compares
favorably with the steady-flow analysis of Sarli et al. (see [182]).

Fig. 15.15 Schematic representation of the rocket engine nozzle and grid-point

system used by Vamos and Anderson (from [181]).
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Fig. 15.16 Transient and final steady-state distributions of the hydrogen atom mole

fraction through a rocket nozzle; nonequilibrium flows (from [181]).

Fig. 15.17 Temperature distributions for the nonequilibrium flow through a rocket

nozzle (from [181]).
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As a final point concerning nonequilibrium, quasi-one-dimensional nozzle
flows, note that any finite-rate phenomena are irreversible. Hence, an adiabatic,
inviscid nonequilibrium nozzle flow is nonisentropic. Because the entropy of a
fluid element increases as it moves through the nozzle, a simple analysis
shows that the local velocity at the nozzle throat is not sonic. Indeed, in a
nonequilibrium flow the speed of sound itself is not unique and depends on
the frequency of the sound wave. However, if either the frozen or equilibrium
speed of sound (see Sec. 14.7) is used to define the frozen or equilibrium Mach
numbers at the nozzle throat, both Mach numbers will be less than unity. Sonic
flow in a nonequilibrium nozzle expansion occurs slightly downstream of the
throat.

Two-dimensional nonequilibrium nozzle flows can be calculated by finite
difference methods or the method of characteristics. In regard to the latter, the
characteristic lines through any point in the nonequilibrium supersonic flow
are 1) the Mach lines based on the frozen speed of sound and 2) the streamlines
because the entropy increases along a streamline in a nonequilibrium flow as a
result of the irreversible aspects of the finite-rate processes. See [53] for details
on the method of characteristics in a nonequilibrium flow.

15.5 Nonequilibrium Blunt-Body Flows

The general features of the inviscid flow over a supersonic or hypersonic blunt
body were described in Sec. 5.3 for a calorically perfect gas and in Sec. 14.9 for
an equilibrium chemically reacting gas; these sections should be reviewed before
progressing further. In the case of the nonequilibrium flow over a blunt body, the
flowfield resembles some of the nature of the previous cases, but also takes on
some of the aspects of nonequilibrium flow behind shock waves, as discussed
in Sec. 15.3. On a qualitative basis, the nonequilibrium flow over a blunt body
behaves as sketched in Fig. 15.18. In the nose region, the chemical composition
resembles that in the nonequilibrium region behind a normal shock wave, as dis-
cussed in Sec. 15.3. However, consider the streamline that goes through the stag-
nation point; this streamline is labeled abc in Fig. 15.18. Between a and b, the
flow is compressed and slowed; it reaches zero velocity at the stagnation point
b. In so doing, it can be shown that a fluid element takes an infinite time to tra-
verse the distance ab. This means that local equilibrium conditions must exist at
the stagnation point (point b) with its attendant highly dissociated and ionized
state. The flow then expands rapidly downstream of the stagnation point;
indeed, the surface streamline bc encounters very large pressure and temperature
gradients in the region near the sonic point c, that is, dp/ds and dT/ds are large
negative quantities. This is very similar to the nonequilibrium flow through a
convergent-divergent nozzle discussed in Sec. 15.4, where it was indicated that
sudden freezing of the flow can occur downstream of the throat. The same
type of sudden freezing can be experienced near point c in Fig. 15.18. In turn,
the surface of the body downstream of the sonic point can be bathed in a
region of nearly frozen flow. Because the streamline started with a large
amount of dissociation and ionization at point b, then this frozen flow is charac-
terized by a thin region of high dissociated and ionized gas that flows downstream
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over the body. Slightly away from the body, streamline A also passes through a
strong portion of the bow shock and exhibits similar behavior to the stagnation-
point streamline abc; that is, there is a region of highly dissociated and ionized
nonequilibrium flow along A behind the shock as the chemistry is trying to
move toward an equilibrium state and then fairly rapid freezing in the vicinity
of the sonic line. Much further away from the body, streamline B passes
through a weaker, more oblique portion of the bow shock. Consequently, the
amount of dissociation and ionization is considerably smaller, but the nonequili-
brium region extends much further downstream along B. (This effect is shown by
comparing Figs. 15.9 and 15.10 for the relaxation distances downstream of a
normal shock and oblique shock, respectively.) Finally, the entire flowfield
will approach local equilibrium conditions a sufficiently far distance downstream
of the nose.

Following the time-marching philosophy for the solution of blunt-body flow-
fields described in Secs. 5.3 and 14.9, a solution for the nonequilibrium blunt-
body flow can be obtained by solving Eqs. (15.8–15.17) in steps of time. The

Fig. 15.18 Schematic of different regions in a high-temperature blunt-body

flowfield.
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first such time-marching solution for inviscid nonequilibrium blunt-body flows
was carried out by Bohachevsky and Rubin [183] for a simplified model of a
simple dissociating gas (the Lighthill model, described in [150]), using the Lax
finite difference scheme (see [52]). Later the first time-marching inviscid non-
equilibrium blunt-body solution for detailed air chemistry was obtained by Li
[184] and [185]. In [185], the explicit MacCormack method using shock
fitting—the same method described in detail in Sec. 5.3—was used to solve
Eqs. (15.8–15.17) in steps of time, starting from a frozen flow solution used as
the initial conditions at time t ¼ 0. The governing equations are written with
the time derivatives of r, u, v, w, h0, and ci on the left side and spatial derivatives
on the right side. For example, Eq. (15.10) is written as

@ci

@t
¼ �u

@ci

@x
� v

@ci

@y
� w

@ci

@z
þ
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r

The spatial derivatives are replaced by forward differences on the predictor step
and rearward differences on the corrector step, and the new value of ci at time
(tþ Dt) is obtained (using the bar notation of Sec. 5.3) from

ci(t þ Dt) ¼ ci(t)þ
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See Sec. 5.3 for the details concerning MacCormack’s predictor-corrector
method. Its application to nonequilibrium blunt-body flows in this section is
essentially the same; the details are left to the reader to construct.

As noted in Sec. 15.4, two different time steps are assessed, a fluid-dynamic
time step based on the CFL criterion given by

Dt �
min (Dx, Dy, Dz)

1:5½(u2 þ v2 þ w2)1=2 þ a�
(15:30)

and a chemistry time step given by

Dt � 0:1 min
rci

_wi

����
���� (15:31)

whereDx,Dy, andDz are grid spacing in a Cartesian three-dimensional coordinate
system. Note that Eq. (15.31) for the chemistry time step is slightly different from
Eq. (15.27), which utilized r(@ _wi=@ci)

�1 instead of rci= _wi; the results for the
chemistry Dt are essentially the same. In a given solution, the lower value of
Dt obtained from Eqs. (15.30) and (15.31) is used to advance the flowfield in
steps of time. In many cases, the chemistry Dt will be smaller than the fluid
dynamic Dt, indeed sometimes orders of magnitude smaller. This is a ramifica-
tion of the stiff nature of the rate equations, as described in Secs. 15.3 and
15.4. When this occurs, the time-marching solutions can require very large
amounts of computer time to approach the steady state. To alleviate this situation
somewhat, Li in [184] suggests advancing the fluid dynamics and the chemistry at
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their own respective timescales, that is, advance Eq. (15.10) using the Dt from
Eq. (15.31), and simultaneously advance Eqs. (15.8), (15.12), and (15.13) using
the Dt from Eq. (15.30). This can considerably reduce the number of time steps
required to obtain convergence of the complete flowfield. Of course, with this
method the transient variations obtained during the time-marching solution
would not be time-wise accurate; however, if the steady state is the desired
result, then the matter of time accuracy of the transients is not important. In
Li’s analysis, seven species were considered: N2, O2, NO, N, O, NOþ, and e2.
Although chemical nonequilibrium was treated, local thermodynamic equili-
brium (involving the internal modes of vibrational and electronic energy) was
assumed. Some sample results are shown in Fig. 15.19 for the variations of
cO2

, cNO, and cO as a function of distance along the stagnation streamline
between the shock and the body (along streamline ab in Fig. 15.18) for flow

Fig. 15.19 Mass fraction distributions along the stagnation streamline of a sphere.

Nonequilibrium flow. V1 5 11,310 ft/s, p1 5 21.17 lb/ft2, T1 5 54088888R, and sphere

radius 5 1 ft (from Li [185]).
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over a sphere. For the freestream conditions given in Fig. 15.19, the shock layer
is a mildly dissociated gas, with O2 dissociation as the dominant mechanism.
Note in Fig. 15.19 the overshoot of NO, similar to the normal shock wave
results given in Fig. 15.5.

The first comprehensive nonequilibrium blunt-body analysis was carried out
by Hall et al. [186] in 1962, well before the advent of time-marching solutions.
In [186], the analytical technique was an inverse solution—assuming a given
shock shape, integrating the nonequilibrium flowfield downstream of the given
shock, and finding the body shape that supports the given shock. Setting up a
coordinate system where x and y are tangential and normal to the shock respect-
ively, Hall et al. replaced the partial derivatives in the x direction with a seven-
point finite difference; hence, the x derivatives are known numbers, and the
governing flow equations become ordinary differential equations in the y direc-
tion. In turn, these ordinary differential equations are integrated in the y direction
by means of a standard Runge–Kutta method. (This smacks of the difference-
differential approach used by Smith and Clutter in the same time period for the
solution of the boundary-layer equations, as described in Sec. 6.6 and found in
[97].) The details of the steady state numerical method used by Hall et al. in
[186] are not important here; indeed, by present-day standards, the method is
antiquated. However, [186] is a classic in its own right and is as important
today as it was in 1962 because of the pioneering results obtained and the reveal-
ing manner in which they are discussed. For this reason, we will discuss these
results at some length here. They provide an excellent picture of the physical
nature of nonequilibrium blunt-body flows.

As in the case of Li [185], Hall et al. [186] use a seven-species, seven-reaction
model for high-temperature air. The seven species are O2, O, N2, N, NO, NOþ,
and e2; the kinetic reaction mechanism is given by Eqs. (13.38–13.44), with rate
constants from Wray [159]. Chemical nonequilibrium was the only finite-rate
process treated; local thermodynamic equilibrium was assumed (see Sec. 14.1).
Results are presented along two streamlines in the blunt-body flowfield, stream-
lines A and B shown in Fig. 15.20. This figure is drawn to scale, showing the
assumed axisymmetric catenary shock in cylindrical coordinates, where z and r
are coordinates parallel and perpendicular respectively to the freestream direc-
tion. The resulting body shape is nearly spherical, and is shown in Fig. 15.20
for the case of V1 ¼ 23,000 ft/s, altitude equal to 200,000 ft, and a given
shock radius of curvature at the point of symmetry Rs ¼ 0.0692 ft. In
Figs. 15.21–15.23 results are given for the variation of flow properties along
streamlines A and B for the velocity-altitude point already given. Figure 15.21
shows the results for T, p, and r as a function of distance s along the streamlines,
measured from the shock front. Streamline A crosses the shock near the stag-
nation region and is initially dominated by chemical nonequilibrium behavior
similar to that behind a normal shock wave (see Sec. 15.3). The temperature
along streamline A, TA exhibits an initial rapid decrease behind the shock; this
is because of the finite-rate dissociation of both O2 and N2. The more gradual
decrease in TA for s/Rs . 0.2 is caused primarily by the gas dynamic expansion
around the body. Similarly, the initially slight increase in pA and the substantial
increase in rA are caused by the nonequilibrium effects, and their subsequent
decrease beyond s/Rs ¼ 0.2 are indicative of the gas dynamic expansion
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around the body. In contrast, streamline B crosses a much weaker portion of the
bow shock wave. As discussed in Sec. 15.3 comparing normal and oblique shock
waves, the flow behind an oblique shock front experiences a much longer relax-
ation distance than a normal shock at the same upstream conditions, although at
the same time the actual quantitative degree of dissociation behind the oblique
shock is less because of the lower temperature. These comparisons from
Sec. 15.3 carry over to the blunt-body flow. In Fig. 15.21, the behavior of
TB, pB, and rB along streamline B is a combination of the nonequilibrium
effects and the gas dynamic expansion around the body—a combination that
persists over the complete length of streamline B shown in Fig. 15.21. Also
shown in Fig. 15.21 are the equilibrium (infinite-rate) values of pA and pB just
behind the shock front, at s ¼ 0. To be expected from our earlier discussions
(for example, see Secs. 14.3, 14.8, and 14.9), the pressure is least affected by

Fig. 15.20 Shock and body shapes and calculated streamlines for the nonequilibrium

flow over a blunt body (from Hall et al. [186]).
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chemically reacting effects in a compression region. Also shown in Fig. 15.21
are the values of rA and rB at s/Rs ¼ 0.5 from a calculation of the blunt-body
flowfield assuming local thermodynamic and chemical equilibrium (Sec. 14.9).
Note that these infinite-rate values are considerably above the nonequilibrium
results for density. As to be expected, the nonequilibrium effects are strongest
on temperature. In Fig. 15.21, both TA and TB are far above the local equilibrium
values shown.

Fig. 15.21 Temperature, pressure, and density variations along streamlines A and B

in the nonequilibrium blunt-body flowfield (from [186]).
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The variation of atomic oxygen and nitrogen is given in Fig. 15.22 in terms of
number of moles per original mole of air, which is related to our more familiar
variables, mass fraction ci, and mole-mass ratio hi, through the relations
ciMair=Mi and h iMair, where Mair is the molecular weight of the nonreacting
air in the freestream. (Proof of these relations is left to the reader for a homework
problem.) Because Mair and Mi are known constant values, we can visualize the
ordinate in Fig. 15.22 as essentially the mass fraction or the mole-mass ratio. In
Fig. 15.22, note that the amount of atomic oxygen denoted by (O)A increases

Fig. 15.22 Atomic oxygen and nitrogen concentrations along streamlines A and B in

the nonequilibrium blunt-body flowfield (from [186]).
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rapidly behind the shock front along streamline A; this is because of the nonequi-
librium dissociation behind the strong shock front and is analogous to the
normal shock results discussed in Sec. 15.3. However, for s/Rs . 0.1, the
oxygen freezes because of the gas dynamic expansion and essentially plateaus
at a value slightly less than the equilibrium value shown at s/Rs ¼ 0.5. Along
streamline B, the oxygen relaxation is slower, and (O)B freezes at a level even
less than that for streamline A. [Note that the equilibrium values for both (O)A

and (O)B shown at s/Rs ¼ 0 and 0.5 are the same; this is because the temperatures
along streamlines A and B are high enough such that, at local equilibrium

Fig. 15.23 Nitric oxide and electron concentration along streamlines A and B in the

nonequilibrium blunt-body flowfield (from [186]).
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conditions, the oxygen is fully dissociated.] Also shown in Fig. 15.22 is the vari-
ation of atomic nitrogen along streamlines A and B, denoted by (N)A and (N)B,
respectively. For N, the nonequilibrium relaxation distances are much longer
than for O, and hence (N)A and (N)B exhibit strong nonequilibrium behavior.
Note that (N)A is frozen at about one-half its local equilibrium value when com-
pared at s/Rs ¼ 0.5, and (N)B is about one-fourth its local equilibrium value at the
same location. The variations of nitric oxide and electrons are shown in
Fig. 15.23. Note that (NO)A exhibits the same type of overshoot observed
behind a normal shock as discussed in Sec. 15.3, whereas (NO)B shows a mono-
tonic increase. Also note that both (NO)A and (NO)B are considerably above their
local equilibrium values. Examining the electron concentrations shown in
Fig. 15.23, we see that (e2)A freezes at a level above the local equilibrium
value, but that (e2)B is considerably below its equilibrium value.

The physical variations of the blunt-body flowfield variables just discussed
are important and should be reread until you feel comfortable with the results.
The conditions for the results just discussed were intentionally chosen by Hall
et al. to accentuate the nonequilibrium effects, that is, a high altitude (hence
low density with resulting large chemistry times) and a small body (hence
small flow times). Thus, in reference to the discussion in Sec. 15.1. we have a
situation where tf and tc are of the same relative magnitudes. If a lower altitude
and/or a larger body is chosen, the relative nonequilibrium effects would
diminish.

Once again, [186] is a classic presentation of the physical properties encoun-
tered in nonequilibrium blunt-body flows, with a much more extensive discussion
than we have space to devote here. The reader is strongly encouraged to study
[186] carefully.

15.6 Binary Scaling

For nonequilibrium processes involving two-body molecular collisions, an
interesting and important scaling can be obtained for nonequilibrium flowfields.
This scaling is called binary scaling and is derived and discussed in this section.

Assume that the dominant chemical reaction is caused by dissociation, such as

O2 þM �! 2OþM

where M is a collision partner. In the preceding chemical equation, dissociation is
from left to right and is a two-body process. The reverse reaction from right to left
is recombination and is a three-body process; hence, it has a lower probability of
happening than the dissociation. Let us assume that, in a nonequilibrium flow, the
dissociation reaction (from left to right) is the primary chemical reaction, and let
us ignore the recombination (just for this discussion). Assume a steady, two-
dimensional flow, for simplicity. For this flow, the species continuity equation
for atomic oxygen is obtained from Eq. (15.10) as

u
@cO

@x
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@cO

@y
¼

_wO

r
¼
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r

d½O�

dt
(15:32)
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where, assuming just the dissociation reaction is taking place,

d½O�

dt
¼ 2 kf ½O2�½M� (15:33)

The relation between concentration and mass fraction is

½i� ¼
rci

Mi

(15:34)

Combining Eqs. (15.32–15.34), we have
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where

K1 ¼ 2
MO

MO2
MM

kf ¼ f (T)

Define the following nondimensional variables:

x0 ¼
x

R
y0 ¼

y

R

u0 ¼
u

V1

v0 ¼
v

V1

r0 ¼
r

r1

where R is a characteristic length (for the blunt-body problem, R would be the
nose radius) and V1 and r1 are the freestream velocity and density, respectively.
Then Eq. (15.35) becomes
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Equation (15.36) states the following: Consider two different flows with the same
T1 and V1 (hence, with essentially the same value for K1), but with different
values of r1 and R. Plots of cO (and all other mass fractions) vs x0 or y0 will be
the same for the two flows if the product r1R is the same between the two flows.

This is a statement of binary scaling, where

r1R ¼ binary scaling parameter

This statement is illustrated qualitatively in Fig. 15.24. At the top of Fig. 15.24,
the nonequilibrium variation of cO vs s/R1 is sketched for the flow over a body
of radius R, with a freestream density of r1. At the bottom of Fig. 15.24, the
nonequilibrium variation of cO vs s/R2 is sketched for the flow over a body
of radius R2, where R2 is three times larger than R1, but the freestream
density is one-third of r1, such that the binary scaling parameter is the same
between the two different flows, that is, r1R1 ¼ r2R2. In this case, the curves
of cO vs s/R1 and vs s/R2 will be the same. This is the meaning of binary
scaling.

Binary scaling for an actual application is dramatically illustrated in [186]. In
Figs. 15.20–15.23 obtained from [186], the conditions were for V1 ¼ 23,000 ft/s,
altitude 200,000 ft where r1 ¼ 6 	 1027 slug/ft3, and Rs ¼ 0.0692 ft. For the
case shown in these figures, r1 Rs ¼ 4.2 	 1028 slug/ft2. Hall et al. in [186]

Fig. 15.24 Illustration of binary scaling.
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also made calculations for the same V1 at an altitude of 250,000 ft where
r1 ¼ 8 	 10–8 slug/ft3 and Rs ¼ 0.525 ft. For this case, r1 Rs ¼ 4.2 	 1028,
the same as just shown. According to binary scaling, as long as the flowfield associ-
ated with Figs. 15.20–15.23 is dominated by the two-body dissociation reactions
rather than the three-body recombination reactions, then the results for this
second case should fall right on top of the curves shown in Figs. 15.20–15.23.
This is indeed the situation found by Hall et al.; hence, Figs. 15.20–15.23 hold
also for the conditions V1 ¼ 23,000 ft/s, altitude 250,000 ft, and Rs ¼ 0.525 ft.
This result clearly demonstrates the power and applicability of binary scaling for
nonequilibrium flowfields. Indeed, Hall et al. go on to show that, for the most
part in their calculations, the ratio of kf/kr is much larger than unity (on the
order of 104 in certain sections of the flowfield); hence, it is no surprise that
their results exhibit strong binary scaling.

15.7 Nonequilibrium Flow over Other Shapes: Nonequilibrium

Method of Characteristics

The purpose of this section is to briefly examine the nonequilibrium flows over
wedges, sharp cones, blunt cones, and a space-shuttle configuration. The compu-
tational details, which are many, are minimized here, and emphasis is placed on
the physical results. In this manner, the reader will have some additional oppor-
tunities to obtain a physical understanding of nonequilibrium inviscid flows.

In Sec. 15.3, the nonequilibrium flow over a wedge was discussed qualitati-
vely, and the reasons for the resulting curved shock wave were given in conjunc-
tion with the discussion of Fig. 15.8. This discussion should be reviewed before
progressing further.

Because the nonequilibrium effects cause the flow over a wedge to have a
variation in both the directions normal and tangential to the wedge surface, a
two-dimensional flowfield solution must be used. These can take the form
of finite difference calculations or a method-of-characteristics solution. For
example, the method of characteristics has been used by Spurk et al. [187] and
by Rakich et al. [188] to calculate nonequilibrium inviscid flows over wedges
and cones. Some of these results will be discussed briefly in the present
section. However, before examining the results, let us note the salient aspects
of the method of characteristics for nonequilibrium flow.

In Sec. 5.2, the two-dimensional and axisymmetric irrotational and rotational
methods of characteristics were discussed for a calorically perfect gas. Section
5.2 should be reviewed before progressing further. How does nonequilibrium
flow modify the method of characteristics as discussed in Sec. 5.2? The major
aspects are as follows:

1) In a nonequilibrium flow, the irreversible finite-rate mechanisms always
increase the entropy [for example, see Eq. (10.72)]. Hence, the entropy of a
fluid element increases as it moves along a streamline in a nonequilibrium flow.
This causes all two- and three-dimensional nonequilibrium flows to be rotational,
and therefore the streamlines are characteristic lines in a nonequilibrium flow.

2) The other characteristic lines are Mach lines based on the frozen speed of
sound af, that is, lines that make an angle with the streamlines equal to
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m ¼ arcsin(1/Mf) ¼ arcsin(af/V ). The use of the frozen speed of sound for the
characteristic lines in a nonequilibrium flow (as opposed to, say, the equilibrium
speed of sound, or the actual nonequilibrium speed of sound) comes from the
theory itself and can be physically justified on the basis that the leading edge
of a wave front is only a few mean free paths thick, and hence must propagate
under locally frozen conditions.

The compatibility equations for the nonequilibrium method of characteristics
are given in [187]. Letting s1, s2, and s denote distances along the left-running and
right-running frozen Mach lines and the streamlines respectively, as sketched in
Fig. 15.25, these compatibility equations are as follows:
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Fig. 15.25 Illustration of characteristic lines in a nonequilibrium flow.
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Along s:
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(15:39)

Along s:
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(15:40)

where u is the angle between the streamline and the horizontal x axis shown
in Fig. 15.25, Mf is the frozen Mach number defined as V/af , j ¼ 0 or 1 for
two-dimensional or axisymmetric flow, y is the vertical coordinate shown in
Fig. 15.25, M is the local molecular weight of the mixture, Hi is the enthalpy of
species i per mole of i, Cpf is a mean molar frozen specific heat defined as
Cpf ¼

P
ihiCpi=

P
ihi, which is similar to the frozen specific heat defined by Eq.

(14.37), and Cpi is the specific heat of species i per mole of i. These compatibility
equations are solved in a downstream-marching fashion at the grid points defined
by intersections of the characteristics mesh, much in the same fashion as described
in Sec. 5.2.

Results for the nonequilibrium flow of air over a wedge are shown in
Fig. 15.26, taken from [187]. Here, the pressure and temperature distributions
are shown as a function of distance along the wedge. The freestream conditions
are V1 ¼ 6638 m/s, T1 ¼ 273.16 K, and p1 ¼ 0.01 atm. Note that the pressure
and temperature decrease with distance along the wedge surface. Also note that
the surface conditions do not approach the equilibrium oblique shock results at
large distances downstream. The reason for this can be seen by referring again
to Fig. 15.8. The surface streamline comes through the frozen shock wave at
the tip of the wedge, where the wave angle b is the greatest and hence the
entropy increase is the largest. The entropy of the surface streamline is further
increased by the irreversible finite-rate processes. Hence, the streamlines near
the wedge surface experience a permanent increase in entropy that exceeds the
predicted value for equilibrium flow over a wedge of the same angle (as calcu-
lated in Sec. 15.3). In this vein, the nonequilibrium flow over a wedge, with its
curved shock wave, creates an entropy layer near the surface. This entropy
layer results in the surface temperature approaching an asymptotic value far
downstream, which is higher than the equilibrium shock value from Sec. 14.3;
this is clearly seen in Fig. 15.26. Of course, the thickness of this entropy layer
becomes a smaller percentage of the total shock-layer thickness for stations pro-
gressively further downstream. In the limit of an infinite distance downstream of
the nose, the flow across the shock layer is in local equilibrium with uniform
properties (as calculated in Sec. 14.3) with the exception of the surface proper-
ties, which have singular-like behavior at different values than the uniform, equi-
librium flow.

Nonequilibrium flow over wedges and pointed and blunt-nosed cones are
reported by Rakich et al. in [188]. Here, the method of characteristics for non-
equilibrium flow is also employed for those regions of flow that are locally super-
sonic or hypersonic. Figure 15.27 illustrates the variation of shock-wave angle b
as a function of distance along the surface of a 30-deg half-angle wedge for the
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Fig. 15.26 Pressure and temperature along a wedge surface. Nonequilibrium flow.

V1 5 6638 m/s, T1 5 273.16 K, p1 5 0.01 atm, and u 5 41.04 deg (from Spurk

et al. [187]).

Fig. 15.27 Variation of shock-wave angle with distance in the nonequilibrium flow

over a wedge (from Rakich et al. [188]).
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case of V1 ¼ 6.7 km/s at an altitude of 65.5 km (a trajectory point of interest
because it corresponds to high laminar heat transfer to the space shuttle). Note
that b changes from its frozen flow value and approaches its equilibrium flow
value over a distance of 100 m, and that the change in shock angle is only a
few degrees. Figure 15.28 shows the profiles of atomic oxygen as a function of
a nondimensional normal distance h̄ across the shock layer for a pointed and a
blunt-nosed cone; h̄ ¼ (h� hb)=(hs � hb), where h is the local coordinate of
a point in the shock layer and hb and hs are the normal coordinates of the
body and shock respectively, at the same streamwise station. The coordinate h̄
is shown in Fig. 15.28. The two parts of Fig. 15.28 correspond to two different
axial stations; Fig. 15.28a applies to x/RN ¼ 3, and Fig. 15.28b applies to
x/RN ¼ 6.8, where RN is the radius of the blunt nose. In Fig. 15.28, the dashed
curves correspond to the pointed cone, and the solid curves correspond to the
blunt-nosed cone. Note that, as h̄ increases from zero, the sharp cone results
show a rapid decrease in X0 in the region near the surface (near h̄ ¼ 0), but
then a more gradual decrease throughout the remainder of the shock layer
toward the shock. This rapid change in X0 is related to the same type of
nonequilibrium-induced entropy layer as discussed earlier in regard to a sharp
wedge. The solid curves in Fig. 15.28 show that nose bluntness has a very
strong effect on X0. The strong entropy layer induced by the curved bow shock
wave at the nose creates a marked dip in the value of X0 at some distance from
the body surface. The location of this dip relative to the shock layer itself
becomes closer to the body (h̄ smaller) as distance downstream of the nose is
increased. The comparison shown in Fig. 15.28 clearly demonstrates a strong
coupling between the fluid-dynamic-induced entropy layer on a blunt-nosed
hypersonic body (as discussed in various places in Part 1 of this book) and the
finite-rate chemistry.

Finally, the nonequilibrium effect on the shock-wave shape on a space
shuttle vehicle is shown in Fig. 15.29, also obtained from [188]. Note that in
the nonequilibrium chemically reacting flow, the shock wave lies closer to
the body than in a frozen flow case (essentially a calorically perfect gas
with g ¼ 1.4).

15.8 Summary and Comments

Return again to the road map given in Fig. 1.24. With the end of this chapter,
we complete our discussion of inviscid chemically reacting flows. Taken
together, the material in Chapters 14 and 15 represents a study of basic
flows—wedge flows, cone flows, nozzle flows, and blunt-body flows—in
regard to how they are affected by high temperatures. The nonequilibrium
flows discussed in the present chapter stand in stark contrast to the equilibrium
flows considered in Chapter 14, primarily because of the importance of the
scale effect introduced by the nonequilibrium phenomena. Unlike the equilibrium
flows in Chapter 14, which are the same no matter how large the body might be,
we have found that the nonequilibrium flow over a given shape depends critically
on the size of the body. The size effect enters through the relative consideration of
chemistry time tc and flow time tf, where t f ¼ l/V1. Here, l represents the
characteristic size of the flowfield. In contrast, tc does not depend on the size
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Fig. 15.28 Atomic-oxygen profiles for nonequilibrium flow over blunted and sharp

cones: a) x/R 5 3; b) x/RN 5 6.8. V1 5 6.7 m/s, altitude 5 65.5 km, and uc 5 30 deg

(from [188]).
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of the body, but rather depends on the local density and temperature of the flow,
for example, for the high-temperature air applications, on the flight altitude.
Thus, the ratio tf/tc is strongly dependent on body size and the overall density
and temperature levels of the flow. Hence, for flight applications, tf/tc

depends on body size and altitude; nonequilibrium effects are accentuated by
smaller bodies and higher altitudes, where tf/tc becomes small, and in contrast,
equilibrium flows are approached for larger bodies and lower altitudes, where tf/
tc becomes large.

Finally, we have seen that high-temperature inviscid flows, both equilibrium
and nonequilibrium, stand in sharp contrast to the calorically perfect inviscid
flows discussed in Part 1 of this book. High temperatures have a pronounced
effect on the density and temperature profiles in a flow; to a lesser extent, the
pressure is affected. Completely different methods must be used to properly cal-
culate such high-temperature flows in comparison to the familiar calorically
perfect-gas analyses. For example, virtually all high-temperature flows require
some type of numerical solution; no closed-form analytic expressions are avail-
able for such flows. Also, the powerful role that M and g play in the analysis of
calorically perfect-gas flows is completely diluted at high temperatures; we can
still define and identify M and g for a high-temperature flow, but they are of
no particular use in a calculation. Rather, high-temperature flows depend on
more fundamental primitive variables such as velocity, density, pressure, and
temperature (and for nonequilibrium flows, on the scale of the flow).

We can now appreciate the main thrust of Part 3 of this book. Our purpose is to
present the basic physical chemistry background of high-temperature effects
(Chapters 10–13) and to show the impact of these effects on some fundamental
flow problems (Chapters 14 and 15). The nature and magnitude of the high-

Fig. 15.29 Nonequilibrium effect on shock-wave shape for the space shuttle (from

[188]).
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temperature effects are nicely brought out in the study of such basic flows, thus
giving the reader important insight to applying such knowledge to more complex
flows.

From here, we will turn our attention to high-temperature viscous flows in
Chapters 16 and 17. Such flows introduce some additional physical consider-
ations that are coupled with high-temperature effects.

Problems

15.1 Consider a normal shock wave in air. The flow upstream of the shock cor-
responds to a standard altitude of 200,000 ft at a Mach number of 25.
Calculate the chemical species distributions in the nonequilibrium
region behind the shock, as a function of distance behind the shock
front. Plot your results graphically. Assume that the chemical species
present are N2, O2, N, and O. (We will ignore NO and any ionization.)

15.2 In Figs. 15.22 and 15.23, the ordinate is given as number of moles of
species i per original mole of air. Show how this ratio is related to our
more familiar mass fraction ci and mole-mass ratio hi.
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16
Kinetic Theory Revisited: Transport Properties

in High-Temperature Gases

Victory is the beautiful, bright-colored flower. Transport is
the stem without which it could never have blossomed.

Sir Winston Churchill, 1899

Chapter Preview

We are about to leave the world of inviscid flows behind and enter the

world of viscous high-temperature flows. Viscous flows, being what they

are, involve the physical processes of viscosity, thermal conduction, and

mass diffusion. These are called transport properties in the gas. Add to that

consideration the extra feature that the gas is at high temperature. How do

we obtain the transport properties of a high-temperature, chemically reacting

gas? This question has to be addressed before we can study viscous high-

temperature flows, and that is the purpose of this chapter. For this, we

retreat back to the world of basic physics and revisit the subject of kinetic

theory. But do not worry. This is a fairly short chapter, and we will not be

here very long. Our basic objective is to get to the study of viscous high-

temperature flows as expeditiously as we can. Take this chapter seriously,

and be prepared to be expedited.
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16.1 Introduction

Taking a cue from the preceding quotation by Churchill referring to the role of
transport in war, we can state in an analogous fashion that the physical processes
of transport phenomena are the stems on which all viscous flows depends. By
transport phenomena, we refer to the physical properties of viscosity, thermal
conduction, and diffusion. These transport phenomena, particularly the first
two, are important to the nonreacting viscous flows discussed in Part 2. All
three are important in high-temperature, chemically reacting viscous flows and
hence must be examined before we can discuss such flows. Therefore, the
purpose of this chapter is to present the salient aspects of transport phenomena
in high-temperature gases. In particular, our focus will be on the calculation of
the viscosity coefficient, thermal conductivity, and diffusion coefficient for a
chemically reacting mixture. A proper study of such matters constitutes an
important part of classical kinetic theory. It is not our purpose to present the
details here—such matters are far beyond the scope of the present book. Rather,
we will briefly discuss the general philosophy and give results without detailed
derivations; our purpose is to give the reader only enough understanding of the
basic physical aspects to make him or her comfortable with our discussions of
high-temperature viscous flows in Chapter 17. For authoritative presentations on
transport phenomena in general, see [189–191].

Refer again to our road map in Fig. 1.24. With this chapter, we begin our leap
into the subject of chemically reacting viscous flows, which plunges us deep into
the heart of high-temperature flows in general.

16.2 Definition of Transport Phenomena

In this section, we will define the viscosity coefficient, thermal conductivity,
and diffusion coefficient and show how simple equations for these transport
phenomena can be obtained from the elementary kinetic theory introduced in
Chapter 12. The essence of molecular transport phenomena in a gas is the
random motion of atoms and molecules. When a particle (atom or molecule)
moves from one location to another in space, it carries with it a certain momen-
tum, energy, and mass associated with the particle itself. The transport of this par-
ticle momentum, energy, and mass through the gas as a result of the random
particle motion gives rise to the transport phenomena of viscosity, thermal con-
duction, and diffusion, respectively.

To examine the transport of particle momentum, energy, and mass more
closely, consider Fig. 16.1. At the left is sketched a gas in a two-dimensional
(x, y) space, showing two particles crossing the horizontal line y ¼ y1 because
of their random motion. Let f denote some mean property carried by the particle,
say, its momentum, energy, or mass-related property; moreover, assume that on
the average f has a variation in the y direction as shown at the right of Fig. 16.1.
In Fig. 16.1, particle 1 crosses the line y ¼ y1 from above; let Dy be the distance
above y1 at which, on the average, particle 1 experienced its last collision
before crossing y1. Similarly, particle 2 crosses the line y1 from below; let Dy
be the average distance below y1 at which particle 2 experienced its last collision
before crossing y1. In crossing y1, particle 1 will carry with it a mean value of f
equal to f (yþ Dy), and particle 2 will carry a mean value equal to f(y 2 Dy).
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From our discussion in Chapter 12, a reasonable estimate for Dy would be the
mean free path l. Moreover, the flux of particles crossing y1 from either above
or below (particles per second per unit area) is proportional to n �C, where n is
the number density and �C is the mean particle speed given by Eq. (12.17). In
turn, the flux of f across y1 caused by both directions is

L ¼ an �C½f(y1 � l)� f(y1 þ l)� (16:1)

where the flux L is positive in the net upward direction and a is a proportionality
constant. Expanding f in a Taylor’s series about y ¼ y1, we have

f( y1 þ l) ¼ f( y1)þ
df

dy
lþ

d2f

dy2

l2

2
þ � � �

and

f( y1 � l) ¼ f(y1)�
df

dy
lþ

d2f

dy2

l2

2
� � � �

Substituting the preceding into Eq. (16.1) and neglecting terms of l2 and higher
order, we have

L ¼ �2an �Cl
df

dy
(16:2)

We can visualize Eq. (16.2) as a general transport equation for f.
Let us now consider particular quantities for f. First, let f be the mean

momentum of the particles. Because momentum is a vector quantity, let us
examine only the x component of momentum, give by m �Cx, where m is
the mass of the particle and �Cx is the mean velocity in the x direction. Then,
from Eq. (16.2) we have

L ¼ �2an �Clm
d �Cx

dy
(16:3)

Fig. 16.1 Model for transport phenomena.
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Referring to our knowledge of Newtonian mechanics, in a flow the flux in the y
direction of the x component of momentum is simply the shear stress txy

(for example, see [5]). Thus, Eq. (16.3) becomes, with txy ¼ 2L,

txy ¼ 2an �Clm
d �Cx

dy
(16:4)

Moreover, from our macroscopic fluid mechanics, we can write (for the picture
given in Fig. 16.1 with gradients only in the y direction)

txy ¼ m
@u

@y
¼ m

@Cx

@y
(16:5)

where u is the x component of the flow velocity and m is the viscosity coefficient.
In our kinetic theory picture, �Cx ¼ u. Comparing Eqs. (16.4) and (16.5), we have

m ¼ 2anm �Cl (16:5a)

Now consider f to be the mean energy of the particle, given by Eq. (12.9a) as
3
2
k1T, where k1 is the Boltzmann constant. (The reason for denoting the

Boltzmann constant by k1 here, as opposed to its normal symbol k, will become
obvious next.) The flux of energy across y1 is then obtained from Eq. (16.2) as

L ¼ �3ak1n �Cl
dT

dy

or, denoting the constant 3ak1 by K,

L ¼ �Kn �Cl
dT

dy
(16:6)

From classical heat transfer, we know that the energy flux (energy per second
per unit area) is given by

_q ¼ �k
@T

@y
(16:7)

where k is the thermal conductivity. Because, in our kinetic theory picture, L in
Eq. (16.6) is q̇, then, by comparing Eqs. (16.6) and (16.7), we have

k ¼ Kn �Cl (16:8)

Finally, let us consider the transport of molecular mass. Here, we will consider a
binary gas mixture made up of A and B particles, with number densities nA and nB,
respectively. In Eq. (16.2), let L be the flux of A particles across y1, namely, the
number of A particles crossing y1 per second per unit area. In Eq. (16.2), n is the
total number density, n ¼ nAþ nB. Therefore, the quantity f being transported
across y1 must be a probability that the particle crossing y1 is indeed an A particle.
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This probability is the mole fraction XA; thus, f ¼ XA ¼ nA/n. For this case,
Eq. (16.2) is written as

L ¼ �2an �Cl
d(nA=n)

dy
¼ 2a �Cl

dnA

dy
(16:9)

On a macroscopic basis, we can define the flux of A particles per second per unit
area as GA and express it as

GA ¼ �DAB

dnA

dy
(16:10)

where DAB is the binary diffusion coefficient for species A into B. Comparing
Eqs. (16.9) and (16.10), where L ¼ GA, we have

DAB ¼ 2a �Cl (16:11)

The preceding results show that the transport coefficients m, k, and DAB depend
on C and l. Moreover, from Eqs. (12.21) and (12.29), we have

l ¼ �
1ffiffiffi

2
p

p d 2n
¼

1ffiffiffi
2
p

s n

and

�C ¼

ffiffiffiffiffiffiffiffiffi
8RT

p

r

where s is the collision cross section. Thus, Eqs. (16.5), (16.8), and (16.11) can
be written as

m ¼ Km

ffiffiffiffi
T
p

s
(16:12)

k ¼ Kk

ffiffiffiffi
T
p

s
(16:13)

DAB ¼ KD

ffiffiffiffi
T
p

s n
(16:14)

where Km, Kk, and KD are constants. Equations (16.12–16.14) demonstrate the
important and familiar point that m and k for a pure gas depend only on T,
whereas DAB depends on both T and n. The latter remark is worth emphasizing;
the diffusion coefficient depends on both the temperature and the density of the
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gas. Using the equation of state in the form of p ¼ nk1T (where again k1 denotes
the Boltzmann constant), Eq. (16.14) can be written as

DAB ¼ K 0D

ffiffiffiffiffi
T3
p

ps
(16:14a)

Equations (16.12–16.14) are simple results that come from a very elementary
picture of kinetic theory. For a much more sophisticated analysis of these trans-
port coefficients, see [189] and [190]. However, Eqs. (16.12–16.14) illustrate the
important qualitative and quantitative aspects that we will need for our future
discussions.

16.3 Transport Coefficients

In this section, some results for the calculation of transport coefficients will
be given, without derivation. The following expressions are obtained from a
more sophisticated kinetic theory treatment than was carried out in Sec. 16.2;
see [189] and [190] for more details. These treatments take into account the rela-
tive motion of the molecules and replace our earlier “hard-sphere” model with a
picture of particles moving under the influence of an intermolecular force field,
which varies with distance r from the molecule. A common model for this
force field is the Lennard–Jones (6–12) potential, which gives the intermolecular
force as

F ¼ �
dFm

dr

where

Fm(r) ¼ 41
d

r

� �12

�
d

r

� �6
" #

(16:15)

and where d is a characteristic molecular diameter and 1 is a characteristic energy
of interaction between the molecules.

For a pure gas, m and k can be obtained from (see [191])

m ¼ 2:6693� 10�5

ffiffiffiffiffiffiffiffiffi
MT
p

d 2Vm

(16:16)

and, for a monotomic gas,

k ¼ 1:9891� 10�4

ffiffiffiffiffiffiffiffiffiffiffi
T=M
p

d2Vk

(16:17a)

whereas for a diatomic or polyatomic gas Eucken’s relation that takes into
account the additional energy modes of rotation, vibration, and electronic
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(see [150]) gives

k ¼ m
5

2
cvtrans
þ cvrot

þ cvvib
þ cvel

� �
(16:17b)

where the units of m are g cm21 s21, T is in K, d is in Ångstrom units
(1 Å ¼ 1028 cm), and k is in cal cm21 s21 (K)21. In the preceding equations,
M is the molecular weight. The quantities Vm and Vk are collision integrals
that give the variation of the effective collision diameter as a function of temp-
erature (i.e., as a function of the relative energy between molecular collisions).
Values for Vm and Vk as a function of k1T/1 are given in Table 16.1, obtained
from [191]. Values for d and 1/k1 (where k1 is the Boltzmann constant) associ-
ated with the Lennard–Jones potential are tabulated in Table 16.2 for different
gases. Note the similarity of Eqs. (16.16) and (16.17) to our simple results
given by Eqs. (16.12) and (16.13).

For a binary mixture of species A and B, let us write an expression for the mass
flux of species A (mass of A per second per unit area), denoted by jA, as

jA ¼ �rDABrcA (16:18)

where cA is the mass fraction of A and DAB is the pertinent binary diffusion
coefficient (sometimes called the diffusivity). Equation (16.18) is called Fick’s
law. In Eq. (16.18), DAB can be obtained from

DAB ¼ 0:0018583

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3((1=MA)þ (1=MB))

p
pd 2

ABVd, AB

(16:19)

where DAB is in cm2 s21, T in K, p in atm, and dAB in Å units. A fair approxi-
mation for dAB is simply

dAB ¼
1
2

(dA þ dB)

Values for Vd,AB are given in Table 16.1 as a function of k1T/1AB, where
1AB ¼

ffiffiffiffiffiffiffiffiffiffi
1A1B
p

. Note the similarity between Eq. (16.19) and our simple result
given by Eq. (16.14a).

For a multicomponent gas, such as a chemically reacting mixture, the mixture
values of m and k must be found from the values of mi and ki of each of the chemi-
cal species i by means mixture rules. A common rule for viscosity is Wilke’s rule,
which states that

m ¼
X

i

XimiP
j Xjfij

(16:20)

where

fij ¼
1ffiffiffi
8
p 1þ

Mi

Mj

� ��1=2

1þ
mi

mj

 !1=2
Mj

Mi

� �1=4
2
4

3
5

2
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Table 16.1 Functions for prediction of transport properties of gases at low densities

k1T/1
or

k1T/1AB

Vm ¼ Vk (for

viscosity and

thermal

conductivity)

VD,AB

(for mass

diffusivity)

k1 T/1
or

k1 T/1AB

Vm ¼ Vk

(for viscosity

and thermal

conductivity)

VD,AB (for

mass

diffusivity)

—— —— —— 2.50 1.093 0.9996

0.30 2.785 2.662 2.60 1.081 0.9878

0.35 2.628 2.476 2.70 1.069 0.9770

0.40 2.492 2.318 2.80 1.058 0.9672

0.45 2.368 2.184 2.90 1.048 0.9576

0.50 2.257 2.066 3.00 1.039 0.9490

0.55 2.156 1.966 3.10 1.030 0.9406

0.60 2.065 1.877 3.20 1.022 0.9328

0.65 1.982 1.798 3.30 1.014 0.9256

0.70 1.908 1.729 3.40 1.007 0.9186

0.75 1.841 1.667 3.50 0.9999 0.9120

0.80 1.780 1.612 3.60 0.9932 0.9058

0.85 1.725 1.562 3.70 0.9870 0.8998

0.90 1.675 1.517 3.80 0.9811 0.8942

0.95 1.629 1.476 3.90 0.9755 0.8888

1.00 1.587 1.439 4.00 0.9700 0.8836

1.05 1.549 1.406 4.10 0.9649 0.8788

1.10 1.514 1.375 4.20 0.9600 0.8740

1.15 1.482 1.346 4.30 0.9553 0.8694

1.20 1.452 1.320 4.40 0.9507 0.8652

1.25 1.424 1.296 4.50 0.9464 0.8610

1.30 1.399 1.273 4.60 0.9422 0.8568

1.35 1.375 1.253 4.70 0.9382 0.8530

1.40 1.353 1.233 4.80 0.9343 0.8492

1.45 1.333 1.215 4.90 0.9305 0.8456

1.50 1.314 1.198 5.0 0.9269 0.8422

1.55 1.296 1.182 6.0 0.8963 0.8124

1.60 1.279 1.167 7.0 0.8727 0.7896

1.65 1.264 1.153 8.0 0.8538 0.7712

1.70 1.248 1.140 9.0 0.8379 0.7556

1.75 1.234 1.128 10.0 0.8242 0.7424

1.80 1.221 1.116 20.0 0.7432 0.6640

1.85 1.209 1.105 30.0 0.7005 0.6232

1.90 1.197 1.094 40.0 0.6718 0.5960

1.95 1.186 1.084 50.0 0.6504 0.5756

2.00 1.175 1.075 60.0 0.6335 0.5596

2.10 1.156 1.057 70.0 0.6194 0.5464

2.20 1.138 1.041 80.0 0.6076 0.5352

2.30 1.122 1.026 90.0 0.5973 0.5256

2.40 1.107 1.012 100.0 0.5882 0.5170
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In Eq. (16.20), m is the viscosity coefficient for the mixture, mi is the viscosity
coefficient for each species i from Eq. (16.16), Mi is the molecular weight of
species i, Xi is the mole fraction of species i, and i and j are dummy subscripts
denoting the various chemical species.

For the thermal conductivity of a mixture, Eq. (16.20) can be used again,
replacing m with k and mi with ki, where ki is obtained from Eq. (16.17).

For a gas with two species, the binary diffusion coefficient given by
Eq. (16.19) and Fick’s law given by Eq. (16.18) are sufficient to describe the
diffusion processes. For a gas with more than two species, a multicomponent
diffusion coefficient must be used, denoted by Dim for the diffusion species i
through the mixture. The multicomponent diffusion coefficient Dim is related
to the binary diffusion coefficients Dij for the diffusion of species i into j by
means of the approximate expression

Dim ¼ ð1� XiÞ=
X

j

Xj

Dij

(16:21)

Table 16.2 Lennard–Jones parameters for various gases

Substance

Molecular

weight M

Lennard–Jones

parameters

s, Å 1/k1, K

Light elements

H2 2.016 2.915 38.0

He 4.003 2.576 10.2

Noble gases

Ne 20.183 2.789 35.7

Ar 39.944 3.418 124

Kr 83.80 3.498 225

Xe 131.3 4.055 229

Simple polyatomic substances

Air 28.97 3.617 97.0

N2 28.02 3.681 91.5

O2 32.00 3.433 113

O3 48.00 —— ——

CO 28.01 3.590 110

CO2 44.01 3.996 190

NO 30.01 3.470 119

N2O 44.02 3.879 220

SO2 64.07 4.290 252

F2 38.00 3.653 112

Cl2 70.91 4.115 357

BR2 159.83 4.268 520

I2 252.82 4.982 550
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For the diffusion flux of species i, Fick’s law is still reasonably applicable in the
form of

ji ¼ �rDimrci (16:22)

where ji is the mass flux of species i diffusion through the mixture. For multi-
component diffusion, Eq. (16.22) is an approximation that holds reasonably
well for most high-temperature gas dynamic applications, at least for those appli-
cations discussed in this book.

16.4 Mechanism of Diffusion

In this section, we examine from a macroscopic point of view the mechanism
of diffusion. It is common knowledge that if you are in a room and someone in
the corner opens a bottle of ammonia, after a period of time you will smell
the ammonia. This is because, over a period of time, some of the ammonia
molecules will work their way over to you, just by virtue of their random
motion in the gas. To be a little more precise, in the immediate vicinity of the
ammonia bottle, after it is opened, there is a locally high concentration of
ammonia, with a resulting concentration gradient. Under the influence of this
gradient, the ammonia molecules will gradually diffuse away from the bottle.
If you would imagine the ammonia molecules colored green, you would see a
“green cloud” form in the vicinity of the bottle, and this green cloud would
move toward you at some mean velocity; this velocity is defined as the diffusion
velocity of the ammonia.

Let us now be more precise. Consider a stationary slab of gas mixture in
which there exists a gradient in mass fraction of species i; the variation of
ci is sketched in Fig. 16.2a, and the resulting gradient rci is shown at a
given point in the stationary slab in Fig. 16.2b. Because of this gradient, at
the same point there is a mass motion of species i in the opposite direction;
the velocity of this mass motion of species i is defined as the diffusion velocity
of species i, denoted by Ui. The corresponding mass flux of species i is riUi,
which is shown in Fig. 16.2b and is given approximately by Fick’s law
[Eq. (16.22)] as

ji ; riUi ¼ �rDimrci (16:23)

Let us now imagine that the slab in Fig. 16.2b is set into motion with the
velocity V, as sketched in Fig. 16.2c. The mass motion of species i, relative to
us standing in the laboratory, is now Vi, where

Vi ¼ V þ Ui

Mass motion of species
i relative to the lab,

or just simply the mass
motion of species i

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Mass motion of

the mixture
(relative to the lab)

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Diffusion velocity

of species i
ðrelative to the
mass motion of

the mixtureÞ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

(16:24)

700 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



In conjunction with a gas dynamic flow, V in Eq. (16.24) is the familiar flow
velocity at a point in the flowfield; for a gas mixture, the flow velocity is in
reality a mass average of all of the Vi, that is,

V ¼
X

i

ciVi (16:25)

Equation (16.24) is simply a statement that the mass motion of species i is
equal to the flow velocity of the mixture plus the diffusion velocity Ui,
where Ui is relative to the mass motion of the mixture. If we multiply Eq.
(16.24) by ci and sum over all species, we haveX

i

ciVi ¼ V
X

i

ci þ
X

i

ciUi (16:26)

Fig. 16.2 Illustration of diffusion velocity.
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Recalling that
P

i ci ¼ 1 and substituting Eq. (16.25) for V into Eq. (16.26),
we obtain the important result that

X
i

ciUi ¼
1

r

X
i

riUi ¼ 0

or

X
i

riUi ¼ 0 (16:27)

As a final note in this section, we have to mention that the mass diffusion of
species i through a mixture is also driven by pressure and temperature gradients,
as well as by concentration gradients. Pressure diffusion caused by �p is extre-
mely slight and is almost always neglected in gas dynamic problems. Thermal
diffusion caused by �T is a more pronounced effect in regions of large tempera-
ture gradients. Thermal diffusion is a reflection that, at a given temperature, light
particles have a higher mean molecular velocity than heavy particles, as dis-
cussed at the end of Sec. 12.2. Therefore, in a temperature gradient the light par-
ticles will tend to diffuse faster in the direction of decreasing temperature than
will the heavy particles. (This is why dust in a heated room tends, over a
period of time, to collect on the surface of radiators.) The mass flux of species
i caused by thermal diffusion is given by (see [191])

j (T)
i ¼ �DT

i �lnT (16:28)

where Di
T is the thermal diffusion coefficient. For most gas dynamic applications,

thermal diffusion is small when compared with diffusion caused by concentration
gradients and is usually neglected. (See [189–191] for more details on pressure
and thermal diffusion.)

16.5 Energy Transport by Thermal Conduction and

Diffusion: Total Thermal Conductivity

In the viscous flows discussed in Part 2, we used the fact that energy is trans-
ported by thermal conduction. Moreover, the flux of this energy (energy per
second per unit area) is given by

qc ¼ �k�T (16:29)

where k is the ordinary thermal conductivity as given by Eq. (16.17) for a pure
species and Eq. (16.20) (with m and mi replaced by k and ki, respectively) for
the mixture thermal conductivity.

For a chemically reacting mixture, there is also an energy transport caused by
diffusion. This is easily seen by visualizing a chemical species i diffusing from
location 1 to location 2, where at location 2 the species participates in a chemical
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reaction, thus exchanging some energy with the gas. That is, as species i diffuses
through the gas, it carries with it the enthalpy of species i, hi, which is a form
of energy transport. (Keep in mind that hi contains the heat of formation of
species i.) Hence, at a point in the gas, we can write

Energy flux caused by
diffusion of species i

n o
¼ riUihi

In turn,

Energy flux caused by diffusion
of all species at the point

n o
¼ qD ¼

X
i

riUihi (16:30)

Therefore, if we include the energy flux caused by radiation (which will be
important for the applications discussed in Chapter 18), denote by qR, we can
write for the total energy flux at a point in a high-temperature, chemically
reacting gas

q ¼ qc þ qD þ qR

or

q ¼ �k�T þ
X

i

riUihi þ qR (16:31)

[Note that in Eq. (16.31) we are not including energy flux caused by convection in
a flow; here, we are considering a stationary gas that has temperature and concen-
tration gradients, and q is simply the energy transport at some point in the station-
ary gas as a result of transport phenomena and radiation.]

In some high-temperature flow applications, the concept of total thermal con-
ductivity is used, as defined in [167] and [193], among others. This concept is
developed as follows. Consider a flowfield with gradients of temperature and
mass fractions in the y direction (such as in a boundary layer). The energy flux
in the y direction (neglecting radiation) is obtained from Eq. (16.31) as

qy ¼ �k
@T

@y
þ
X

i

riUi,yhi (16:32)

where Ui,y is the component of the diffusion velocity of species i in the y direc-
tion. From Eq. (16.22),

riUi,y ¼ �rDim

@ci

@y
(16:33)

Combining Eq. (16.32) and (16.33), we have

qy ¼ �k
@T

@y
� r

X
i

Dimhi

@ci

@y
(16:34)
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Assume that the gas is in the local chemical equilibrium, such that ci ¼ f (p, T),
and hence

dci ¼
@ci

@T

� �
p

dT þ
@ci

@p

� �
T

dp (16:35)

Furthermore, assume that p is constant in the y direction (such as through a
boundary layer). With this, Eq. (16.35) becomes

@ci

@y
¼
@ci

@T

@T

@y
(16:36)

Substituting Eq. (16.36) into (16.34), we have

qy ¼ �k
@T

@y
� r

X
i

Dim hi

@ci

@T

 !
@T

@y

or

qy ¼ �k
@T

@y
� kr

@T

@y
¼ �kT

@T

@y
(16:37)

where k is the ordinary, familiar thermal conductivity, kr is called the reaction
conductivity (which is caused solely by diffusion) given by

kr ¼ r
X

i

Dimhi

@ci

@T

and kT is the total conductivity, defined as

kT ¼ k þ r
X

i

Dimhi

@ci

@T
(16:38)

Sometimes kT is used to define an “equilibrium” Prandtl number as follows.
For an equilibrium chemically reacting gas, h ¼ h(T, p), and we can write

dh ¼
@h

@T

� �
p

dT þ
@h

@p

� �
T

dp (16:39)

Assuming constant pressure in the y direction and noting that (@h=@T)p ; cp,
Eq. (16.39) yields

@T

@y
¼

1

cp

@h

@y
(16:40)

From Eqs. (16.37) and (16.40), we have

qy ¼ kT

@T

@y
¼

kT

cp

@h

@y
¼

m

Preq

@h

@y
(16:41)
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where Preq is called the equilibrium Prandtl number, defined as

Preq ¼
mcp

kT

(16:42)

Note: The concepts of total conductivity and equilibrium Prandtl number have
applications only in flows that 1) are in local chemical equilibrium and 2) the
energy flux is being calculated in a direction in which the pressure is constant.
Although this concept might sound very restrictive, there is a relatively large
class of chemically reacting boundary-layer applications to which it has been
applied. Indeed, for high-temperature air, values of kT are Preq have been calcu-
lated and tabulated by Hansen in [167].

16.6 Transport Properties for High-Temperature Air

High-temperature transport coefficients for air in chemical equilibrium have
been calculated by Hansen [167] and Peng and Pindroh [193], among others.
For example, Fig. 16.3 gives the variation of m as a function of T with p as a par-
ameter, obtained from [167]. In this figure, the reference value of m0 is given by

m0 ¼ 1:462� 10�5 T1=2

1þ 112=T

gm

cm s

where m0 is an approximate temperature variation of viscosity coefficient for non-
reacting air, with a chemical composition frozen at standard conditions. Hence, the
amount by which m/m0 deviates away from unity in Fig. 16.3 is a reflection of the
high-temperature, chemically reacting effect. The strong variation inm/m0, which
occurs above a temperature of 8000 K, is because of the important effects of ion-
ization and hence free electrons on the transport properties. The total conductivity
defined as kT in Eq. (16.38) is given in Fig. 16.4, also from Hansen. Here, the refer-
ence value is

k0 ¼ 1:364m0

J

(cm)(s)(K)

The large variations in kT/k0 are caused primarily by the reaction conductivity
associated with diffusion; this shows the relatively large effect that diffusion can
play in energy transport through chemically reacting gases. In Fig. 16.5, the
equilibrium Prandtl number, defined by Eq. (16.42), is given as calculated by
Hansen. Note that Preq has a more benign variation than kT because the tempera-
ture variations of kT in Fig. 16.3 and cp (similar to that shown for cp in Fig. 14.16)
tend to cancel each other. Note that, in the range of dissociation, Preq varies
between 0.6 and 0.8.

In passing, we note a fourth transport property of some importance in high-
temperature gases, namely, the electrical conductivity. This property is important
to the analysis of flow problems in the presence of electromagnetic fields. Such
matters fall under the category of magnetohydrodynamics and are beyond the
scope of this book.
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Fig. 16.4 Total thermal conductivity for equilibrium high-temperature air (from

Hansen [167]).
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Finally, simple correlations for the transport properties of high-temperature
air, analogous to the Tannehill–Mugge correlations (for example) for the equili-
brium thermodynamic properties, are hard to find. Perhaps one of the best
examples are the correlations of Viegas and Howe [194], where polynomials
for rm and rm/Preq are given as a function of p and h.

16.7 Summary and Comments

The purpose of this chapter is to make the reader feel somewhat comfortable
with the transport coefficients for a high-temperature, chemically reacting gas. In
particular, from simple kinetic theory, we have seen that m and k for a pure gas
depend only on T, whereas the binary diffusion coefficient DAB and, hence, the
multicomponent diffusion coefficients Dim depend on both T and r (or T and p).
Equations for the transport coefficients of a pure gas are given in terms of the
collision diameter and the collision integrals, and various mixture rules are given
to obtain the transport coefficients for a mixture from the individual values for
each species i. Some results for high-temperature are discussed.

Caution: Published values for the transport coefficients for high-temperature
gases are much more uncertain than for the equilibrium thermodynamic proper-
ties discussed in Chapter 12. Theoretical values of the transport coefficients
depend critically on the assumption used for the intermolecular force potential,
which is always uncertain. Experimental measurements at high temperatures
are also uncertain and difficult to make. Therefore, when you are ready to
perform a serious analysis of high-temperature viscous flows, it is good practice
to scour the current literature for the most accurate data on transport coefficients.
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17
Viscous High-Temperature Flows

Before engineers can reliably design devices to survive flight
through or into an atmosphere at hypersonic speeds, they must
somehow provide for, avoid, or otherwise accommodate the
enormous heat-transfer rates to the vehicle engendered by
such flight speeds.

William H. Dorrance, 1962

Chapter Preview

Reflecting on the old phrase “everything but the kitchen sink,” in this chapter

we have everything including the kitchen sink. Here, the kitchen sink is the

inclusion of the viscous effects of viscosity, thermal diffusion, and mass

diffusion in chemically reacting flows. Question: How do we calculate the

heat transfer to a surface from a chemically reacting flowfield? This question

is answered in the present chapter. Indeed, it is the major thrust of this chapter.

Do you think the answer is different for nonequilibrium and nonequilibrium

flows? Does the catalytic state of the surface make any difference? How

do the viscous effects change the local chemical composition in a high-

temperature flow? To find out, simply read on. This chapter is the pinnacle

of our study of high-temperature gas dynamics. Climb to the top, and enjoy

the view.
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17.1 Introduction

The quotation by W. H. Dorrance on p. 711, an authoritative aerodynamicist and
well-known author of a book on hypersonic viscous flow [195], clearly states one of
the strongest forces that drives an interest in chemically reacting viscous flows,
namely, the need to accurately predict and deal with the aerodynamic heating to
hypersonic bodies. This motivation was a strong impetus behind our viscous-flow
discussion in Part 2 of this book. However, by intent we did not include
high-temperature effects in Part 2, because our emphasis there was the purely fluid-
dynamic behavior of hypersonic viscous flows. In the present chapter, we now
address the question: how are the viscous flows studied in Part 2 affected by
high temperatures? We will find that many of the qualitative trends, analytical
techniques, and numerical methods developed in Part 2 carry over directly to
the high-temperature case. Therefore, to avoid unnecessary duplication, we
will frequently refer to sections in Part 2; in such occasions, the reader is strongly
encouraged to review the pertinent material in Part 2 as is necessary.

In the present chapter, our emphasis will be on the fundamental equations and
the basic physical behavior of chemically reacting viscous flow. We will be
“long” on basic fundamentals and “short” on details because the subject matter
is so extensive that it is not possible to give a complete survey of the field
within the length constraints of this book. Instead, our purpose will be to make
the reader feel comfortable with the basic ideas and equations, and then we
will discuss a few well-chosen examples to illustrate the physical nature of
chemically reacting viscous flows. With the background provided in this
chapter, the reader should be able knowledgeably to read the literature in the
field and to embark on the solution of more complex problems. Also, in
the present chapter we will consider simultaneously both equilibrium and
nonequilibrium chemically reacting and vibrationally relaxing flows.

17.2 Governing Equations for Chemically Reacting Viscous Flow

The complete Navier–Stokes equations were given by Eqs. (6.1–6.6) for a
nonreacting gas. The continuity equation (6.1) and the momentum equations
(6.2–6.4) are purely mechanical in nature and are not affected by chemical
reactions. Hence, for a chemically reacting flow, we have the following.

Global continuity:

@r

@t
þ � � (rV) ¼ 0 (17:1)

x Momentum:

r
Du

Dt
¼ �

@p

@x
þ
@txx

@x
þ
@tyx

@y
þ
@tzx

@z
(17:2)

y Momentum:

r
Dv

Dx
¼ �

@p

@y
þ
@txy

@x
þ
@tyy

@y
þ
@tzy

@z
(17:3)
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z Momentum:

r
Dw

Dt
¼ �

@p

@z
þ
@txz

@x
þ
@tyz

@y
þ
@tzz

@z
(17:4)

The energy equation, given by Eq. (6.5), must be modified to include the effects
of diffusion. Hence, we write the following:

Energy:

r
D(eþ V2=2)

Dt
¼ �� � q� � � pV þ

@(utxx)

@x
þ
@(utyx)

@y
þ
@(utzx)

@z
þ
@(vtxy)

@x

þ
@(vtyy)

@y
þ
@(vtzy)

@z
þ
@(wtxz)

@x
þ
@(wtyz)

@y
þ
@(wtzz)

@z
(17:5)

where, from Eq. (16.31), the heat-flux vector is

q ¼ �k�T þ
X

i

riUihiþ qR (17:6)

In Eqs. (17.2–17.5), the expressions for the shear and normal stresses txy, txx, etc.
are given by Eqs. (6.6a–6.6f), and m and k are the mixture values for viscosity
coefficient and thermal conductivity as discussed in Chapter 16. In terms of
the substantial derivative, Eq. (17.5) says that the change in total energy,
eþ V2/2, of a fluid element moving along a streamline is because of
1) thermal conduction across the surfaces of the fluid element; 2) transport of
energy by diffusion into (or out of) the fluid element across its surfaces; 3) radi-
ative energy emitted or absorbed by the element; 4) rate of work done by pressure
forces exerted on the surfaces of the element; and 5) rate of work done by shear
and normal stresses exerted on the surfaces.

For a viscous, chemically reacting flow in local chemical equilibrium, we add
the equilibrium thermodynamic properties, given conceptually as

p ¼ p(e, r) (17:7)
T ¼ T(e, r) (17:8)

Hence, for such a flow, Eqs. (17.1–17.8) constitute the governing equations.
For chemical nonequilibrium flows, we found in Sec. 15.2 that the species

continuity equations were also necessary. Such equations were derived in
Sec. 15.2 for an inviscid flow using the model of the fixed, finite control
volume shown in Fig. 15.2, leading to Eqs. (15.1), (15.2), (15.5), and (15.6).

Question: How are this derivation and the resulting equations affected by viscous
flow?

Physically, the answer is that mass transport of species i must be included
in the species continuity equation. This comes about as follows. Return to
Fig. 15.2, where the velocity V is shown at a point on the control surface.
For an inviscid flow (no diffusion), all of the species i move with the same
velocity, namely, the mixture velocity V. In Fig. 15.2, V represents the
velocity of species i, which is the same as the mixture velocity; this is why no
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subscript is placed on V in Fig. 15.2. In contrast, for a viscous flow, the mass
motion velocities of species i, Vi ¼ VþUi, all are different. Hence, in
Fig. 15.2, which involves a control volume in which we are considering only
the flow of species i, the velocity V must be replaced by Vi. The derivation
proceeds exactly the same as in Sec. 15.2, leading to the integral form

@

@t

ð ð ð
V

ri dV ¼ �

ð ð
s

riVi dSþ

ð ð ð
V

_wi dV (17:9)

Equation (17.9) is the viscous flow analog of Eq. (15.1). From this, we obtain
directly

@ri

@t
þ � � (riVi) ¼ _wi (17:10)

in analogy to Eq. (15.2). Because Vi ¼ VþUi, Eq. (17.10) becomes

@ri

@t
þ � � ½ri(V þ Ui)� ¼ _wi (17:11)

Replacing ri with cir in Eq. (17.11), expanding the derivatives, and collecting
terms, we have

ci

@r

@t
þ � � (rV)

� �
þ r

@ci

@t
þ rV � �ci þ ci� � (rUi)þ (rUi) � �ci ¼ _wi (17:12)

However, from the global continuity equation,

@r

@t
þ � � (rV) ¼ 0 (17:13)

Also,

r
@ci

@t
þ rV � �ci ; r

Dci

Dt
(17:14)

and

ci� � (rUi)þ (rUi) � �ci ; � � (rciUi) ; � � (riUi) (17:15)

Inserting Eqs. (17.13–17.15) into (17.12), we obtain

r
Dci

Dt
þ � � (riUi) ¼ _wi (17:16)

Equation (17.16) is a particularly useful form of the species continuity equation.
In comparison to Eq. (15.5) for an inviscid flow, the viscous-flow version
in Eq. (17.16) has an additional term involving the diffusion velocity. From
Eq. (16.22), where ji ; riUi, Eq. (17.16) can be written as

r
Dci

Dt
¼ � � (rDim�ci)þ _wi (17:17)
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In summary, for a nonequilibrium viscous chemically reacting flow, the gov-
erning equations are Eqs. (17.1–17.6), and either (17.16) or (17.17) written for
each species in the mixture. [As noted in Sec. 15.2, if we have n chemical
species, we really only need (n – 1) species continuity equations because we
have the additional relation that

P
ici ¼ 1.] In addition, the usual expression

for e holds, that is,

e ¼
X

i

ciei (17:18)

where

ei ¼
5

2
RT þ evibi

þ ee1 þ (Dhf )
o
i (17:19)

If local thermodynamic equilibrium is assumed, then in Eq. (17.19)

evib i
¼

hvi=kT

ehvi=kT � 1
RT

for diatomic molecules. If vibrational nonequilibrium is present, then evibi
in

Eq. (17.19) is given by

D(cievibi
)

Dt
þ

1

r
� � (riUievibi

) ¼
ci

t
(e

eq
vibi
� evibi

) (17:20)

In comparison to the inviscid analog given in Eq. (15.18), the influence of
diffusion is included in Eq. (17.20) for the vibrational rate equation in a
viscous flow. This is because, in a fluid element moving along a streamline,
the vibrational energy caused by species i per unit mass of mixture cievibi

,
changes not only as a result of finite-rate vibrational relaxation, but also
because species i diffuses into (or out of) the fluid element across the surface,
carrying some vibrational energy with it.

In summary, the governing equations for a chemically reacting viscous flow
are similar to those used in Part 2 for a nonreacting viscous flow. The only
differences are 1) the use of the species continuity equation (which is needed
for any chemical nonequilibrium flow, viscous or inviscid); 2) the inclusion of
diffusion effects, which appear as terms in the species continuity equation and
the energy equation; and 3) the inclusion of the heats of formation at absolute
zero in the enthalpy (or internal energy).

17.3 Alternate Forms of the Energy Equation

In this section, we obtain several different forms of the energy equation for
a chemically reacting viscous flow—all of which are frequently found in the
literature and used in practice.

Equation (17.5) is written in terms of the total energy, eþ V2/2. Let us
express it in terms of total enthalpy, h0 ¼ hþ V2/2, as follows. From the
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definition of enthalpy, h ¼ eþ p/r. Taking the substantial derivative, which
follows the ordinary rules of differentiation, we have

De

Dt
¼

Dh

Dt
�

1

r

Dp

Dt
þ

p

r2

Dr

Dt
(17:21)

From Eq. (17.1),

@r

@t
þ � � (rV) ¼

@r

@t
þ V � �rþ r� � V ¼ 0

or

Dr

Dt
þ r� � V ¼ 0 (17:22)

Combining Eqs. (17.21) and (17.22), we have

De

Dt
¼

Dh

Dt
�

1

r

Dp

Dt
�

p

r
� � V

or

r
De

Dt
¼ r

Dh

Dt
�
@p

@t
� V � �r� p� � V

or

r
De

Dt
¼ r

Dh

Dt
�
@p

@t
� � � ( pV) (17:23)

Now write the energy equation (17.5) in the form

r
De

Dt
¼ r

D(V2=2)

Dt
� r � q� � � ( pV)þ (viscous terms) (17:24)

Substituting Eq. (17.23) into (17.24), we obtain, setting h0 ¼ hþ V2/2,

r
Dh0

Dt
¼
@p

@t
� � � qþ

@(utxx)

@x
þ
@(utyx)

@y
þ
@(utzx)

@z
þ
@(vtxy)

@x

þ
@(vtyy)

@y
þ
@(vtzy)

@z
þ
@(wtxz)

@x
þ
@(wtyz)

@y
þ
@(wtzz)

@z

ð17:25Þ

Equation (17.25) is the form of the energy equation in terms of total
enthalpy h0.
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Let us now obtain a form of the energy equation in terms of static enthalpy h.
Multiply Eqs. (17.2), (17.3), and (17.4) by u, v, and w, respectively:

r
D(u2=2)

Dt
¼ �u

@p

@x
þ u

@txx

@x
þ u

@tyx

@y
þ
@tzx

@z
(17:26)

r
D(v2=2)

Dt
¼ �v

@p

@y
þ v

@txy

@x
þ v

@tyy

@y
þ v

@tzy

@z
(17:27)

r
D(w2=2)

Dt
¼ �w

@p

@z
þ w

@txz

@x
þ w

@tyz

@y
þ w

@tzz

@z
(17:28)

Adding Eqs. (17.26–17.28), we obtain

r
D(V2=2)

Dt
¼ �V � �pþ u

@txx

@x
þ
@tyx

@y
þ
@tzx

@z

� �
þ v

@txy

@x
þ
@tyy

@y
þ
@tzy

@z

� �

þ w
@txz

@x
þ
@tyz

@y
þ
@tzz

@z

� �
(17:29)

Subtract Eq. (17.29) from (17.25). We obtain

r
Dh

Dt
¼ �� � qþ

Dp

Dt
þF (17:30)

where F is the dissipation function given by

F ¼ txx

@u

@x
þ tyy

@v

@y
þ tzz

@w

@z
þ txy

@u

@y
þ
@v

@x

� �

þ txz

@u

@z
þ
@w

@x

� �
þ tyz

@v

@z
þ
@w

@y

� �

Equation (17.30) is the form of the energy equation in terms of static enthalpy h.
Recall that q is given by Eq. (16.31), and hence Eq. (17.30) can be written as

r
Dh

Dt
¼ � � (k �T )� � �

X
i

riUihi � � � qR þ
Dp

Dt
þF (17:31)

As has been stated before, the energy equation in the forms of Eqs. (17.5),
(17.25), (17.30), and (17.31) does not contain an explicit term for the energy
exchange because of chemical reactions. This is because e, h, and h0 contain
the effective zero-point energies in the form of the heats of formation of the
species i, (Dhf)

o
i , that is, e, h, and h0 are absolute values. In this fashion,

the chemical energy exchanges are automatically taken into account. Recall that

h ¼
X

i

cihi (17:32)
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where

hi ¼
7

2
RT þ evib þ eel þ (Dhf )

o
i (17:33)

In Eq. (17.33), hi is the absolute enthalpy of species i per unit mass of i. In turn,
this can be written as

hi ¼ hi;sens þ (Dhf )
o
i (17:34)

where hi,sens is the sensible enthalpy of species i per unit mass of i, that is, the
enthalpy measured above the zero-point energy. Note from Eqs. (17.34) and
(17.35) that

hi;sens ¼
7

2
RT þ evib þ eel

If local thermodynamic equilibrium exists, then we can also write

hi;sens ¼

ðT

0

c pi dT (17:35)

Returning to Eq. (17.32), the absolute enthalpy can be written as

h ¼
X

i

cihi;sens þ
X

i

ci(Dhf )
o
i

or

h ¼ hsens þ
X

i

ci(Dhf )
o
i (17:36)

Here, hsens is the sensible enthalpy of the mixture.
There are occasions where the energy equation is expressed in terms of the

sensible rather than the absolute enthalpy. Such an equation is developed as
follows. From Eq. (17.36)

Dh

Dt
¼

Dhsens

Dt
þ
X

i

(Dhf )
o
i

Dci

Dt
(17:37)

Substitute Eq. (17.16) into (17.37). We obtain

r
Dh

Dt
¼ r

Dhsens

Dt
þ
X

i

_wi(Dhf )
o
i �

X
i

� � ½riUi(Dhf )
o
i � (17:38)
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Substituting Eq. (17.38) into (17.31), we have

r
Dhsens

Dt
þ
X

i

_wi(Dhf )
o
i �

X
i

� � ½riUi(Dhf )
o
i �

¼ � � (k �T)�� �
X

i

riUi½hi;sens þ (Dhf )
o
i � �� � qRþ

Dp

Dt
þF (17:39)

Cancelling terms, this yields

r
Dhsens

Dt
¼ � � (k�T)� � �

X
i

riUihi;sens

� � � qR þ
Dp

Dt
þF�

X
l

_wi(Dhf )
o
i

(17:40)

Compare Eq. (17.40) with (17.31). Note that Eq. (17.40) is very similar to
Eq. (17.31) with two very important exceptions. In Eq. (17.40), 1) the enthalpies
appear as the sensible values, and 2) there is now an explicit term for the chemical
energy exchange, namely, �

P
i _wi(Dhf )

o
i . From this, keep in mind the following

fact. When you see an energy equation with an explicit term for chemical energy
change, then the enthalpies (or internal energies) in that equation are sensible
values. Similarly, if no such term appears explicitly, the enthalpies (or internal
energies) are absolute values.

17.4 Boundary-Layer Equations for a Chemically Reacting Gas

By an order-of-magnitude analysis identical to that given in Sec. 6.4,
the governing Navier–Stokes equations for a chemically reacting gas [Eqs.
(17.1–17.6) and (17.17)] can be reduced to those for a chemically reacting
boundary layer. The reader should review Sec. 6.4 before progressing further.
In addition, for simplicity we will assume for the diffusion mechanism
a binary gas, so that the diffusion coefficients are simply D12 and D21 for
the diffusion of species 1 and 2 and vice versa. Because

P
i riUi ¼ 0, we have,

for a binary gas,

r1U1 þ r2U2 ¼ 0

From Fick’s law, this becomes

rD12�c1 þ rD21�c2 ¼ 0

Because c1 ¼ 1 2 c2, this can be written as

r�c2(D21 � D12) ¼ 0
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or

D21 ¼ D12

The binary-gas assumption for the diffusion mechanism has frequently been used
for boundary-layer analyses in high-temperature air; in such a case, dissociated air
is lumped into “heavy” molecules diffusing into “light” molecules and vice versa.
With these assumptions, the resulting boundary-layer equations are as follows.

Global continuity:

@(ruri)

@x
þ
@(rvrj)

@y
¼ 0

Species continuity:

ru
@ci

@x
þ rv

@ci

@y
¼
@

@y
rD12

@ci

@y

� �
þ _wi

x Momentum:

ru
@u

@x
þ rv

@u

@y
¼ �

@p

@x
þ
@

@y
m
@u

@y

� �

y Momentum:

@p

@y
¼ 0

Energy:

ru
@h

@x
þ rv

@h

@y
¼
@

@y
k
@T

@y

� �

þ
@

@y
rD12

X
i

hi

@ci

@y

 !
þ m

@u

@y

� �2

þ u
@p

@x

(17:41)

(17:42)

(17:43)

(17:44)

(17:45)

In Eq. (17.41), j ¼ 0 or 1 depending on whether the boundary-layer flow two
dimensional or axisymmetric, respectively. In the preceding form, the boundary-
layer equations apply to either two-dimensional or axisymmetric cases.

It is sometimes useful to have the energy equation in terms of total enthalpy h0.
From an order-of-magnitude reduction of Eq. (17.25) we have, for the boundary-
layer case,

ru
@h0

@x
þ rv

@h0

@y
¼
@

@y
k
@T

@y

� �
þ
@

@y
rD12

X
i

hi

@ci

@y

 !
þ
@

@y
mu
@u

@y

� �
(17:46)

where h0 ¼ hþ u2/2; here, v� u has been neglected.
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For nonequilibrium flows, the energy equation in terms of T is particularly
useful because the chemical rate constants depend on T. Therefore, let us
couch the boundary-layer energy equation in terms of T as the dependent
variable. We note that

h ¼
X

i

cihi

Hence,

@h

@x
¼
X

i

ci

@hi

@x
þ
X

i

hi

@ci

@x

or

@h

@x
¼
X

i

ci

@hi

@T

� �
@T

@x

� �
þ
X

i

hi

@ci

@x
(17:47)

However, by definition, because species i is a thermally perfect gas by itself,
where dhi ¼ cpi dT, then Eq. (17.47) can be written.

@h

@x
¼

X
i

cic pi

" #
@T

@x

� �
þ
X

i

hi

@ci

@x
(17:48)

From Eq. (14.36),
P

i cicpi ; cpf
, the frozen specific heat. Thus, Eq. (17.48)

becomes

@h

@x
¼ cpf

@T

@x
þ
X

i

hi

@ci

@x
(17:49)

Similarly,

@h

@y
¼ c pf

@T

@y
þ
X

i

hi

@ci

@y
(17:50)

Substitute Eqs. (17.49) and (17.50) into (17.45). This yields

ruc pf

@T

@x
þ rvc pf

@T

@y
þ ru

X
i

hi

@ci

@x
þ rv

X
i

hi

@ci

@y

¼
@

@y
k
@T

@y

� �
þ
@

@y
rD12

X
i

hi

@ci

@y

 !
þ m

@u

@y

� �2

þ u
@p

@x
(17:51)
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or

ruc pf

@T

@x
þ rvc pf

@T

@y
þ
X

i

hi ru
@ci

@x
þ rv

@ci

@y

� �

¼
@

@y
k
@T

@y

� �
þ
@

@y
rD12

X
i

hi

@ci

@y

 !
þ m

@u

@y

� �2

þu
@p

@x
(17:52)

From the species continuity equation (17.42), the third term in Eq. (17.52) can be
expressed in terms of _wi and the diffusion coefficient yielding, from Eq. (17.52),

ruc pf

@T

@x
þ rvc pf

@T

@y
þ
X

i

hi _wþ
@

@y
rD12

@ci

@y

� �� �

¼
@

@y
k
@T

@y

� �
þ
@

@y
rD12

X
i

hi

@ci

@y

 !
þ m

@u

@y

� �2

þ u
@p

@x
(17:53)

or

rucpf

@T

@x
þ rvc pf

@T

@y
¼
@

@y
k
@T

@y

� �
þ m

@u

@y

� �2

þu
@p

@x

þ
@

@y
rD12

X
i

hi

@ci

@y

 !
�
X

i

hi

@

@y
rD12

@ci

@y

� �" #
�
X

i

hi _wi (17:54)

Examine just the term in square brackets in Eq. (17.54)

@

@y
rD12

X
i

hi

@ci

@y

 !
�
X

i

hi

@

@y
rD12

@ci

@y

� �

¼
X

i

hi

@

@y
rD12

@ci

@y

� �
þ
X

i

rD12

@ci

@y

@hi

@y
�
X

i

hi

@

@y
rD12

@ci

@y

� �

¼
X

i

rD12

@ci

@y

@hi

@T

@T

@y

¼
X

i

cpi
rD12

@ci

@y

� �
@T

@y

� �
(17:55)

Substituting Eq. (17.55) into (17.54), we have

rucpf

@T

@x
þ rvcpf

@T

@y
¼
@

@y
k
@T

@y

� �
þ m

@u

@y

� �2

þ u
@p

@x
þ
X

i

cpi
rD12

@ci

@y

� �
@T

@y

� �
�
X

i

hi _wi

(17:56)
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Equation (17.56) is the boundary-layer energy equation for a chemically reacting
gas in terms of temperature. Note that, in this form, an explicit term for the
chemical energy exchange appears, namely,

P
i hi _wi. However, also note that

hi is the absolute enthalpy of species i,

hi ¼

ðT

0

c pi dT þ (Dhf )
o
j

and therefore the
P

i hi _wi term in Eq. (17.56) is distinctly different than the
analogous term in Eq. (17.41), namely,

P
i _wi(Dhf )

o
i .

In analogy to Sec. 6.3, where the similarity parameters for a nonreacting
viscous flow are obtained, let us obtain the appropriate similarity parameters
for a viscous, chemically reacting boundary layer. The reader should review
Sec. 6.3 before progressing further. We introduce the following nondimensional
variables, denoted by a bar, where the subscript e denotes conditions at the edge
of the boundary layer, and L is a characteristic length:

�r ¼
r

re

�u ¼
u

ue

�v ¼
v

ve

�h0 ¼
h0

he

�x ¼
x

L
�y ¼

y

L

�T ¼
T

he=c pfe

�k ¼
k

ke

�m ¼
m

me

�hi ¼
hi

he

�ci ¼ ci

�D12 ¼
D12

(D12)e

Substituting the preceding into the energy equation in terms of h0, Eq. (17.46) we
obtain, after rearrangement,

�r �u
@�h0

@�x
þ r; �v

@�h0

@�y
¼

1

Re Pr

� �
e

@

@�y
�k
@ �T

@�y

� �
þ

Le

Re Pr

� �
e

@

@�y
�r �D12

X
i

�hi

@�ci

@�y

 !

þ
E

Re

� �
e

@

@�y
�m �u
@�u

@�y

� �
(17:57)

where the following holds:
Reynolds number:

(Re)e ¼
reueL

me
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Prandtl number:

(Pr)e ¼
mec pfe

ke

Lewis number:

(Le)e ¼
re(D12)ec pfe�

ke

Eckert number:

(E)e ¼
u2

e

he

In the preceding, the subscript e emphasizes that the Reynolds, Prandtl, Lewis,
and Eckert numbers in Eq. (17.57) are evaluated for conditions at the edge of
the boundary layer. From the preceding analysis, and recalling the philosophy
stated in Sec. 6.3, these numbers are similarity parameters for the flow. Both
the Reynolds and Prandtl numbers are familiar parameters from Sec. 6.3 (and
Part 2 in general); they carry over here for the case of a chemically reacting
flow as well. But now, we have identified two new similarity parameters,
namely, the Lewis and Eckert numbers. The Lewis number is an index of the
energy transport caused by diffusion relative to thermal conduction, and the
Eckert number is an index of flow kinetic energy relative to the thermal
energy. In this sense, E is playing a similar role as M and g did for a calorically
perfect gas. [Indeed, for a calorically perfect gas, E ¼ (g 2 1)M2.] However,
from the fact that M and g do not appear in Eq. (17.57), we see once again
that M and g by themselves are not similarity parameters for a high-temperature,
chemically reacting flow; this is proof again that M and g lose their power and
significance for such flows.

Let us use the preceding similarity parameters to obtain yet another (and for
us, the final) form of the boundary-layer energy equation. This will be an import-
ant form where (@T/@y) in the conduction term is replaced by (@h0/@y), thus
explicitly eliminating T from the equation. Because v� u for the boundary
layer, h0 ¼ hþ u2/2. Thus,

@h0

@y
¼
@h

@y
þ u

@u

@y
(17:58)

Substituting Eq. (17.50) into (17.58), we have

@h0

@y
�
@u

@y
¼ c pf

@T

@y
þ
X

i

hi

@ci

@y
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or

@T

@y
¼

1

cpf

@h0

@y
� u

@u

@y
�
X

i

hi

@ci

@y

 !
(17:59)

Substituting Eq. (17.59) into (17.46), we obtain

ru
@h0

@x
þ rv

@h0

@y
¼
@

@y

k

c pf

@h0

@y
� u

@u

@y
�
X

i

hi

@ci

@y

 !" #

þ
@

@y
rD12

X
i

hi

@ci

@y

 !
þ
@

@y
mu
@u

@y

� �

or

ru
@h0

@x
þ rv

@h0

@y
¼
@

@y

m

Pr

@h0

@y
þ 1�

1

Pr

� �
mu
@u

@y

� �

�
@

@y

m

Pr

X
i

hi

@ci

@y
� rD12

X
i

hi

@ci

@y

 !
(17:60)

where Pr is the local Prandtl number, Pr ¼ mcpf/k. The last two terms (inside the
Parentheses) in Eq. (17.60) can be combined as follows:

m

Pr

X
i

hi

@ci

@y
� rD12

X
i

hi

@ci

@y
¼

m

Pr
� rD12

� �X
i

hi

@ci

@y

¼ rD12

k

rD12c pf

� 1

� �X
i

hi

@ci

@y

¼
1

Le
� 1

� �
rD12

X
i

hi

@ci

@y

Here, Le is the local Lewis number, Le ¼ rD12cpf/k. Hence, Eq. (17.60)
becomes

ru
@h0

@x
þ rv

@h0

@y
¼
@

@y

�
m

Pr

@h0

@y
þ

�
1�

1

Pr

�
mu
@u

@y

þ

�
1�

1

Le

�
rD12

X
i

hi

@ci

@y

� (17:61)
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Equation (17.61) is a frequently employed form of the boundary-layer energy
equation. In it, Pr and Le are local values that vary through the boundary
layer. Note: For the special case of a constant Le ¼ 1, the diffusion term in
Eq. (17.62) drops out completely.

17.5 Boundary Conditions: Catalytic Walls

As in Part 2, the standard, no-slip boundary conditions on velocity at the wall
hold for a chemically reacting viscous flow as well. If there is no mass transfer
at the wall, that is, a solid wall with no ablation, then the following is true:

At y ¼ 0,

u ¼ v ¼ 0 (no mass transfer)

If there is mass transfer, such as caused by transpiration of a gas through a porous
wall, or caused by ablation, the wall boundary condition becomes the following:

At y ¼ 0,

u ¼ 0

v ¼ vw

where vw is a known vertical velocity obtained from _mw ¼ rvw, where _mw is the
known mass flux of gas injected vertically into the boundary layer and r is the
density of the gas mixture at the wall. (Question: Why is the gas mixture
density at the wall, used in _mw ¼ rvw, rather than the density ri of the particular
type of gas being injected into the flow? The answer is left to the reader as a
homework problem.)

For a constant-temperature wall with known temperature Tw, we have the
following at the wall.

At y ¼ 0,

T ¼ Tw (specified)

In contrast, for an adiabatic wall, the boundary condition must be obtained by
setting qv from Eq. (16.33) equal to zero at the wall.

At y ¼ 0,

k
@T

@y
þ r

X
i

Dimhi

@ci

@y

 !
w

¼ 0

For binary diffusion, this becomes the following.
At y ¼ 0,

k
@T

@y
þ rD12

X
i

hi

@ci

@y

 !
w

¼ 0 (adiabatic wall) (17:62)

726 HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS



Recall from Part 2 that, for a nonreacting gas, the adiabatic wall condition was
simply (@T=@y)w ¼ 0. This is not the case for a chemically reacting flow, as
seen from Eq. (17.63), because energy transport by diffusion must be included
along with thermal conduction. Hence, in a chemically reacting flow for an
adiabatic wall the normal temperature gradient is not necessarily zero.

In a chemically reacting flow, the mass fraction of species i is one of the
dependent variables. Therefore, we need boundary conditions for ci as well as
for u, v, and T just discussed. At the wall, the boundary condition on ci deserves
some discussion because it involves, in general, a surface chemistry interaction
with the gas at the wall. The wall can be made of a material that tends to catalyze
(i.e., enhance) chemical reactions right at the surface. Such surfaces are called
catalytic walls. This leads to the following definitions:

1) Equilibrium catalytic wall is wall at which chemical reactions are
catalyzed at an infinite rate, that is, the mass fractions at the wall are their
local equilibrium values at the local pressure and temperature at the wall.

2) Partially catalytic wall is wall at which chemical reactions are catalyzed at
a finite rate.

3) Fully catalytic wall is wall where all atoms are recombined, irrespective of
the mass fraction of atoms that would be allowed to exist at local chemical
equilibrium conditions.

For an fully catalytic wall, the boundary condition is simply the following.
At y ¼ 0,

cA ¼ 0 ( fully catalytic wall)

where cA is the mass fraction of an atomic species. Note: For many applications,
the wall temperature is low enough that the equilibrium value of cA is essentially
zero. In this case, we have cA ¼ 0 as a boundary condition for both the fully
catalytic and equilibrium wall cases.

For an equilibrium catalytic wall, the boundary condition is simply as follows.
At y ¼ 0,

ci ¼ (ci)equil (equilibrium catalytic wall) (17:63)

For a partially catalytic wall, the boundary condition can be developed as follows.
For a wall with an arbitrary degree of catalyticity, the chemical reactions occur
at a finite rate. Let _wc denote the catalytic rate at the surface. Then ( _wc)i ¼

mass of species i lost at the surface per unit area per unit time caused by
surface catalyzed chemical reaction. Right at the surface, the mechanism that
feeds particles of species i from the gas to the surface is diffusion, as sketched
in Fig. 17.1. The diffusion flux to the surface element of area dS is –(riUi)w

dS. From Fick’s law (assuming a binary gas)

�(riUi)w ¼ rD12

@ci

@y

� �
w

(17:64)

For steady-state conditions, the amount of the amount species i “gobbled up”
at the surface as a result of the catalytic rate ( _wc)i must be exactly balanced
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by the rate at which species i is diffused to the surface, given by Eq. (17.64).
Hence

( _wc)i dS ¼ �(riUi)w dS ¼ rD12

@ci

@y

� �
w

dS

or

( _wc)i ¼ rD12

@ci

@y

� �
w

(17:65)

Equation (17.65) is the boundary condition for a surface with finite catalyticity.
It dictates the gradient of the mass fraction at the wall.

A noncatalytic wall is one where no recombination occurs at the wall, that is,
( _wc)i ¼ 0. For this case, from Eq. (17.65)

0 ¼ rD12

@ci

@y

� �
w

or
At y ¼ 0,

@ci

@y

� �
w

¼ 0 (noncatalytic wall) (17:66)

The subjects of surface catalyticity and the associated boundary conditions
just discussed are serious matters for the analysis of chemically reacting
viscous flows. We will see, for example, that a catalytic surface can experience
a factor of two or more greater aerodynamic heating than a noncatalytic
surface. Also, the matter of surface catalyticity, and its effect on chemically react-
ing viscous flow, is a current state-of-the art research area, especially in regard to
obtaining knowledge about the catalytic rates _wc themselves. Knowledge of _wc

Fig. 17.1 Model for catalytic wall effects.
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for various gas-surface interactions is generally not accurate; indeed, because of
the complex physical nature of such gas-surface interactions, values of _wc are
usually more uncertain than the familiar gas reaction rate constants we have
dealt with previously. Therefore, when you need to analyze a chemically reacting
viscous-flow problem wherein surface catalytic effects are important, your first
step should be to obtain the best possible values for _wc from the existing literature
(or better yet, from your friendly local physical chemist).

Finally in regard to boundary-layer solutions, the boundary conditions at the
outer edge of the boundary-layer are obtained from an independent knowledge
of the inviscid flow over the given body flow (such as discussed in Chapters 14
and 15). That is,

At y ¼ du,

u ¼ ue

At y ¼ dT,

T ¼ Te

At y ¼ dc,

ci ¼ (ci)e

In the preceding, we make a distinction between various different boundary-layer
thicknesses: du is the velocity boundary-layer thickness; dT the temperature
boundary-layer thickness; and dc the species boundary-layer thickness. If the
boundary-layer thickness is defined as that location above the surface where
the flow property reaches 99% of its inviscid-flow value, then in a chemically
reacting flow that location might be different for each of u, T, and ci. Thus, in
general, du = dT = dc.

17.6 Boundary-Layer Solutions: Stagnation-Point

Heat Transfer for a Dissociating Gas

In Sec. 6.5, considerable attention was paid to self-similiar solutions of the
compressible, nonreacting boundary-layer equations. The basic philosophy of
self-similar solutions was described in the first part of Sec. 6.5; this should be
reviewed before proceeding further. For chemically reacting boundary layers,
the following cases lend themselves to such self-similar solutions: local chemical
and thermodynamic equilibrium with flat plate, sharp right-circular cone, stagna-
tion point; and nonequilibrium with stagnation point.

In the present section, we choose to study the stagnation-point flow for a
dissociating gas, for two reasons: 1) it is an excellent example of a self-similar
solution for chemically reacting flow—both equilibrium and nonequilibrium,
and 2) the stagnation point heat-transfer results obtained from the solution
are extremely important for hypersonic flow applications. We will follow the
classic solution carried out by Fay and Riddell [196]; this work was a pioneering
step forward in the analysis of chemically reacting viscous flow in 1958.
The Fay and Riddell results for stagnation-point heat transfer in dissociated
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air are still in regular use today by industry and government for hypersonic
vehicles analyses.

The physical model is sketched in Fig. 17.2. A blunt-body flow is sketched
in Fig. 17.2a; we will concentrate on just the stagnation region near the nose,
which is isolated and magnified in Fig. 17.2b. The following assumptions
are made:

1) The flow conditions at the outer edge of the boundary layer are those for
local thermodynamic and chemical equilibrium. The shock layer is partially
dissociated.

2) Depending on the length of time spent by a fluid particle in the boundary
layer and on the rate of chemical reaction (i.e., the comparison between tf

Fig. 17.2 Stagnation region flow model.
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and tc, as discussed in Sec. 15.1), the boundary layer itself can have regions of
equilibrium, nonequilibrium, or frozen flow. In this section, we will deal with
all three cases.

3) The inviscid velocity distribution at the outer edge of the boundary layer in
the stagnation region is given by the classical incompressible result

ue ¼ ax (17:67)

where

a ¼
due

dx

� �
s

(17:67a)

that is, (due/dx)s is the velocity gradient at the stagnation point.
4) The wall can be equilibrium catalytic or noncatalytic; both cases will be

discussed.
5) The gas is assumed to be a binary mixture, made up of “heavy particles”

(molecules) and “light particles” (atoms). As explained in Sec. 17.4, this leads
to a simplification in regard to the diffusion mechanism. Fortunately, for dis-
sociated air, the principal molecules O2 and N2 are similar in terms of molecular
weight and collision cross section (for the transport coefficients); the same can be
said for the atoms O and N. Hence, average properties can be found for the
molecules as one species, and for the atoms as the second species. See [196]
for more details.

The boundary-layer equations for global continuity, species continuity, and
momentum are given by Eqs. (17.41–17.44). For the analysis of the boundary
layer in local thermodynamic and chemical equilibrium, the energy equation in
the form of Eq. (17.61) is used. For the nonequilibrium cases, Eq. (17.56) in
terms of T is used. For the wall boundary conditions, a constant-temperature
wall is assumed with no transpiration or ablation at the surface. Cases are
solved for both an equilibrium catalytic wall, where the boundary condition on
ci is given by Eq. (17.63), and a noncatalytic wall, where the boundary condition
on the gradient of ci is given by Eq. (17.66).

The independent variables in the boundary-layer equations are transformed by
a version of the Lees–Dorodnitsyn transformation, that is, a slightly modified
form of Eqs. (6.33) and (6.34) wherein the wall properties are used rather than
the outer-edge properties. Specifically, we perform a transformation of x and y
into j and h, where

j ¼ j(x) ¼

ðx

0

rwmwuer2 dx (17:68)

h ¼ h(x, y) ¼
rueffiffiffiffiffi

2j
p

ðy

0

r dy (17:69)

The preceding equations are written for the axisymmetric case; for two-dimensional
flow, the r in Eqs. (17.68) and (17.69) simply drops out. The dependent variables in
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the boundary-layer equations are transformed as follows:

u

ue

¼ f 0(j,h) ;
@f

@n
(17:70)

h0

h0e

¼ hþ
u2

2

� �
h0e
¼ g(j,h) (17:71)

T

Te

¼ u(j,h) (17:72)

ci

cie

¼ si(j,h) (17:73)

The details of the transformation are very similar to the process carried out in Sec. 6.5
and are left to the reader as a homework problem; therefore, only the results will be
given here. At this point, the reader should review Sec. 6.5 before progressing
further. The transformed boundary-layer equations are obtained from Eqs.
(17.41–17.43) and (17.61) as follows.

Momentum:

lf 00ð Þ
0
þ ff 00 þ 2

re

r
� ( f 0)2

� �
d(ln ue)

d ln j)
¼ 2j f 0

@2f

@h @j
� f 00

@f

@j

� �
(17:74)

Species continuity:

@

@h

l

Pr
(Le)s0i

� �
þ fs0i þ

2j _wi

rwmwu2
er2rcie

¼ 2j f 0
@si

@j
�
@f

@j
s0i

� �

þ 2f 0si

d(ln cie )

d(ln j)
(17:75)

Energy:

@

@h

l

Pr
g0

� �
þ fg0 þ

u2
e

h0e

@

@h
1�

1

Pr

� �
lf 0f 00

� �
þ
@

@h

l

Pr

X
i

cie

h0e

hi

 !
(Le� 1)s0i

" #

¼ 2j f 0
@g

@j
�
@f

@j
g0

� �
(17:76)

In Eqs. (17.74–17.76) the prime denotes partial differentiation with respect
to h, and l denotes the r-m ratio, l ¼ rm/rwmw. These partial differential
equations are analogous to Eqs. (6.55) and (6.58) for nonreacting flow.
Equations (17.74–17.76), although transformed, are simply the full boundary-
layer equations with the same significance as the original forms given by
Eqs. (17.41–17.43) and (17.61). They are a system of coupled, partial differential
equations where f, g, and si are functions of both j and h.
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Let us now apply Eqs. (17.74–17.76) to the spherical stagnation region.
Following the technique carried out in Sec. 6.5 for self-similar solutions,
we first assume that f, g, and si are functions of h only, and we examine
Eqs. (17.74–17.76) to see if all j dependency has dropped out. From
Eq. (17.74), we obtain

(lf 00)0 þ ff 0 þ 2
re

r
� ( f 0)2

� �
d(ln ue)

d(ln j)
¼ 0 (17:77)

The third term in Eq. (17.77) still appears to exhibit j dependency. Let us
examine this term more closely. At the stagnation point, r � x, where x is very
small. Inserting this and Eq. (17.67) into Eq. (17.68), we obtain, after integration

j ¼ rwmw

due

dx

� �
s

x4

4
(17:78)

Also,

due

dj

� �
s

¼
due

dx

� �
s

dx

dj
¼

(due=dx)s

dj=dx
(17:79)

Obtaining dj/dx by differentiating Eq. (17.78), Eq. (17.79) becomes

due

dj

� �
¼

1

rwmwx3
(17:80)

In addition,

d(ln ue)

d(ln j)
¼

j

ue

due

dj
(17:81)

Substituting Eqs. (17.78) and (17.80) into (17.81), we have, for the spherical
stagnation point,

d(lnue)

d(lnj)
¼

1

4
(17:82)

Inserting Eq. (17.82) into (17.77), we obtain for the stagnation point,

(lf 00)0 þ ff 00 þ
1

2

re

r
� ( f 0)2

� �
¼ 0 (17:83)
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We turn our attention now to the energy equation (17.16). Under the same
assumption of f ¼ f (h) and g ¼ g(h), and noting that ue ¼ 0 at the stagnation
point, we obtain directly

l

Pr
g0

� �0
þ fg0 þ

d

dh

l

Pr

X
i

cie

h0e

hi

 !
(Le� 1)s0i

" #
¼ 0 (17:84)

Making the same assumption in Eq. (17.75), including si ¼ s(h), and also
assuming cie does not change with j, we obtain

l

Pr
Le s0i

� �0
þ fs0i þ

2j _wi

rwmwu2
er2rcie

¼ 0 (17:85)

The third term in Eq. (17.85) still appears to exhibit j dependency. However,
using Eq. (17.78), (17.76), and r � x, this term becomes (the details are left as
a homework problem)

2j

rwmwu2
er2rcie

¼
1

2

_w

(due=dx)srcie

(17:86)

Substituting Eq. (17.86) into (17.84), we have

l

Pr
Le s0i

� �0
þ fs0i þ

_wi

2(due=dx)srcie

¼ 0 (17:87)

Now examine Eqs. (17.83), (17.84), and (17.87) closely. They hold for the spheri-
cal stagnation-point boundary layer. Moreover, they are ordinary differential
equations and hence prove that the stagnation-point flow is a self-similar flow
in the spirit discussed in Sec. 6.5; the presence of chemical reactions, even
finite-rate reactions, does not change this behavior. A corresponding form of
the energy equation in terms of the transformed temperature, u ¼ T/Te, can be
obtained by transforming Eq. (17.56) and applying the stagnation-point condi-
tions; the resulting transformed ordinary differential equation for u can be
found in [196].

The transformed boundary conditions at the outer edge of the boundary layer
are, as h! 1,

f 0 ¼ 1 g ¼ 1 u ¼ 1 and si ¼ 1

where ci ¼ cie
¼ (cie

)equil is obtained from the locally equilibrium inviscid flow.
The transformed boundary conditions at the wall are

f 0(0) ¼ 0 f (0) ¼ 0 g(0) ¼ gw and u(0) ¼ uw
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The wall boundary condition for si depends on whether the wall is catalytic or not
and also on whether or not the boundary layer is in local chemical equilibrium.
For example, for the boundary layer in local chemical and thermodynamic
equilibrium, ci always depends uniquely on the local pressure and temperature;
hence, at the wall the value of ci(0) is the local equilibrium value for an equili-
brium catalytic wall. The same condition holds for a nonequilibrium boundary
layer with an equilibrium catalytic wall. As explained in Sec. 17.5, ci takes on
its local equilibrium value at the wall for such a case. Thus, we have for 1) an
equilibrium boundary layer and 2) a nonequilibrium or a frozen boundary
layer with an equilibrium catalytic wall.

At h ¼ 0,

si(0) ¼
ci(0)

cie

¼
½ci(0)�equil

cie

In contrast, for a noncatalytic wall, we have from Eq. (17.66) the fact that
(@ci/@y)w ¼ 0. Hence, for a nonequilibrium boundary layer with a noncatalytic
wall.

At h ¼ 0,

s0i(0) ¼ 0

Finally, the numerical solution of Eqs. (17.83), (17.84), and (17.87) can be
carried out by the same type of “shooting technique” described in Sec. 6.5; see
[196] for particular details. The numerical results give profiles of f 0 (hence u),
g (hence h0), u (hence T ), and si (hence ci) as a function of h. Sample results
for high-temperature air obtained by Fay and Riddell are shown in Figs. 17.3
and 17.4. These results assume constant values of Le ¼ 1.4 and Pr ¼ 0.71.
(Note that such assumptions by Fay and Riddell are a convenience, not a neces-
sity; because a numerical solution is being carried out, Pr and Le could easily
be treated as variables.) In Fig. 17.3, the total enthalpy profiles (in the form of
g vs h) are shown for both an equilibrium and a frozen boundary layer. Note
that, at a given value of h, the equilibrium value of g is higher than the frozen
value. This is consistent with the fact that, with a dissociated gas at the outer
edge of the boundary layer, recombination will tend to occur locally within
the boundary layer, along with the attendant chemical energy release; however,
for a frozen flow no recombination will occur within the boundary layer. As a
result, at a given location, g will be higher for the equilibrium case. For the
same reason, u (hence T ) shown in Fig. 17.4 is higher for the equilibrium bound-
ary layer. Also shown in Fig. 17.4 are profiles of the atom mass fraction cA for
both equilibrium and frozen flow. At first glance, the question can be asked:
for the frozen flow, why is not cA a constant value through the boundary layer?
The answer lies in the fact that the wall is equilibrium catalytic, which means
that the atom mass fraction must be in local equilibrium at the wall, no matter
whether or not the boundary-layer flow is frozen. Moreover, the wall is cold,
so that the equilibrium atom mass fraction at the wall is essentially zero. Thus,
cA for the frozen flow must be zero at the wall and cAe

at the outer edge.
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Fig. 17.3 Enthalpy profiles for an equilibrium and a frozen stagnation-point

boundary layer. Equilibrium catalytic wall (from Fay and Riddell [196]).

Fig. 17.4 Temperature and atom mass fraction profiles for an equilibrium and a

frozen stagnation-point boundary layer. Equilibrium catalytic wall (from [196]).
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The frozen flow profile of cA between the wall and the outer edge is not a result of
any chemical reactions within the boundary layer, but rather is completely a
result of diffusion of the atoms from the outer edge to the wall.

The surface heat transfer is obtained from Eq. (16.33), written as

qw ¼ k
@T

@y

� �
w|fflfflfflfflffl{zfflfflfflfflffl}

conduction

þ rD12

X
i

hi

@ci

@y

 !
w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

(17:88)

Note that, in contrast to the nonreacting viscous flows discussed in Part 2,
the surface heat transfer in a chemically reacting viscous flow is caused not
only by the familiar thermal conduction, but also by diffusion. In Eq. (17.88),
the temperature and mass fraction gradients at the wall are obtained as
part of the numerical solution of the boundary-layer equations described
earlier. In [196], a large number of calculations were reported covering flight vel-
ocities from 5800 to 22,800 ft/s, altitudes from 25,000 to 120,000 ft, and wall
temperatures from 300 to 3000 K. Fay and Riddell correlated these results in
forms analogous to the nonreacting case given by Eq. (6.111), as follows.

1) Equilibrium boundary layer (spherical nose):

qw ¼ 0:76 Pr�0:6(reme)0:4(rwmw)0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
due

dx

� �
s

s
(h0e
� hw)

� 1þ (Le0:52 � 1)
hD

h0e

� �� � (17:89)

where hD ¼
P

i cie (Dhf )
o
i :

2) Frozen boundary layer with an equilibrium catalytic wall (spherical
nose):

qw ¼ 0:76 Pr�0:6(reme)0:4(rwmw)0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
due

dx

� �
s

s
(h0e
� hw)

� 1þ (Le0:63 � 1)
hD

h0e

� �� � (17:90)

3) Frozen boundary layer with a noncatalytic wall (spherical nose):

qw ¼ 0:76 Pr�0:6(reme)0:4(rwmw)0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
due

dx

� �
s

s
1�

hD

h0e

� �
(17:91)
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In Eqs. (17.89–17.91), the stagnation-point velocity gradient is given by
Newtonian theory as Eq. (6.121), repeated here:

due

dx

� �
s

¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(pe � p1)

re

s

Note the similarity between Eqs. (17.89–17.91) for a reacting gas and Eq. (6.111)
for the nonreacting case. This similarity is somewhat interesting considering the
major difference in the details of a reacting vs a nonreacting viscous flow. Note
from Eqs. (17.89) and (17.90) that the driving potential for heat transfer is the
enthalpy difference (h0e

2 hw) in the case of equilibrium flow or frozen flow with
an equilibrium catalytic wall. This is similar to the driving potential (h0w

– hw),
in Eq. (6.111) for the nonreacting case. However, in Eqs. (17.89–17.91), the
enthalpies are absolute values, that is, they contain the heats of formation, thus
including the powerful chemical energy associated with the reacting gas. Also
note that Eqs. (17.89) and (17.90) are essentially the same, varying only in the
slightly different exponent on the Lewis number. This demonstrates that the
surface heat transfer is essentially the same whether the flow is in local
chemical equilibrium or is frozen with an equilibrium catalytic wall. In the
former case (local chemical equilibrium), recombination occurs within the
cooler regions of the boundary layer itself, releasing chemical energy throughout
the interior of the boundary layer, most of which is transported by thermal conduc-
tion to the surface. In the latter case (frozen flow with an equilibrium catalytic
wall), the chemical energy release as a result of recombination is right at
the wall itself. Equations (17.89) and (17.90) indicate that the net heat transfer
to the surface is essentially the same whether the chemical energy is released
within the boundary layer or right at the surface. This trend is graphically illus-
trated in Fig. 17.5, which shows the heat-transfer coefficient Nu=

ffiffiffiffiffiffi
Re
p

, [see

Fig. 17.5 Catalytic wall effect on stagnation-point heat transfer (from [196]).
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Eq. (6.62) for the definition of Nusselt number Nu] as a function of a recombination
rate parameter C1, defined in [196]. On the abscissa, going from right to left in the
direction of decreasing C1, the chemical state of the boundary layer changes from
equilibrium (large C1) to frozen (small C1). The results in Fig. 17.5 are from a large
number of different nonequilibrium boundary-layer cases with different values of
C1 calculated by Fay and Riddell. Shown on this graph are two categories of sol-
utions, one with an equilibrium catalytic wall (curve 1) and the other with a non-
catalytic wall (curve 2). Curve 1 for the equilibrium catalytic wall gives the highest
heat transfer, and it is essentially constant for all values of C1. For large values of
C1, this curve corresponds to an equilibrium boundary layer, and for small values
of C1 it corresponds to a frozen boundary layer. Clearly, as long as the wall is equi-
librium catalytic the heat transfer is essentially the same. This is precisely the
observation we made earlier while comparing Eqs. (17.89) and (17.90). In contrast,
curve 2 in Fig. 17.5 is for a noncatalytic wall. Here, as we move from right to left
along this curve (and as the boundary layer becomes progressively more nonequi-
librium, approaching a frozen flow), we see that the heat transfer drops by more
than a factor of two. This is an important point: For nonequilibrium and frozen
flows, there is a substantial decrease in heat transfer if the wall is noncatalytic
in comparison to a catalytic wall. Finally, curve 3 in Fig. 17.5 goes along with
curve 1 for a catalytic wall; curve 3 gives just the conductive part of the heat trans-
fer to a catalytic wall [ just the first term in Eq. (17.88)]. The difference between
curves 1 and 3 represents the heat transfer caused by diffusion. Hence, for equili-
brium flows, q is essentially all conductive; however, as we examine flows that
progressively become more nonequilibrium with an equilibrium catalytic wall,
diffusion progressively becomes a larger part of q.

As a final note in this section, the work of Fay and Riddell represents an excel-
lent example of chemically reacting boundary-layer analysis, and their results
convey virtually all of the important physical trends to be observed in chemically
reacting viscous flows. Although this analysis is old—carried out more than 50
years ago—it is classical, and just as viable today as it was then. This is why
we have chosen to highlight it here. The reader is strongly encouraged to study
[196] closely, for more details and insight.

17.7 Boundary-Layer Solutions: Nonsimilar Flows

Various solutions of the boundary-layer equations for nonsimilar flows were
discussed in Sec. 6.6. The reader should review Sec. 6.6 before progressing
further. For example, the local-similarity method was illustrated by the work
of Kemp et al. [95], with results for chemically reacting, dissociated air given
in Fig. 6.19. Also, the implicit finite difference method was illustrated by the
work of Blottner [94], with results for chemically reacting air given in Figs.
6.22 and 6.23.

As stated at the beginning of Sec. 17.6, self-similar solutions of the chemi-
cally reacting boundary-layer equations can be obtained for the equilibrium flow
over flat plates, cones, and the stagnation point, and for nonequilibrium
flow only the stagnation point. For all other cases, the nonsimilar boundary-
layer equations must be used, that is, Eqs. (17.41–17.45), (17.46), and
(17.74–17.76).
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Perhaps the most classical example of the solution of the chemically reacting,
laminar, nonsimilar boundary-layer equations is the early work of Blottner,
which appeared in 1964 for nonequilibrium, dissociated air [197] and non-
equilibrium ionized air [198]. Blottner used the same implicit finite difference
numerical technique described in Sec. 6.6; hence, no further details will be
given here. Some results are shown in Figs. 17.6–17.9 for the case of ionized,
nonequilibrium flow of air over a 10-deg cone at V1 ¼ 21,590 ft/s at an altitude
of 100,000 ft, obtained from [198]. Here, Blottner considered only NOþ as the
ionized species; the temperature levels were below that for atomic ionization.
The wall was equilibrium catalytic. The boundary-layer temperature profiles
are given in Fig. 17.6 at the cone tip and at 15 ft downstream of the tip. The
temperature gradually decreases in the downstream direction caused in part by
the finite-rate dissociation and ionization reactions, which are endothermic and
hence “absorb” some of the viscous dissipation energy into zero-point energy
of the atoms and ions as opposed to it going into translational energy of the par-
ticles. As a result, the temperature profile (which is a frozen flow profile at x ¼ 0)
decreases with distance downstream of the tip. Profiles of the mass fraction of
atomic nitrogen CN are given in Fig. 17.7. Here, CN increases with distance
downstream of the tip, again because of the finite-rate dissociation. The corre-
sponding electron densities are shown in Fig. 17.8. It is interesting to note that
in each of Figs. 17.6–17.8, the difference in the profiles at different streamwise
stations is an indication of the nonsimilar effect; if the flow were similar, then
the profiles (vs h) would be exactly the same for all values of x. Also, for the
case of a sharp cone illustrated here, the nonsimilar effect is caused exclusively
by the nonequilibrium flow; if the flow were in local chemical equilibrium, or
frozen, it would be a self-similar flow.

Fig. 17.6 Temperature profiles in the nonequilibrium boundary layer over a 10-deg

cone (from Blottner [198]).
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17.8 Viscous-Shock-Layer Solutions to Chemically

Reacting Flow

The viscous-shock-layer (VSL) technique—its philosophy and approach—
was described in Sec. 8.2, which should be reviewed by the reader
before progressing further. We will not be repetitive here. In the present
section, we examine an application of the VSL technique to chemically reacting
flow.

The governing VSL equations were given by Eqs. (8.1–8.4) for a non
reacting gas. For the chemically reacting gas considered here, the VSL equations
for global continuity [Eq. (8.1)], s momentum [Eq. (8.2)], and n momentum
[Eq. (8.3)] carry over, unchanged. To these must be added a new energy equation
and the species continuity equation. The VSL energy equation for a chemically
reacting flow in terms of T is similar to the boundary-layer equation given by
Eq. (17.57) and is given in [199] in terms of the shock-layer coordinates

Fig. 17.7 Atomic-nitrogen mass fraction profiles across the nonequilibrium

boundary layer on a 10-deg cone (from Blottner [198]).
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Fig. 17.8 Electron density profiles across the nonequilibrium boundary layer on a

10-deg cone (from [198]).
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Similarly, the species continuity equation is [199]
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(17:93)

In Eqs. (17.92) and (17.93), the asterisk denotes nondimensional variables
defined in part in Sec. 8.2. In addition to those defined in Sec. 8.2, we have

c�pf
¼

c pf

c p f 1

k� ¼
k

mref c p f 1

D�12 ¼
D12

mref=Rr1

h�i ¼
hi

V 2
1

Also m ¼ 0 or 1 for two-dimensional or axisymmetric flow, respectively.

Fig. 17.9 Shock-layer velocity profiles on a hyperboloid. VSL calculations by Moss

[199].
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As described in Chapter 8, the VSL equations are approximate equations that
describe the viscous flow across the entire shock layer and hence are a major
improvement over the boundary-layer equations for applications where the flow-
field is fully viscous between the body and the shock wave. This advantage,
described in Sec. 8.2 for a nonreacting flow, carries over to chemically reacting
flows. The numerical approach carries over as well. Equations (8.1–8.3), (17.92),
and (17.93) are solved numerically by an implicit finite difference method similar
to that described in Sec. 6.6 under the subsection entitled Finite Difference
Method. The solution begins with an initial data line at the nose of the body
and marches downstream in steps of s�. In the stagnation region, the VSL
equations reduce to ordinary differential equations, which are then solved for
the stagnation line flow, thus producing the initial data for the downstream-
marching solution. See [199] for details.

The work of Moss [199] is one of the first detailed investigations of a chemi-
cally reacting viscous shock layer using the VSL technique and in this sense is a
classic contribution to the field. Moss considered the cases of frozen, equilibrium,
and nonequilibrium laminar flow. Five chemical species were included: O2, O,
N2, N, and NO. Surface catalysis and mass injection were also treated The
viscous shock layer over hyperboloids with included angle of 20 and 45 deg
were calculated. Sample results are shown in Figs. 17.9–17.15 for flow over a
45-deg hyperboloid with R ¼ 2.54 cm, V1 ¼ 6.10 km/s, Tw ¼ 1500 K, and an
altitude of 60.96 km. In Figs. 17.9 and 17.10, shock-layer profiles of velocity
and temperature are shown respectively as a function of n�, at a streamwise
location of s� ¼ 2. Three cases are shown in each figure: frozen, equilibrium,
and nonequilibrium flow. By comparing Figs. 17.9 and 17.10, note that the
temperature is much more sensitive to chemically reacting flow than is the
velocity—another indication that the thermodynamic properties rather than
the more purely fluid-dynamic variables (such as velocity and pressure) are
more affected by chemical reactions. The tops of the curves in Figs. 17.9 and
17.10 correspond to the location of the bow shock wave and hence give n� at
the shock. Once again, we see that the equilibrium shock layer is thinner than
the frozen shock layer. Also, note that, for the flowfield conditions in these
figures, the nonequilibrium flow is closer to frozen than to equilibrium. The
surface-pressure distribution is given in Fig. 17.11 and graphically demonstrates
the insensitivity of pressure to the chemically reacting effects. Indeed, the
detailed, chemically reacting viscous-flow results are reasonably predicted by
modified Newtonian theory (see Sec. 3.2). Catalytic wall effects on the chemical
species profiles are shown in Fig. 17.12. The nonequilibrium flow is calculated
for two cases, an equilibrium catalytic wall and a noncatalytic wall. The abscissa
is the nondimensional distance across the shock layer n/ns, where ns is the coor-
dinate of the shock wave. The effect of the catalytic wall reaches across more
than 70% of the shock layer and, of course, is strongest near the wall. The cata-
lytic wall effect on the heat-transfer distribution along the body surface is shown
in Fig. 17.13. These results are consistent with our discussion surrounding
Fig. 17.5 from Fay and Riddell. Note in Fig. 17.13 that the nonequilibrium
heat transfer is reduced by a noncatalytic wall in comparison to an equilibrium
catalytic wall. Also, note that the nonequilibrium, equilibrium catalytic wall
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Fig. 17.11 Pressure distributions along a hyperboloid (from [199]).

Fig. 17.10 Shock-layer temperature profiles on a hyperboloid. VSL calculation by

Moss [199].
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Fig. 17.12 Shock-layer mass fraction profiles on a hyperboloid (from [199]).

Fig. 17.13 Catalytic wall effects on surface heat transfer on a hyperboloid (from [199]).
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case yields essentially the same heat transfer as the local chemical equilibrium
flow. Finally, note that the relative influence of wall catalyticity diminishes as
a function of downstream distance.

In [199], Moss carried out an interesting comparison of multicomponent vs
binary diffusion. One set of nonequilibrium flow calculations was carried
out using the detailed multicomponent diffusion coefficients (see Sec. 16.3),
and another set assumed binary diffusion in the spirit set forth by Fay and
Riddell described in Sec. 17.6. Figure 17.14 gives the results for chemical
species profiles across the shock layer at a stream wise station of s� ¼ 1.
The wall is assumed noncatalytic. Note that the two cases are in reasonable
agreement with each other, thus indicating that the assumption of binary
diffusion for high-temperature air (at least in the range of dissociation) is
reasonable.

All of the preceding results were obtained with no mass injection into the
shock layer through the wall. Moss examined the case of wall mass injection;
Fig. 17.15 gives results for heat transfer at the stagnation point with mass
injection q divided by its value with no mass injection, (q)m0¼0, vs the mass-
injection rate _m0. This figure demonstrates the important fact that mass injection
dramatically reduces heat transfer to the surface. Indeed, when the
mass-injection rate equals 0.4 of the freestream mass flux, the viscous layer

Fig. 17.14 Shock-layer profiles of species mass fractions; comparison between

multicomponent and binary diffusion (from [199]).
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is blown completely off the surface, and the aerodynamic convective heat trans-
fer is zero.

Reference [199] is a classic application of the VSL technique to chemically
reacting viscous flows. The reader is strongly encouraged to study [199]
for more details and insight. A large number of similar applications have
been made by Lewis et al.; samples of this work are represented by [200]
and [201], which deal with the VSL technique applied to the chemically react-
ing flow over the windward surface of the space shuttle. Another space shuttle
application is discussed by Shinn et al. [202]. In this work, catalytic wall effects
on convective heating along the centerline of the space shuttle were studied
using the VSL technique. Figure 17.16 gives some typical results, obtained
from [202]. Here, the convective heating rate is given as a function of distance
along the windward centerline, for an altitude of 71 km and a velocity of
6.73 km/s. The solid line denotes equilibrium flow, the dash/dot line denotes
nonequilibrium flow with a completely noncatalytic wall, and the dashed
line is the result for a wall with finite catalytic rates. The open symbols are
flight data from the shuttle. Clearly, the space shuttle experiences some finite
wall catalytic effects, and the magnitude of this effect is not trivial.

Fig. 17.15 Mass-injection effect on stagnation heat transfer (from [199]).
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17.9 Parabolized Navier–Stokes Solutions to

Chemically Reacting Flows

The calculation of a fully viscous, nonreacting shock layer by means of the
parabolized Navier–Stokes equations was discussed in Sec. 8.3, which should
be reviewed by the reader before progressing further. In this section, we will
briefly treat a PNS application to equilibrium and nonequilibrium chemically
reacting flow as carried out in the recent work of Prabhu and coworkers [203]
and [204].

As discussed in Sec. 8.3, the parabolized Navier–Stokes equations are
obtained from the full Navier–Stokes equations by dropping the viscous terms
that involve derivatives in the streamwise direction. This approach carries over
to chemically reacting flows, where the PNS global continuity and momentum
equations carry over unchanged from Eqs. (8.14–8.17), and the PNS energy
and species continuity equations are obtained from Eqs. (17.5), (17.6), and
(17.17), wherein all x derivatives in the viscous terms (including diffusion) are
neglected. In this manner, the resulting simplified equations are parabolic and
can be numerically integrated by a steady-state finite difference technique march-
ing in the streamwise direction.

In [203] the PNS equations were used to solve for the complete, viscous
laminar flow over the space shuttle, assuming flow in local chemical equilibrium.
Results are given for V1 ¼ 6.74 km/s, altitude ¼ 71.32 km, and an angle of
attack of 40 deg. For comparison, results assuming a calorically perfect gas
with g ¼ 1.2 (to simulate the high-temperature effects) were also obtained.
Figure 17.17 gives the comparison between the calculated Mach-number con-
tours for g ¼ constant ¼ 1.2 (Fig. 17.17a) and the corresponding contours for

Fig. 17.16 Catalytic wall effects on convective heating along the windward

centerline of the space shuttle: V¥ 5 6.73 km/s, and altitude 5 71 km (from Shinn

et al. [202]).
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equilibrium air (Fig. 17.17b), for a cross section of the shuttle flowfield located at
a distance x/L ¼ 0.4 downstream of the nose, where L is the body length. It is
interesting to note that the g ¼ 1.2 results simulate the equilibrium air results
fairly closely; this is an example where, if the right “effective value” of g can
be found, then a calorically perfect-gas calculation can simulate some aspects
of a chemically reacting flowfield.

In [204], the PNS equations were used to solve for the nonequilibrium chemi-
cally reacting laminar flow over cones at angle of attack. Sample results are
shown in Figs. 17.18 and 17.19 for the case of V1 ¼ 8100 m/s, Tw ¼ 1200 K,
and altitude ¼ 60.96 km. The wall is noncatalytic. Figure 17.18 shows the
profiles of atomic oxygen mass fraction cO as a function of distance across the
shock layer at x ¼ 3.5 m downstream of the tip. Three profiles are shown: 1)
the solid line for zero degree angle of attack, 2) the solid circles for the windward
meridian line a ¼ 10 deg, and 3) the open circles for the leeward meridian line at
a ¼ 10 deg. To be expected, at angle of attack more dissociation occurs on the
windward side than on the leeward side because of the higher temperature flow
on the bottom of the cone. Also, we would expect the flow on the windward
side (where p and T are higher) to be closer to equilibrium than the leeward-side
flow (where p and T are lower). Heat-transfer results are given in Fig. 17.19
for the same case. Here, CH is given as a function of x and shows the expected
result of much higher heat transfer on the windward side compared to the
leeward side.

The application of the PNS equations to chemically reacting flows is presently
a state-of-the-art research problem. The discussion in the present section is

Fig. 17.17 Mach-number contours from PNS calculations of the viscous flow

over the space shuttle where x/L 5 0.4: a) calorically perfect gas with g 5 1.2 and

b) equilibrium chemically reacting air (from Prabhu and Tennehill [203]).
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intended to give only the flavor of such work. The reader is encouraged to keep
track of the literature in this field. References [203] and [204] are just samples of
the literature; the work of Bhutta et al. [205] is of particular note.

17.10 Full Navier–Stokes Solutions to Chemically

Reacting Flows

The calculation of nonreacting viscous flows by means of the full Navier–
Stokes equations is discussed in Sec. 8.4, which should be reviewed by the
reader before progressing further. These calculations are time-marching sol-
utions, and the basic approach and philosophy is carried over to the case of
chemically reacting flow as well. The time-marching solution of the complete
Navier–Stokes equations for chemically reacting flow involves the finite differ-
ence solution of the governing equations given by Eqs. (17.1), (17.6), and
(17.17), and for alternate forms of the energy equation, Eqs. (17.25), (17.31),
or (17.40). Examples of such time-marching solutions for complex reentry flow-
fields are given by the work of Gnoffo and coworkers represented by [206]
and [207].

Fig. 17.18 Shock-layer atomic-oxygen mass fraction profiles for the nonequilibrium

flow over a 10-deg cone at angle of attack. PNS calculations of Prabhu and Marvin

[204].
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In [266], Gnoffo discusses recent Navier–Stokes calculations for the chemi-
cally reacting flowfield over the Mars Pathfinder vehicle. The front face of the
entry vehicle is a spherically blunted, 70-deg half-angle cone, as shown in
Fig. 17.20. In this figure, the changes in the sonic line shape and location are
shown as the altitude and Mach-number change during entry in the Martian
atmosphere. The light grey region is the subsonic flow region, and the darker
regions are the zones of supersonic flow behind the bow shock. The Mach
numbers range from 22.3 (left), 16 (center), and 9.4 (right), where the shock-layer
flowfield changes from frozen flow, to nonequilibrium flow, and then to equili-
brium flow. These calculations are at the cutting edge of the state of the art.
For this reason, no details will be given here; rather, the reader is encouraged
to keep up with the rapidly growing literature in the field.

To illustrate the application of the complete Navier–Stokes equations to a
nonequilibrium chemically reacting flow, we choose to discuss here a simpler
example, namely, the mixing flow in the cavity of an HF chemical laser.
The principle of a high-energy chemical laser was discussed in Sec. 9.1. The
first Navier–Stokes solutions to such flows were carried out by Kothari et al.
as reported in [208] and [209] from which the following is taken.

Fig. 17.19 Heat-transfer distributions on a 10-deg cone at angle of attack.

Nonequilibrium flow (from [204]).
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The physical problem is sketched in Fig. 17.21, which shows two supersonic
parallel streams mixing with each other, one stream of partially dissociated
fluorine and the other of hydrogen. In the mixing region downstream of the
nozzle exits, the following hypergolic chemical reactions take place:

Fþ H2OHF�(v)þ H

F2 þ HOHF�(v)þ F

In the preceding, HF�(v) denotes a vibrationally excited state of HF, where HF is
formed directly in the excited vth vibrational energy level as a direct product of
the chemical reaction. In turn, this vibrationally excited HF�(v) can contribute
to a population inversion and hence laser action in the downstream mixing flow.
(See [210] for a basic discussion of nonequilibrium effects associated with lasers
and for the significance of a population inversion.) Therefore, in such a chemical
laser flow, we are dealing with both thermal and chemical nonequilibrium.

In [209] and [210], the flowfield sketched in Fig. 17.21 was calculated
by solving the two-dimensional form of Eqs. (17.1–17.6) and (17.17).
In Eq. (17.17), each vibrational level of HF was treated as a different
“species,” so that the nonequilibrium system consisted of 14 species and 100

Fig. 17.20 Sonic line locations for the Mars Pathfinder at 2-deg angle of attack in the

symmetry plane at Mach 22.3 (left), 16 (center), and 9.4 (right) showing the effect of

gas chemisry (Gnoffo [266]).
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elementary reactions. A time-marching solution of these equations was carried
out using MacCormack’s explicit, predictor-corrector, finite difference scheme,
which is described in earlier sections of this book, starting with Sec. 5.3. An
application of MacCormack’s technique to nonequilibrium flows is discussed
in Sec. 15.5. Hence, no computational details will be given here. However, we
will mention one aspect of the calculational technique applied to nonequilibrium
flows that is brought out in [209] and [210]. That is, in the time-marching calcu-
lation of a nonequilibrium flow it is suggested to advance the flowfield initially
with the chemical reactions turned off, in order for the fluid-dynamic aspects
of the flow to begin to establish themselves (for example, for shocks to form,
for shear layers to occur, for mixing to take place, etc.). Then, at some intermedi-
ate time the nonequilibrium chemistry is switched on, and the coupled fluid-
dynamic and chemical aspects of the flow subsequently evolve to the steady
state at large times. This suggestion is illustrated in Fig. 17.22, which shows
the variation of temperature at a particular grid point for the flow in
Fig. 17.21. Cold flow (no chemical reactions) is calculated for about half the
total elapsed nondimensional time [given by t/(h/V ), where V is a reference

Fig. 17.21 Chemical laser model used by Kothari et al. [208].
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velocity and h is the height of the mixing duct]; then, the chemical reactions are
switched on, and the hot flow (with chemical reactions) is carried out to the
steady state. This approach is recommended for the general solution of nonequi-
librium viscous flows when time-marching methods are used. In this way, some
extreme transients that might be induced by the finite-rate chemical reactions
near time zero are avoided, thus avoiding possible numerical instabilities.
For example, in the flow shown in Fig. 17.21, the initial conditions involve a
slab of dissociated fluorine (stream 2) in direct contact with a slab of H2

(stream 1). If this were to exist momentarily in real life inside the duct, an
actual explosion would occur. Therefore, to avoid an analogous “numerical
explosion,” the cold flow is allowed to mix for the early time steps before
the chemistry is turned on; in this fashion, when the chemistry is finally
turned on, the chemical energy changes will be more evenly distributed over
the whole flowfield rather than occurring in a local region as they would at
t ¼ 0.

A sample steady-flow result for this problem is shown in Fig. 17.23. Here,
the density profiles of the first three vibrational energy levels (v ¼ 0, 1, and 2)
of HF are shown in the mixing region as a function of distance across the flow
at a given streamwise location, x/h ¼ 5. Note that near the middle of the
flow (say, at y/h ¼ 0.4). rHF(2) . rHF(1) . rHF(0), that is, there are more HF
molecules in the higher-lying vibrational energy levels than in the lower
levels. By definition, this is called a population inversion and is the basis of
laser action in the gas. Recalling that the Boltzmann distribution for a gas
in vibrational equilibrium called for rHF(2) , rHF(1) , rHF(0) we see that
Fig. 17.23 illustrates a case of high-vibrational nonequilibrium. The reader is
encouraged to read [208] and [209] for more details. Also, [211] is another
source for such matters.

Fig. 17.22 Illustration of the cold-flow/hot-flow method used in the complete

Navier–Stokes solution of chemical laser flows (from [208]).
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17.11 Summary and Comments

This brings to an end our discussion of chemically reacting viscous flow. We
have discussed the basic equations for such flows and some of the important
physical mechanisms, such as diffusion and catalytic surfaces. We have
applied these equations to a series of flows, progressing from boundary-layer
solutions (self-similar and nonsimilar), through various viscous shock-layer tech-
niques (VSL and PNS), and ending with Navier–Stokes solutions. The subject
matter represented by this chapter is vast, and we have only scratched the
surface here. Our purpose has been to discuss the fundamental principles and
ideas and to illustrate these with selected examples of chemically reacting
viscous flows. These examples have been carefully selected to illustrate the
important physical behavior of high-temperature viscous flows, and the reader
should interpret the thrust of this chapter accordingly.

With this chapter, we have completed a major milestone in our road map in
Fig. 1.24. With this, we move on to our last item under high-temperature flow,
namely, radiating flow.

Problems

17.1 Starting with the model of a finite control volume fixed in space (with the
flow moving through the control volume), derive Eq. (17.20).

Fig. 17.23 Steady-state density profiles of three vibrational levels in HF in a

chemical laser. Navier–Stokes calculations of [208].
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17.2 Consider a viscous flow over a porous surface. The flow can be a pure
gas, or a mixture of different gases. A gas of a completely different
species i is injected through the porous surface into the main viscous
flow. The mass flux (mass per unit area per unit time) of this injected
gas is _mw. Prove that the proper boundary condition at the surface for
the solution of the main viscous flow equations including mass injection
is _mw ¼ rvw, where r is the density of the mixture at the wall (not the
density of the injected species ri), and vw is the vertical component
of the gas mixture velocity at the wall. (This problem is an adjunct to
the discussion of boundary conditions in Sec. 17.5.)

17.3 Derive Eqs. (17.74), (17.75), and (17.76), namely, the transformed
equations for a chemically reacting viscous flow.

17.4 Derive Eq. (17.87), namely, the transformed species continuity equation
for a viscous stagnation-point flow.

17.5 Consider the chemically frozen laminary boundary-layer flow of
dissociated oxygen over a flat plate. The wall is fully catalytic to
oxygen recombination, and the wall temperature is cool, say, less than
1000 K. If Le ¼ Pr ¼ 1, the profile of atomic mass fraction through
the boundary layer is a function of the velocity profile only, that is,
cO ¼ f (u). Derive this function.
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18
Introduction to Radiative Gas Dynamics

Light seeking light doth light of light beguile.

William Shakespeare,
Love’s Labours Lost, 1594

Chapter Preview

This chapter, for the most part, deals with extremes—extremes of temperature

and the consequences. Depending on where you are as you are reading this

page, presumably you are fairly comfortable temperature-wise. If you are in

a room at some reasonable room temperature, the walls of the room are also

at room temperature. Moreover, the walls of the room are emitting thermal radi-

ation, some of which you are absorbing, even though you are not really aware of

it. On the order hand, if the temperature of the walls of the room were to sud-

denly jump to 3000 K (hypothetically), you most certainly would be aware of it.

The radiative energy from the walls would suddenly become unbearable. This

is perhaps a ridiculous example, but it serves to get your attention about the

large amount of thermal radiation that is associated with high temperatures.
As noted in Sec. 1.3.4, the shock layer in the nose region of the Apollo

reentry capsule reached 11,000 K during its return through the Earth’s atmos-
phere. Now this is an extreme temperature, and the gas in the shock layer
emitted a lot of radiative energy. The energy radiated from the gas had
two major physical consequences: 1) the shock layer lost energy to its
surroundings, that is, the shock layer became nonadiabatic, and 2) radiative
heat transfer to the body constituted over 30% of the total heating rate to
the body. These are serious consequences.

In this chapter you will learn how to calculate these consequences. Radia-
tive transport is a different physical mechanism than any we have studied so
far in this book. So read on, and relish the difference.
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18.1 Introduction

Consider a flowfield where the temperature is high enough that a fluid element
radiates a substantial amount of energy. For air, this threshold temperature is
about 10,000 K. In such a flow, the fluid element loses energy because of the
emission of radiation, but it can also gain energy because of the absorption of
radiation emitted from other fluid elements in the high-temperature flow. Two
major consequences of this radiation are as follows:

1) The flowfield becomes nonadiabatic, that is, a flowfield wherein before we
considered the total enthalpy as a constant (such as inviscid shock-wave flows,
nozzle flows, etc.) now becomes one in which h0 ¼ hþ V2/2 is a variable.

2) In addition to the ordinary convective heat transfer qc to a surface in the
flow, we now have a new component, namely, radiative heating of the surface
qR. Thus, the total surface heat transfer becomes

q ¼ qc þ qR (18:1)

where qc includes both conduction and diffusion effects, as described in Chapters
16 and 17.

The radiation and the fluid flow are, in general, coupled, that is, the radiative
intensity within the flowfield depends on r and T in the flow, and, in turn,
the flowfield properties are influenced by the radiative intensity. This is the
essence of the radiative-gas dynamic interaction effect, which is the main
subject of this chapter.

In this conjunction, we introduce two definitions concerning the radiative
nature of the gas:

1) Transparent gas is a gas that emits but does not absorb radiation. In such a
gas, all radiation that is emitted from within the gas escapes to the surroundings.

2) Self-absorbing gas is a gas that emits and absorbs radiation. Some of the
radiation that is emitted escapes to the surroundings, and some is self-absorbed
by the gas, thus trapping some of the radiative energy within the flow.

The radiative nature of the gas can have a major impact on the proper analysis
of a flow. For example, a self-absorbing gas is elliptic in nature, even though the
flow might be inviscid and supersonic. This is because radiation that is emitted by
downstream fluid elements can be absorbed by upstream fluid elements, thus
feeding information upstream in the flow—a mathematically elliptic behavior.
Consequently, such a flow would, in general, have to be calculated by a time-
marching solution for the same mathematical reasons given in Sec. 5.3. On the
other hand, this upstream effect does not occur for a transparent gas, which is
affected only by local radiative emission.

In this chapter, we will give a brief picture of radiative gas dynamics. Our
purpose is to make the reader feel comfortable with the basic concepts and
appreciative of the physical trends.

18.2 Definitions of Radiative Transfer in Gases

There are two basic quantities that describe the transfer of radiation through a
gas: radiative intensity and radiative flux. First, consider the definition of radiative
intensity. Consider a given arbitrary direction r in a radiating gas, as sketched in
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Fig. 18.1. Consider also an area dA at point P perpendicular to the direction r
and a solid angle dv about r Let dE0 be the radiative energy in the frequency
interval between v and vþ dv transmitted through dA during a time interval
dt from all directions contained within the solid angle dv. Then, the specific
radiative intensity Iv is defined as

Iv ; lim
dE0

dA dv dv dt

� �

dA, dv, dv, dt! 0

(18:2)

that is, at a point P in the gas, Iv is the radiative energy transferred in the r direc-
tion across a unit area perpendicular to r, per unit frequency, per unit time, per
unit solid angle. Note that Iv is directional in nature. When we talk about the
intensity at point P, we also have to say the intensity in what direction.

The radiative flux is defined as the energy per second crossing a unit area
caused by intensity coming from all directions. Let qv be the radiative flux per
unit frequency. Then,

qv ¼

ð
v

Iv cos u dv (18:3)

Fig. 18.1 Geometric model for radiative intensity.
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where u is defined in Fig. 18.2 as the angle between an arbitrary direction L and a
unit normal vector n perpendicular to the elemental area dA. We can write the
directional variation of intensity as Iv ¼ Iv(u, f), where f is also shown in
Fig. 18.2. Also, using the geometry of Fig. 18.2, the solid angle dv is defined
as the included area ds divided by L2:

dv ;
ds

L2
¼

(L du)(L sin u df)

L2
¼ sin u du df

Hence, Eq. (18.3) becomes

qv ¼

ð2p

0

ðp
0

Iv(u, f) cos u sin u du df (18:4)

The total radiative flux, integrated over all frequencies, is

q ¼

ð1

0

ð2p

0

ðp
0

Iv(u, f) cos u sin u du df dv (18:5)

Fig. 18.2 Geometric model for radiative flux.
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Finally, we note that a classical blackbody (see any good physics test) will
emit radiative intensity of a value

Bv ¼
2hv3

c2(ehv=kT � 1)
(18:6)

where Bv is the blackbody radiative intensity at frequency v and temperature T, h
is Planck’s constant, k is the Boltzmann constant, and c is the speed of light.

18.3 Radiative-Transfer Equation

Consider an element in a radiating gas, as sketched in Fig. 18.3. Radiation of
intensity Iv in the s direction is incident on this element. Within the element, the
local value of Iv will be increased by emission and decreased by absorption. By
definition, let

Jv ds ¼ energy emitted

and

kvIv ds ¼ energy absorbed

where Jv is called the emission coefficient and kv is the absorption coefficient.
Then the change in Iv, namely, dIv, because of the element of gas shown in
Fig. 18.2 is

dIv ¼ Jv ds� kvIv ds

or

dIv

ds
¼ Jv � kvIv (18:7)

Fig. 18.3 Geometric model for the radiative-transfer equation.
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Equation (18.7) is the fundamental form of the radiative-transfer equation. This
equation allows us to calculate Iv as a function of distance s through a gas. More-
over, the term dIv/ds has dimensions of energy per second per unit solid angle per
unit frequency per unit volume. When integrated over all frequencies and all solid
angles, it therefore represents the local change in energy of a fluid element per
unit volume caused by radiation. For example, consider Eq. (17.31), which is
the energy equation for a high-temperature, chemically reacting, radiating,
viscous flow, repeated here:

r
Dh

Dt
¼ � � (k�T)� � �

X
i

riUihi � � � qR þ
Dp

Dt
þF (18:8)

In this equation, the radiation term is given by � � qR; from our preceding discus-
sion, this term is given by the radiative-transfer equation (18.7), as

� � qR ¼

ð1

0

ð
4p

Jv dv dv�

ð1

0

ð
4p

kvIv dv dv (18:9)

In Eq. (18.9), the two terms on the right-hand side represent local radiative emis-
sion and absorption, respectively. Because the fluid element emits energy equally
in all directions, then

ð1

0

ð
4p

Jv dv dv ¼ 4p

ð1

0

Jv dv ¼ 4pJ

where J is the total radiative emission per second per unit volume. Hence, Eq.
(18.9) can be written as

� � qR ¼ 4pJ �

ð1

0

ð
4p

kvIv dv dv (18:10)

In turn, Eq. (18.10) is the form of the radiation term that appears in the gas
dynamic energy equation, such as Eq. (18.8).

Finally, we note that, if the gas were a blackbody with radiative intensity given
by Eq. (18.6), the value of Iv does not change, that is, Iv is independent of distance
through the blackbody, and is equal to Bv. If we apply the radiative-transfer
equation to a blackbody, Eq. (18.7) becomes

dIv

ds
¼ 0 ¼ Jv � kvBv

or

Jv ¼ kvBv (18:11)

However, the radiation emitted by a gas (neglecting induced emission) is
independent of the incident radiative intensity, blackbody or not. Therefore,
Eq. (18.11) must be a general result for the emission coefficient, even though
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the surrounding radiation might not be blackbody. Thus, we can write, for the
general form of the radiative-transfer equation

dIv

ds
¼ kvBv � kvIv (18:12)

and for J in Eq. (18.10) we can write, in general,

J ¼

ð1

0

kvBv dv (18:13)

18.4 Solutions of the Radiative-Transfer

Equation: Transparent Gas

Consider an arbitrary volume of a radiating, transparent gas, as sketched in
Fig. 18.4. We wish to calculate the radiative flux across the boundary of this
volume at point P, because of all of the radiating gas inside the volume. Consider
an infinitesimal volume element dV, as sketched in Fig. 18.4. This elemental
volume is at a distance r from an elemental surface area dA located at point P.
The angle between r and the normal dA is b. Assuming the gas does not
absorb (i.e., assuming a transparent gas), the energy emitted from dV, which

Fig. 18.4 Model for a transparent gas.
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crosses dA per second, is

(J dV)

Energy per unit

solid angle

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{� dA cosb

Solid angle
intercepted by dA

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{r2

Hence, integrating over all of the gas volume and dividing by dA, we obtain the
radiative flux (energy per second per unit area) crossing the boundary surface at
point P:

q ¼

ð
V

J cosb

r2
dV ¼

1

4p

ð
V

E cosb

r2
dV (18:14)

where, by definition, E is the total energy emitted by the gas in all directions per
second per unit volume, that is,

E ¼ 4pJ (18:15)

Now consider a uniform slab of radiating gas at constant properties (e.g., con-
stant T and r throughout), as sketched in Fig. 18.5. Thus, E is constant throughout

Fig. 18.5 Infinite slab geometry for a transparent gas.
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the gas. The slab has thickness d and stretches to plus and minus infinity.
Consider an infinitesimal volume dV inside the slab. In spherical coordinates,

dV ¼ r2 sinb db df dr

The radiative flux across the right face of the slab is, from Eq. (18.14),

q ¼
E

4p

ðp=2
0

ð2p

0

ðd=( cosb)

0

cosb

r2
r2 sinb dr df db

¼
Ed

4p

ðp=2
0

ð2p

0

sinb df db ¼
Ed

2

ðp=2
0

sinb db

or

q ¼
Ed

2
(18:16)

Equation (18.16) gives the radiative flux across the surface of an infinite slab of
radiating, transparent gas of thickness d.

This result can be used to approximate the stagnation region radiative heating
to a hypersonic blunt body, as shown in Fig. 18.6. Here, the stagnation region
with a shock detachment distance d appears to the stagnation point as essentially
an infinite slab with a constant value of E, where E ¼ E(Ts, rs), and where Ts and
rs are the temperature and density behind the normal shock wave. Hence, the
stagnation-point radiative heat transfer (qR)stag is approximated by

(qR)stag ¼
Ed

2
(18:17)

Fig. 18.6 Stagnation region geometry for a radiating gas.
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If we further assume that d is given by Eq. (14.19), namely,

d �
R

rs=r1

then

(qR)stag ¼
E

2
R

r1

rs

� �
(18:18)

From Eq. (18.18), we see the important result that, for a transparent, radiating
shock layer, the radiative heat transfer is directly proportional to R. This is in
direct contrast to convective heating, where in Chapters 6 and 17 we saw that

(qc)stag /
1ffiffiffi
R
p (18:19)

For superorbital reentry vehicles, where radiative heating is important, Eqs.
(18.18) and (18.19) form a classic compromise on the design of the nose
radius; namely, to reduce convective heating, make R large, but to reduce radia-
tive heating, make R small.

18.5 Solutions of the Radiative-Transfer

Equation: Absorbing Gas

In Sec. 18.4, we considered an emitting but nonabsorbing gas (transparent
gas). In the present section, we consider the direct opposite—an absorbing but
non-emitting gas. For this case, from Eq. (18.12),

dIv

ds
¼ �kvIv (18:20)

Consider the volume of absorbing gas sketched in Fig. 18.7. Radiative intensity in
the s direction is incident on the volume with value Ivin

. The intensity that
emerges from the other side is Ivout

. The path length of the radiative intensity in
the s direction through the volume is L. From Eq. (18.20),

ðIvout

Ivin

dIv

Iv

¼ �

ðL

0

kv ds (18:21)

Assuming a constant property gas (hence kv is constant throughout the volume),
Eq. (18.21) yields

Ivout
¼ Ivin

e�kvL (18:22)

Equation (18.22) is called Lambert’s law; it applies to a constant property gas.
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If T and r are variable throughout the gas, then kv is also a variable. For this
case, Eq. (18.21) becomes

Ivout
¼ Ivin

exp �

ðL

0

kv ds

� �
(18:23)

Let us define the optical thickness tv as

tv ;
ðL

0

kv ds (18:24)

Then, Eq. (18.23) can be written as

Ivout
¼ Inin

e�tv (18:25)

18.6 Solutions of the Radiative-Transfer Equation: Emitting

and Absorbing Gas

Consider an emitting and absorbing gas, with variable properties (variable T
and r, hence variable kv), as sketched in Fig. 18.8. Let Iv(0) be the incoming

Fig. 18.7 Model for an absorbing gas.
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intensity at the boundary of the system, s ¼ 0. Let us calculate the local value of
Iv at s ¼ s1. Physically, the intensity at s1 will consist of two parts: 1) the original
incoming Iv(0) after it has been attenuated by absorption from s ¼ 0 to s ¼ s1,
and 2) the emitted radiation from within the gas at any point s, after it has
been attenuated by absorption between s and s1. Let us quantify this picture.

From Eq. (18.12),

dIv

kv ds
¼ bv � Iv (18:26)

From the definition of optical thickness given by Eq. (18.24), we can write

dtv ¼ kv ds (18:27)

Hence, Eq. (18.26) becomes

dIv

dtv

¼ Bv � Iv (18:28)

Now, assume a solution of Eq. (18.28) in the form of

Iv ¼ c(tv)e�tv (18:29)

where c is a variable coefficient, a function of tv. Differentiating Eq. (18.29), we
have

dIv

dtv

¼ �ce�tv þ e�tv
dc

dtv

(18:30)

Fig. 18.8 Model for an emitting and absorbing gas.
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Substituting Eqs. (18.30) and (18.29) into the radiative-transfer equation (18.28),
we have

�ce�tv þ e�tv
dc

dtv

¼ Bv � ce�tv

or

dc

dtv

¼ Bvetv (18:31)

Letting tv ¼ 0 at s ¼ 0, and tv ¼ tv1
at s ¼ s1, Eq. (18.31) can be integrated as

ðtv1

0

dc ¼

ðtv1

0

Bvetv dtv

or

c(tv1
)� c(0) ¼

ðtv1

0

Bvetv dtv (18:32)

However, from Eq. (18.29) evaluated at s ¼ s1 and s ¼ 0, we have, respectively,

c(tv1
) ¼ Iv(tv1

)etv1 (18:33a)

and

c(0) ¼ Iv(0) (18:33b)

Substituting Eqs. (18.33a) and (18.33b) into Eq. (18.32), we have

Iv(tv1
) ¼ Iv(0)e�tv1 þ

ðtv1

0

Bve�(tv1�tv) dtv (18:34)

Equation (18.34) represents the general solution to the radiative-transfer equation
for an emitting and absorbing gas with variable properties. The two terms on the
right side of Eq. (18.34) physically represent the two parts of the intensity at point
s1 as described in the first paragraph of this section. With Eq. (18.34) in mind,
reread the first paragraph before progressing further.

Now consider an infinite slab (sometimes called a plane layer) of gas, as
sketched in Fig. 18.9. Let y denote the vertical distance through the slab. The
upper boundary is located at y ¼ L, and the lower boundary is at y ¼ 0. The
values of optical thickness at each of these locations are tv2

and 0, respectively.
The gas properties in the slab vary with y. Let Iþv denote a downward-directed
radiative intensity, as shown is Fig. 18.9. Hence, Iþv (L) ¼ Iþv (tv2

) is the downward
intensity coming from the upper boundary (say, from radiation entering the slab
from outside, or maybe the upper boundary might be a solid wall emitting some
radiation of its own). We wish to calculate the downward-directed radiative flux
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at the location y (hence tv) in the gas. Note that, in Eq. (18.34), the optical thick-
ness is measured in the direction of the intensity, which, Fig. 18.9, is denoted by
t 0v. Hence, from Eq. (18.34),

Iv(t0v) ¼ Iv(0)e�t
0
v þ

ðt0v
0

Bv(t)e�(t0v�t) dt (18:35)

where Iv(0) is the intensity at t 0v ¼ 0, which is the top of the slab, and t is a
dummy variable of integration, ranging from 0 to t 0v. However, by convention,
tv is always directed upward, normal to the slab, as shown in Fig. 18.9. Note
that t 0v (measured from the top along the slant height shown in Fig. 18.9) is
given by (tv2

2 tv)/cos u, where tv is measured in the normal direction from
the bottom of the slab. Hence, Eq. (18.35) becomes

Iþv (tv) ¼ Iþv (tv2
) exp

�(tv2
� tv)

cos u

� �
þ

ðtv2

tv

Bv(t) exp½�(t � tv)= cos u�
dt

cos u

(18:36)

Return to Eq. (18.5), and note that it gives the total radiative flux crossing a
surface in both the upward and downward directions. For the radiation directed
downward only, we have

qþ ¼

ð1

0

ð2p

0

ðp=2
0

Iþv cos u sin u du df dv (18:37)

Let m ¼ cos u; hence, d(cos u) ¼ 2sin u du ¼ dm. Also, from the geometry of
the slab, Iv is independent of f. Hence, Eq. (18.37) becomes

qþ ¼ �2p

ð1

0

ð0

1

Iþv m dm dv (18:38)

Fig. 18.9 Infinite slab geometry for an emitting and absorbing gas.
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Note that Iv
þ is a function of position y and direction m, whereas qþ is a function

of position y only. Substituting Eq. (18.36) into (18.38), we obtain

qþ ¼ 2p

ð1

0

ð1

0

Iþv (tv2
)e�(tv2

�tv)=mm dm dv

þ 2p

ð1

0

ð1

0

ðtv2

tv

Bv(t)

m
e�(t�tv)=mm dm dv (18:39)

By definition, the integro-exponential function of order n is

En(v) ;
ð1

0

mn�2e�v=m dm

Hence, Eq. (18.39) can be written as:

qþ ¼ 2p

ð1

0

Iþv (tv2
)E3(tv2

� tv) dvþ 2p

ð1

0

ðtv2

tv

Bv(t)E2(t � tv) dt dv (18:40)

Equation (18.40) gives the downward radiative flux at location y in Fig. 18.9. The
first integral is the radiation from the upper surface, attenuated by absorption
between L and y. The second integral is the radiation emitted locally by the
gas between L and y and attenuated before it reaches y.

By a similar development, the total flux at y, q ¼ qþ þ q2, can be obtained.
Then, the radiation term in the energy equation [Eq. (18.8)] becomes

�� � qR ¼ �
dq

dy
¼ �4pJ þ 2p

ð1

0

kv

ðtvs

0

Bv(t)E1(jtv � tj) dt dv (18:41)

See [212] for more details on the derivation of Eq. (18.41).

18.7 Radiating Flowfields: Sample Results

A primary application of radiative gas dynamics has been in the area of
planetary entry heating, especially reentry heating to space vehicles entering
the Earth’s atmosphere at speeds above 30,000 ft/s. Figure 18.10, taken from
[213], illustrates the importance of radiative heating at such velocities;
stagnation-point radiative heat transfer equals and exceeds the ordinary aero-
dynamic convective heating at high entry velocities. Reference [213] is a
major survey of radiative shock-layer effects, and the reader is strongly encour-
aged to study it for more details.

In general, the values for the absorption coefficient kv, as a function of tempera-
ture, density, and frequency, must be known in order to carry out a radiating flow
calculation. For most gases, the frequency dependence of kv is quite detailed and
complex. For example, Fig. 18.11 (from [213]) shows the frequency variation of
kv for high-temperature air obtained from several different sources. This figure
shows only the continuum radiation associated with free electron movement and
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electron-ion recombination; to this must be added the detailed spectral line radiation
from electronic transitions in the atoms and molecules. See [213] for more details
and for a list of references from which absorption coefficient data can be obtained.
Also, a recent survey of air radiation properties has been given by Sutton in [214].

As an example of a radiating shock-layer application, we take the results
described in [212] for the viscous stagnation region of a blunt body. The flow
problem is shown in Fig. 18.12, where the high-temperature viscous and radiating
flow is calculated between the shock wave and the body. The flow is assumed to
be in local thermodynamic and chemical equilibrium. For the radiative transport,
the stagnation region is assumed to be an absorbing and emitting gas in an infinite
slab, as described in Sec. 18.6, with properties that vary in the y direction across

Fig. 18.10 Comparison of radiative and convective stagnation-point heat transfer

(from Anderson [213]).
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the shock layer. The governing equations that hold for a thin, viscous, shock layer
near the stagnation region were first presented by Howe and Viegas [215] and are
given as follows.

Continuity:

@

@x
(rurm)þ

@

@y
(Krvrm) ¼ 0 (18:42)

Fig. 18.11 Absorption coefficient variation with frequency (or wavelength) for

high-temperature air (from [213]).
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x Momentum:

ru
@u

@x
þ Kr v

@u

@y
¼ �

@p

@x
þ K

@

@y
m
@u

@y

� �
(18:43)

y Momentum:

@p

@y
¼ 0 (18:44)

Energy:

ru
@h0

@x
þ Kr v

@h0

@y
¼ K

@

@y

m

Preq

@h

@y

� �
� K

@qR

@y
(18:45)

Fig. 18.12 Model of the radiating stagnation region flowfield (from Anderson [212]).
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In the preceding,

h0 ¼ hþ
u2 þ v2

2

K ¼ 1þ
y

R

m ¼ 0 or 1 for the two-dimensional or axisymmetric flow:

Fig. 18.13 Radiation coupling effects on stagnation region shock layer and heat

transfer (from [212]).
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Also, the Prandtl number Preq is the equilibrium Prandtl number defined in
Eqs. (16.41) and (16.42), which contains the influence of diffusion. The thermo-
dynamic and transport properties are obtained from the correlations of Viegas
and Howe [194]. In Eq. (18.45), the radiation term @qR/@y is given by Eq. (18.41).

Some typical results are shown in Figs. 18.13 and 18.14, taken from [212]. The
static enthalpy profiles across the stagnation region shock layer are shown in
Fig. 18.13. The upper curve (dashed line) is the result with no radiation, the
lower dashed line corresponds to a transparent shock layer, and the middle
solid curve is for a radiating, self-absorbing gas. The nonadiabatic flowfield
effect caused by radiation is dramatically shown here; the radiation energy that
is lost from the flow results in a cooling effect, thus lowering the enthalpy
levels of the flow. The transparent gas case exhibits the strongest radiative
cooling effect; the self-absorbing case retains some of the radiative energy
caused by absorption within the shock layer and hence has a somewhat higher
enthalpy level than the transparent gas case. The table at the bottom of
Fig. 18.13 gives the convective and radiative heat transfer to the stagnation
point, where qR is calculated from Eq. (18.40) evaluated at the wall. Note that,

Fig. 18.14 Radiative coupling effects on shock detachment distance (from [212]).
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for the very high velocity considered (V1 ¼ 50,000 ft/s), qR far exceeds qc. The
shock detachment distance is also affected by radiation, as seen in the table in
Fig. 18.13 and in the plot of Fig. 18.14. Note that the cooling effect of shock-layer
radiation (hence higher shock-layer density) results in a decrease in shock-
detachment distance. Moreover, as seen in Fig. 18.14, this effect becomes stron-
ger as R is increased. Here is a graphic illustration that larger nose radii increase
the effect of radiation on the shock layer, as noted at the end of Sec. 18.4.

We end this section with some radiating shock-layer results obtained with the
VSL technique by Moss. We have already noted in Sec. 17.8 that the VSL method
was used to calculate chemically reacting shock layers by Moss (see [199]). The
work of Moss has been progressively extended to include shock-layer radiation,
ablating gases, turbulence, and foreign planetary atmospheres. Indeed, Moss’s
later work has led to a very exciting “first” in modern hypersonics—the design
of the Galileo heat shield by means of detailed flowfield calculations. Previous
reentry vehicles such as Apollo and the space shuttle were designed by means
of a combination of wind-tunnel data and approximate calculations. However,
the final design of the heat shield for the Galileo probe was performed on the
basis of Moss’s detailed viscous shock-layer calculations. These calculations,

Fig. 18.15 Predicted time-varying contours for the shape of the Galileo probe

during Jovian entry (from Moss and Simmonds [217]).
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and their progressive development, have been extensively published; for the most
recent summary, see [216] and [217] and the references contained therein. Some
results in [216] and [217] were also obtained by means of a time-dependent
viscous shock-layer analysis derived from the work of Kumar et al. [218].
Typical results from Moss’s work are shown in Figs. 18.15 and 18.16, taken
from [217]. In Fig. 8.15, the time-varying contours (caused by surface oblation)
are given for the Galileo probe for various times during its Jovian entry
trajectory. Figure 18.16 gives the calculated radiative and convective heat transfer
to the stagnation point; note in particular that the heating to the Galileo probe
is predicted to be virtually all radiative, because the convective heating is negli-
gible as a result of massive ablation. Again, it is this type of data that has gone
into the detailed design of the Galileo heat shield—truly a benchmark event in
the development and use of detailed, modern, hypersonic flow calculations.

18.8 Surface Radiative Cooling

In this section we shift our focus to consider radiation from the surface rather
than from the shock layer. The surface of a body radiates energy away from the
surface at the rate

qRS ¼ 1sT4
w (18:46)

Fig. 18.16 Calculated radiative and convective heat transfer to the Galileo probe

during Jovian entry (from [217]).
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where qRS is the heat flux radiated away from the surface, 1 is the surface emis-
sivity, s is the Stefan–Boltzmann constant, and Tw is the wall surface tempera-
ture. The net heat transfer at the surface of the body qw is equal to the sum of the
convective and radiative heat transfer minus the energy radiated away from the
surface qRS, that is,

qw ¼ qc þ qR � qRS (18:47)

Radiation away from the surface can be a significant cooling mechanism for some
hypersonic vehicles, especially hypersonic cruise vehicles flying for long times in
the atmosphere. Hirschel [267] notes, for example, a case where the recovery
temperature near the stagnation point of the HERMES reentry vehicle reaches
about 6000 K at 70 km altitude, whereas with radiative cooling (1 ¼ 0.85)
the wall temperature drops to below 2000 K and remains below 2000 K for the
whole entry flight trajectory. This is significant! Indeed, Hirschel discusses
the subject of surface radiative cooling at great length, and you should consult
[267] for more details.

In this section, we simply want to note the existence of radiative cooling of the
surface, as calculated from Eq. (18.46). Also, we note that for a surface with sig-
nificant radiative cooling the recovery temperature discussed in Chapter 6 loses
its practical significance. Instead, when the surface reaches the equilibrium con-
dition of an adiabatic wall, that is, no net heat transfer to or from the surface, the
wall temperature reaches the radiation-adiabatic temperature Tra, which is lower
than the adiabatic wall temperature Taw, defined in Chapter 6. When the surface is
a radiative-adiabatic surface, from Eq. (18.47) we have

0 ¼ qc þ qR � qRS (18:48)

The radiative-adiabatic temperature of the surface is obtained by combining Eqs.
(18.46) and (18.48) as

0 ¼ qc þ qR � 1sT 4
ra (18:49)

or

T 4
ra ¼

qc þ qR

1s
(18:50)

The preceding calculation for Tra assumes the simplest geometric case where the
surface is completely convex, and surface radiation from other parts of the body is
not incident on the point in questions. This is not the case for complex body shapes
using nonconvex shapes where some parts of the body surface might face other parts.
Taking this effect into account becomes a matter of geometry and is covered in detail
by Hirschel. Such matters are beyond the scope of this section.

18.9 Summary and Comments

This chapter has covered the basic concepts necessary to analyze a
radiating flowfield. Equations (18.2) and (18.3) define the radiative intensity
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Iv and the radiative flux qv; these two quantities are used to describe the propa-
gation of radiative energy through a medium. The intensity is governed by the
radiative-transfer equation

dIv

ds
¼ Jv � kvIs ¼ kvBv � kvIv

where Bv is the blackbody radiative intensity

Bv ¼
2hv3

c2(ehv=kT � 1)

When the radiative intensity at a given point in the gas is known for all direc-
tions, then the radiative flux can be obtained as

qv ¼

ð
v

Iv cos u dv

Various solutions for qv are given in this chapter, depending on whether the gas
is transparent (Sec. 18.4), absorbing (Sec. 18.5), or both emitting and absorbing
(Sec. 18.6). Finally, applications to the stagnation point of a hypersonic blunt
body are made, contrasting the various possible cases.

With this chapter, we bring to an end our discussion of high-temperature gas
dynamics: we are at the end of Part 3 of this book. At this stage, return to our road
map in Fig. 1.4, and mentally walk down the items listed under high-temperature
flows, thinking about the salient physical aspects as you encounter each subtopic.
The intent of Part 3 has been to provide the necessary technical fundamentals
along with a physical feeling for the reader to carry out and understand a high-
temperature flowfield study. In Part 3, we have just scratched the surface,
especially in the supporting areas of quantum mechanics, statistical mechanics,
kinetic theory, spectroscopy, kinetic theory, and physical chemistry. The inter-
ested reader is encouraged to study deeper into these basic sciences because
they provide the foundation for a true appreciation of high-temperature gas
dynamics. However, with the material discussed in Part 3 you have a sufficient
background to be labeled a “starter” in the field of high-temperature flows.

Design Example 18.1

The detailed calculation of shock-layer radiation and the resulting radiative
heat transfer to the surface is an elegant and detailed process as described in
this chapter. Indeed, it might be too elegant and too detailed when fast engineer-
ing calculations are desired for preliminary vehicle design studies. For such
design studies, a simple algebraic equation for stagnation-point radiative
heating is most desirable, based on correlations of detailed radiating flowfield cal-
culations of the nature described earlier.
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Tauber and Sutton [268] obtained a simple correlation for stagnation-point
radiative heating in the form of

(qR)stag ¼ C r a
n r

b f (V) (18:51)

where rn is the hemispherical nose radius in meters and f (V ) is a velocity function
tabulated vs flight velocity in Table 18.1 for both Earth and Mars entry. For Earth
entry, in Eq. (18.51), where (qR)stag is in W/cm2, we have

C ¼ 4:736� 104

A ¼ 1:072� 106 V�1:88r�0:325

if

1 � rn � 2, a � 0:6

if

2 , rn � 3, a � 0:5

b ¼ 1:22

Table 18.1 Radiative heating functions for Earth and Mars entry

V, m/s fE (V ) V, m/s fM (V )

9,000 1.5 6,000 0.2

9,250 4.3 6,150 1.0

9,500 9.7 6,300 1.95

9,750 19.5 6,500 3.42

10,000 35 6,700 5.1

10,250 55 6,900 7.1

10,500 81 7,000 8.1

10,750 115 7,200 10.2

11,000 151 7,400 12.5

11,500 238 7,600 14.8

12,000 359 7,800 17.1

12,500 495 8,000 19.2

13,000 660 8,200 21.4

13,500 850 8,400 24.1

14,000 1,065 8,600 26.0

14,500 1,313 8,800 28.9

15,000 1,550 9,000 32.8

15,500 1,780 —— ——

16,000 2,040 —— ——
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For Mars entry, where the atmosphere is assumed to be 97% CO2 and 3% N2,

C ¼ 2:35� 104

a ¼ 0:526

b ¼ 1:19

Note in Table 18.1 that the velocity function fE(V ) pertains to Earth entry and
fM(V ) pertains to Mars entry.

A comparison of results from Eq. (18.51) with the detailed radiating shock-
layer calculations of Page et al. [269] is shown in Fig. 18.17, obtained from
Tauber and Sutton [268]. Here, the radiative heat-transfer coefficient, defined as

CHr
¼

(qR)stag

1=2rV3

is plotted vs flight velocity. The solid and dashed curves for a stagnation region
pressure of 1.0 and 0.1 atm, respectively, are obtained from Eq. (18.51), and the
squares and circles are from the shock-layer calculations reported in [269]. The
average difference between the detailed shock-layer calculations and the results
from Eq. (18.51) is 8.5%. Clearly Eq. (18.51) provides a useful engineering
correlation from stagnation-point radiative heat transfer.

A recent example of an application of Eq. (18.51) can be found in [229], where
the development and use of the configuration-based aerodynamics (CBAERO)

Fig. 18.17 Radiative heat-transfer comparison in air (Tauber and Sutton [268]).
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software package at the NASA Ames Research Center is described. We have
noted various aspects of CBAERO in Design Examples at the end of Chapters
3 and 6. Kinney and Garcia in [229] note that CBAERO uses Eq. (18.51) for
an engineering prediction of stagnation-point radiative heat transfer. Results
from [229] for the total stagnation-point heat transfer, qcþ qR, are given in
Fig. 18.18 for the Project Fire entry test vehicle. (The vehicle is shown in
Fig. 3.34.) In Fig. 18.18 the CBAERO results (diamonds) are compared with
flight-test data (circles) and with a detailed CFD calculation (squares). Clearly,
the engineering calculations from CBAERO compare favorably with the flight-
test data and detailed CFD calculations. This tends to further substantiate the
value of Eq. (18.51) as an engineering method for predicting stagnation-point
radiative heat transfer for preliminary vehicle design purposes.

Problems

18.1 Consider a radiating, transparent flowfield in the nose region of a hyperso-
nic limit body. Define the radiation loss parameter G as

G ¼
Esd

1
2
r1V3

1

where d is the shock detachment distance and Es is the value of E [given by
Eq (18.15)] evaluated for properties immediately behind the normal portion
of the shock wave. Prove that G is a similarity parameter for the flow.

Fig. 18.18 Fire II total stagnation-point heat transfer. Comparison of calculations

with flight-test results (Kinney and Garcia [229]).
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18.2 In problem 18.1, let qR be the stagnation-point radiative heating. Also, let
qR,0 denote the stagnation-point radiative heating if the shock layer were
adiabatic, that is, if the shock-layer flowfield properties were calculated
assuming no energy is lost as a result of radiation. Make a qualitative
sketch of qR/qR,0 vs G, and explain your physical reasoning.
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Postface

At this stage, return to the preface of this book, and review our stated intent in
presenting the material to be found in Parts 1, 2, and 3. Recall that our purpose
was to discuss the basic fundamentals of hypersonic and high-temperature gas
dynamics. We could go on from here and discuss other aspects such as low-
density aerodynamics, experimental techniques, and hypersonic vehicle con-
siderations. However, to do so in the proper depth would far exceed the length
constraints of the present book. Do not worry about this seemingly neglected
material. Instead, rest assured that, with the fundamentals presented here, you
are equipped to launch into any hypersonic or high-temperature problem with
a minimum of confusion and questioning. This author hopes that you have
been excited about what you have read here and that you will use this book as
a launching pad to read much deeper into the subject matter. The world of hyper-
sonic and high-temperature flows is still relatively new, with ever-expanding
applications associated with hypersonic airplanes, manned space vehicles, etc.
The purpose of the present book has been to help you chart a course through
this new world, and to make your trip as meaningful and comfortable as possible.
Bon voyage!
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Shepard, Alan B., 4

flow
aerodynamic force, 23–26
aerodynamic heating, 23–26
definition of, 13–27

entropy layer, 14–15
high-temperature flows, 16–19
low-density flow, 20–22
recapitulation, 22–23
thin shock layers, 13–14
viscous interaction, 15–16
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flow (Continued )

flight paths, 27–29
futuristic ideas, 7–13
importance of, 5–13
laminar, 327

gas dynamics, high-temperature gas
dynamics, 1–31

inviscid flowfields, 103–176
blast-wave theory, 151–167
exact methods, 179–257
governing equations, 106–107
hypersonic equivalence principle,

146–167
hypersonic similarity, 118–129
hypersonic small-disturbance

equations, 111–118
Mach-number independence

principle, 107–111
thin shock-layer theory, 167–173

shock
basic relations, 36–42
expansion-wave relations, 35–49
relations, hypersonic similarity

parameter, 42–44
wave shapes, 222–225

similarity, 118–129
parameter, 42–44

small-disturbance
equations, 111–118
theory

commentary, 145–146
solutions, 129–145

transition, 327–335
angle of attack, 330–332
environment, 330
Mach number, 329
nose bluntness, 332–333
prediction of transition, 334–335
transition Reynolds number, 328
unit Reynolds number, 330
wall temperature, 333–334

turbulent boundary layer, 335–341
Baldwin–Lomax model, 336

viscous flows
computational-fluid-dynamic (CFD)

solutions, 415–445
interactions, 376–445

Inviscid
flowfields, 103–176
high-temperature equilibrium flows,

599–646

design examples, 644–646
equations for, 601–603
equilibrium blunt-body flows,

636–642
equilibrium speed of sound,

629–633
frozen flows, equilibrium flows,

difference between, 623–625
frozen specific heats, 626–629
normal shock-wave flows,

604–616
oblique shock-wave flows,

604–616
quasi-one-dimensional nozzle flows,

617–623
hypersonic flowfields, exact methods,

179–257
nonequilibrium flows, 647–690

binary scaling, 680–683
equations, 649–655
nonequilibrium blunt-body flows,

671–680
normal shock-wave flows,

655–662
other shapes, 683–687
quasi-one-dimensional nozzle flows,

663–671

Kinetic theory, 559–573
collision frequency, 564–567
mean free path, 564–567
perfect-gas equation of state, 560
speed distribution functions, mean

velocities, 567–571
velocity distribution functions, mean

velocity, 567–571

Laminar hypersonic flows, 327
Lees–Dorodnitsyn transformation, 279
Lennard–Jones parameters, 699
Lift and drag data, 439
Limiting case, Boltzmann distribution,

516–518
Local similiarity method, 316–318
Local surface inclination methods,

51–100
CBAERO, 91
design example, 87–100

Hypersonic Arbitrary Body Program
(HABP), 87

Newtonian
centrifugal force corrections,

63–70
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flow, 54–61
modified, 61–63
significance of, 70–79

shock-expansion method, 83–86
tangent-wedge method, 79–83

Low-density flow, 20–22

Mach number, 329
independence principle, inviscid

flowfields, 107–11
Newtonian flow and, 61

Macrostate, 509
counting quantity of microstates,

512–514
most probable, 514–516

Meador–Smart reference temperature
method, 345–346

Mean
free path, 564–567
velocity, 567–571

Method of characteristics, 184–199
design example, 247–257
waveriders, 251

Microscopic description of gases,
503–512

Microstates, counting quantity for
macrostate, 512–514

Modified Newtonian law, 61–63

Navier–Stokes
equations, 266–268

boundary layer equations,
272–278

solutions, 424–433, 749–755
full, 434–444
parabolized, 424–433

Newtonian
flow

centrifugal force corrections,
63–70

local surface inclination methods
and, 54–61

Mach-number independence, 61
modified, 61–63

theory
exact theory, comparison of,

74–79
significance of, 70–79

Newtonian–Busemann theory, centrifugal
force corrections and, 67

Nonequilibrium blunt-body flows,
671–680

Nonsimilar
flows, boundary-layer solutions,

739–740
hypersonic boundary layers,

315–327
difference-differential method,

319–322
finite difference method, 322–327
local similiarity method,

316–318
Normal shock-wave flows, 604–616

inviscid nonequilibrium and,
655–662

properties of, 607
Nose bluntness, 332–333
Nozzle flows, inviscid

high-temperature equilibrium flows,
617–623

nonequilibrium flows and, 663–671

Oblique shock-wave flows, 604–616

Parabolized Navier–Stokes (PNS)
solutions, 424–433

chemically reacting flows and,
749–751

Partition function, 518–523
evaluation, 524–528

Perfect gases, 464–466
calorically, 474
chemically reacting mixture,

475–476
thermally, 474–475

Perfect-gas equation of state
kinetic theory and, 560
various forms of, 466–472

PNS. See Parabolized Navier–Stokes.
Prediction of transition, 334–334

Radiating flowfields, sample results,
773–780

Radiative
gas dynamics, 759–785

definitions of, 760–763
design examples, 782–785
heating functions, spaceship

re-entry, 783
radiative-transfer equation,

763–765
solutions, 765–773

heating, 19
functions, spaceship re-entry, 783
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Radiative-transfer equation,
763–765

radiating flowfields, sample results,
773–780

solutions
absorbing gas, 765–768
emitting and absorbing gas,

769–773
transparent gas, 765–768

surface radiative cooling,
780–781

Ramjet engines, 456–458
Real gases, 466–477
Recapitulation, 22–23
Reference temperature method,

341–346
example of, 343–345
Meador–Smart reference

temperature method,
345–346

Rocket engines, high-temperature
flows and, 453

Scramjet engines, 456–458
Second law of thermodynamics,

481–483
Self-similar

boundary layers, 279
solutions, 278–315

flat-plate case, 287–306
Lees–Dorodnitsyn transformation,

279
stagnation-point case,

306–313
Shock

capturing, 242
fitting, 242
waves, 35–49

basic relations, 36–42
formula, 47–48

Shock-expansion method, 83–86
Shock–shock interactions,

225–231
Shock-wave flows

normal, 604–616
inviscid nonequilibrium and,

655–662
oblique, 604–616

Shock-wave/boundary layer hypersonic
interactions, 395–406

Similiarity parameters, viscous flows
and, 268–272

Single chemical species, practical
evaluation, 528–532

Space-marching finite difference
method, 231–245

Euler equations, additional solutions,
231–245

shock capturing, 242
shock fitting, 242

Speed distribution functions, mean
velocities, 567–571

Speed of sound, equilibrium, 629–633
Stagnation-point case, 306–313
Stagnation-point heat transfer,

729–739
Statistical thermodynamics, 501–558

chemical equilibrium, 537–538
equilibrium chemically reacting gas,

542–547
equilibrium constant calculation,

532–537
equilibrium properties, high-

temperature air, 547–556
gases, microscopic description,

503–512
high-temperature air, equilibrium

composition calculation,
538–542

limiting case, Boltzmann distribution,
516–518

macrostate, most probable, 514–516
microstates, counting quantity of,

512–514
partition function, 518–523

evaluation of, 524–528
single chemical species, practical

evaluation, 528–532
Strong viscous interactions, description

of, 380–382
Surface radiative cooling, 780–781

Tangent-cone method, 79–83
Tangent-wedge method, 79–83
Thermal conduction, 702–705
Thermally perfect gas, 474–475
Thin shock layer

hypersonic flow and, 13–14
theory, 167–173

Time-marching finite difference
method, 199–222

hypersonic blunt-body problem,
199–222

Transition Reynolds number, 328
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Transparent gas, radiative-transfer
equation and, 765–773

Transport properties
coefficients, 696–700
equilibrium high-temperature gases

and, 705–709
functions for predictions, 698
Lennard–Jones parameters, 699
phenomena defined, 692–696

Two-temperature kinetic model,
592–595

Unit Reynolds number, 330

Velocity distribution functions, mean
velocity, 567–571

Velocity-altitude map, 459–461
hypersonic flight paths and, 27–29

Vibrational nonequilibrium, 575–598
two-temperature kinetic model,

592–595
vibrational rate equation, 577

Vibrational rate of equation, 577
Viscous

flow, 261–374
adiabatic wall condition, 271
aerodynamic heating, entropy-layer

effects, 353–355
background, 262–266
boundary conditions, 268–272
boundary layer equations, 272–278
design examples, 358–374
equations, Navier–Stokes, 266–268
hypersonic

aerodynamic heating, 346–353
flow and, 15–16
transition, 327–335
turbulent boundary layer,

335–341
laminar hypersonic flows, 327
nonsimilar hypersonic boundary

layers, 315–327
reference temperature method,

341–346
similarity parameters, 268–272

high-temperature flows, 711–756
boundary conditions, catalytic walls,

726–729
boundary-layer solutions,

729–740
chemically reacting flow

full Navier–Stokes solutions,
751–755

parabolized Navier–Stokes
solutions, 749–751

viscous-shock-layer solutions,
741–749

chemically reacting gas,
boundary-layer equations,
719–726

energy equations, alternate forms,
715–719

equations for, 712–715
interactions, 376–445
x role in, 382–389

strong interaction, 384–386
weak interaction, 386–389

background of, 376–379
design examples, 409–413
other results, 389–395
shock-wave/boundary layer types,

395–406
strong, description of, 380–382
summary of, 407–408
weak, definition and description of,

380–382
shock-layer (VSL) technique,

418–424
Viscous-optimized hypersonic

waveriders, 256
Viscous-shock-layer solutions, viscous

high-temperature flows and,
741–749

VSL. See viscous shock-layer.

Wall temperature, 333–334
Waveriders, 251

viscous-optimized hypersonic, 256
Weak viscous interactions, definition

and description of, 380–382
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